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Some non-linear function theoretic

properties of Riemannian manifolds

Stefano Pigola, Marco Rigoli and Alberto G. Setti

Dedicated to the memory of Franca Burrone Rigoli

Abstract

We study the appropriate versions of parabolicity stochastic com-
pleteness and related Liouville properties for a general class of opera-
tors which include the p-Laplace operator, and the non linear singular
operators in non-diagonal form considered by J. Serrin and collabo-
rators.

0. Introduction

The starting point of the present note is the circle of ideas in classical po-
tential theory, which relate the parabolicity and stochastic completeness of
a manifold on one hand, and their function theoretic counterparts on the
other, and in particular results due to Khas’minskii which provide sufficient
conditions for a manifold to be parabolic, respectively stochastically com-
plete. These ideas allow also to establish comparison theorems with model
manifolds in the sense of Greene and Wu under curvature conditions.

It was recently shown by the authors that the parabolicity/stochastic
completeness of a manifold may be described in terms of suitable versions
of a global weak maximum principle. Explicitly, M is parabolic (resp. sto-
chastically complete) if and only if for every u ∈ C2(M), u bounded above,
and for every η > 0 we have

inf
{u>supu−η}

∆u < 0 (resp. ≤ 0)

(see [17] and [18]).
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The note grew out in an attempt to extend these ideas in the non-linear
setting of the potential theory of the p-laplacian. Indeed, the link between
parabolicity and stochastic completeness and weak maximum principle al-
lows us to deal with a more general class of nonlinear operators modelled
on the p-Laplacian. We are able to treat divergence form operators like the
ϕ-Laplacian or even the non-diagonal operators studied in Euclidean setting
by J. Serrin and collaborators, essentially under the assumption of the solv-
ability of the corresponding Dirichlet problem. We point out in this respect
that the solvability of the Dirichlet problem plays an essential role even in
the classical potential theory of the p-Laplacian.

Throughout the paper we shall denote with Lϕ,h the operator defined
thus:

Let h be a positive definite symmetric covariant tensor field defined onM,
that is a positive definite section of the bundle S2T ∗M of symmetric bilinear
forms on TM . Let also ϕ ∈ C1((0,+∞)) ∩ C0([0,+∞)) be a function
satisfying the following structural conditions

(i) ϕ(0) = 0, (ii) ϕ(t) > 0, (iii) ϕ(t) ≤ At(κ + t)p−2,

(iv)
ϕ(t)

t
h(ξ, ξ) +

(
ϕ′(t) − ϕ(t)

t

)
〈v, ξ〉h(v, ξ) > 0

(0.1)

for some constants A > 0, κ ≥ 0, p > 1, and for every t > 0 and v, ξ ∈ TM
with |v| = |ξ| = 1. Observe that the ellipticity condition (0.1) (iv), which
will be used to prove a version of a comparison result valid in our context
(see Section 1 below), implies that

ϕ′(t) > 0 ∀ t > 0.

and it is in fact equivalent to the latter condition when h = h(x)〈 , 〉 is a
conformal deformation of the metric.

For u ∈ C0(M)∩W 1,p
loc (M) let Lϕ,hu be defined, in the appropriate weak

sense, by

(0.2) Lϕ,hu = div
(
|∇u|−1ϕ(|∇u|)h(∇u, ·)♯

)
,

where ♯ : T ∗M → TM denotes the musical isomorphism, so that h(∇u, ·)♯

is the vector field on M defined by

〈h(∇u, ·)♯, X〉 = h(∇u,X), ∀X ∈ TxM.

It should be observed that in order to define Lϕ,hu for u ∈ C1(M) we may
dispense with conditions (0.1) (iii) and (iv).

The operators Lϕ,h may be viewed as the natural, intrinsic generalization
to Riemannian manifolds of the fully quasilinear singular elliptic operators
considered by Pucci Serrin and Zou (see [21], [19], [20]).
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They also generalize the A-Laplace operators as defined in [7] in the
setting of nonlinear potential theory. For the latter class of operators we
refer to work by I. Holopainen, [9], who obtains interesting Liouville type
results. From a somewhat different point of view, see also the recent paper
by T. Coulhon, I. Holopainen, and L. Saloff-Coste [2].

Note that if we choose h to be the metric tensor of M , then the operator
Lϕ,h reduces to the ϕ-Laplacian Lϕ, which in turn, for appropriate choices
of the function ϕ leads to well known operators such as:

- the Laplace-Beltrami operator, corresponding to ϕ(t) = t;

- the p-Laplacian, div
(
|∇u|p−2∇u

)
corresponding to ϕ(t) = tp−1, p > 1;

- the mean curvature operator div
(

∇u√
1+|∇u|2

)
, corresponding to ϕ(t) =

t(1 + t2)−1/2.

While many of our results hold for the general class of operators defined
above, the full strength of our results depend on the solvability of the Dirich-
let problem and the validity of appropriate regularity results. We therefore
consider the following additional conditions on h and ϕ:

(0.3) h−〈 , 〉 ≤ h ≤ h+〈 , 〉,
in the sense of quadratic forms, for some positive constants h−, h+, and

(v)
ϕ(s)

s
h(ξ, ξ) +

(
ϕ′(s) − ϕ(s)

s

)
〈v, ξ〉h(v, ξ) ≥ γ(κ+ s)p−2

(vi)
∣∣∣ϕ(s)

s
h(ξ, ξ′) +

(
ϕ′(s) − ϕ(s)

s

)
〈v, ξ〉h(v, ξ′)

∣∣∣ ≤ Γ(κ+ s)p−2,

(0.1)

for some constants γ,Γ > 0, κ ≥ 0, and every s > 0, ξ, ξ′, v ∈ TxM with
|ξ| = |ξ′| = |v| = 1. The above conditions on h and ϕ guarantee that
the operator Lϕ,h satisfies the main hypotheses considered in the papers by
T. Kura, [12], and P. Tolksdorf, [26], and imply that the method of super-sub
solution is applicable to find solutions of the Dirichelt problem associated to
the equation Lϕ,hu = q(x)u, and that the relative solutions are of class C1.

The prototypical example of operators satisfying condition (0.1) (i)–(vi),
and (0.3) is of course the p-Laplacian (with h( , ) = 〈 , 〉), or the A-Laplacian
considered in [7] and [8]. We stress however that we do not impose homo-
geneity condition

(0.4) Ax(tξ) = tp−1Ax(ξ) ∀ξ ∈ Tx(M), t > 0,

which is assumed by those authors, and which plays a crucial role in the
capacity approach they follow. As a consequence of this, we are forced to
use entirely different techniques.
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As a further example, note that if the tensor h is a multiple of the metric,
that is, h = h(x)〈 , 〉, the above conditions read

(v)′ min
(
ϕ′(s),

ϕ(s)

s

)
≥ γ(κ+ s)p−2

(vi)′ max
(
ϕ′(s),

ϕ(s)

s

)
≤ Γ(κ+ s)p−2.

(0.5)

We next introduce the notation and terminology that will be used in the
rest of the paper. In the sequel λ will be a fixed nonnegative real number.

Definition 0.1. A function u ∈ C0(M) ∩W 1,p
loc (M) is said to be λ-subhar-

monic with respect to Lϕ,h if Lϕ,hu ≥ λu. If the opposite inequality holds, or
the inequality is replaced by equality we will say that u is λ-superharmonic,
λ-harmonic, respectively. In all cases the (in)equalities are understood to
hold in the appropriate weak sense.

Definition 0.2. We say that the λ-Liouville property for C1(M) (respec-
tively, for C0(M) ∩ W 1,p

loc (M) functions is valid for the operator Lϕ,h if,
every u ∈ C1(M) (respectively u ∈ C0(M) ∩ W 1,p

loc (M)), bounded above,
λ-subharmonic, and nonnegative in case λ > 0, is constant on M (and
therefore identically zero if λ > 0).

Definition 0.3. We say that the λ-weak maximum principle at infinity
for C1 (respectively, for C0 ∩ W 1,p

loc ) functions holds for the operator Lϕ,h

if for every non constant function u ∈ C1(M) (respectively, u ∈ C0(M) ∩
W 1,p

loc (M)) with u∗ = supM u < +∞, and for every η < u∗, we have

(0.6) inf
Ωη

Lϕ,hu

{
< 0 if λ = 0

≤ 0 if λ > 0.

where we have set Ωη = {x : u(x) > η}.

In the above definition, the inequality is understood in distributional
sense. Explicitly, we say that infΩ Lϕ,hu < C if there exists 0 ≤ ψ ∈ C∞

c (Ω)
such that ∫

Ω

|∇u|−1ϕ(|∇u|)h(∇u,∇ψ) < C

∫

Ω

ψ,

and that infΩ Lϕ,hu ≤ C if, for every ǫ > 0, infΩ Lϕ,hu < C + ǫ.

It is straightforward to check that when u ∈ C2 is such that Lϕ,hu ∈ C0,
then the weak inequality holds if and only if

inf
x∈Ω

Lϕ,hu(x) < C (resp. ≤ C).
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In this case, the condition above can be reformulated as follows:

There exists a sequence {xk} ⊂M such that

(i) u(xk) > u∗ − 1

k

(ii)Lϕ,hu(xk)

{
< 0 if λ = 0

< 1/k if λ > 0.

(0.7)

Note that (0.7) is part of the conditions that enter in the definition of the
Omori-Yau maximum principle, where however the extra condition that |∇u|
tends to zero is imposed. Indeed, the expression weak maximum principle
was adopted in [17] and [18] to stress the fact that no condition on ∇u is
required. We also remark that, for λ > 0 the λ-weak maximum principle is
equivalent to the following property (see, [17], [18]):

For any function f ∈ C0(R), and any bounded above function u satisfying
the appropriate regularity condition

if Lϕ,hu ≥ f(u) on Ωη = {x : u(x) > u∗ − η}, then f(u∗) ≤ 0.

Definition 0.4. We say that the λ-Khas’minskii test for the operator Lϕ,h

is valid on M if there exists a compact set K in M , such that, for every
xo ∈M \K, and every ǫ > 0, there exists a function γ = γxo,ǫ ∈ C0(M \K)
∩W 1,p

loc (M \K) such that

(i) γ > 0 on M \K, (ii) γ(xo) < ǫ,

(iii) γ(x) → +∞ as x→ ∞, (iv)Lϕ,hγ ≤ λγ on M \K.

It is worth noting that when the operator satisfies the homogeneity con-
dition (0.4) with p ≥ 2, then the λ-Khas’minskii test is valid provided there
exists a function γo defined in the complement of a compact set K such that

γo(x) → +∞ as x→ +∞, and Lϕ,hγo ≤ λγo in M \K,

This is the usual formulation of the λ-Khas’minskii test for the Laplacian
(see [5]), and to see that it implies all the conditions listed above, note first
that, by adding a suitable constant, we may assume that γo is nonnegative.
Further, since p ≥ 2, given xo ∈ M \K and ǫ > 0, we can multiply γo by a
constant α small enough that αγ(xo) < ǫ, and

Lϕ,h(αγo) = αp−1Lϕ,hγo ≤ αp−2λ(αγo) ≤ λ(αγo) in M \K.

In the case of the Laplace operator, one can use the solvability of the Dirich-
let problem, and standard regularity results, to show that if the λ-Liovuille
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property holds for C1, indeed even C∞, functions, then it holds for C0∩W 1,p
loc

functions. Moreover, it is well known, see e.g. the very informative sur-
vey article by A. Grigor’yan [5], that the λ-Liouville property is equiva-
lent to the parabolicity (if λ = 0), respectively stochastic completeness (if
λ > 0) of the underlying manifold, that the λ-Khas’minshii test implies the
λ-Liouville property, and, that the parabolicity of the manifold implies the
0-Khas’minskii test (see, [16] and [24]). To conclude this chain of equiv-
alences, it was recently shown by the present authors ([17], [18]) that the
λ-Liouville property is in fact equivalent to the validity of the λ-weak max-
imum principle. Using this fact one can give a direct proof of the fact that
the λ-Khas’minskii test implies the validity of λ-Liouville property.

Many of these implications have been extended to more general, non-
linear operators, like p-Laplacian, see e.g. [9], and the ϕ-Laplacian, [23],
where the parabolicity is defined in term of the validity of the 0-Liouville
property for the appropriate operator. Indeed, the 0-Liouville property for
the p-Laplacian is equivalent to other properties like non-existence of the
positive Green function, which serve as definition of parabolicity in linear
potential theory.

Similarly, the validity of the λ-Liouville property with λ > 0 may be
taken as definition of stochastic completeness relative to the operator under
consideration.

Our first main result is the following.

Theorem A. Assume that h and ϕ satisfy conditions (0.3) and (0.1) (i)–
(vi), respectively, and let λ ≥ 0. Then the following properties are equivalent:

(i) The λ-weak maximum principle holds for C0(M)∩W 1,p
loc (M) functions;

(ii) The λ-weak maximum principle holds for C1(M) functions;

(iii) The operator Lϕ,h has λ-Liouville property for C1(M) functions;

(iv) The operator Lϕ,h has λ-Liouville property for C0(M)∩W 1,p
loc (M) func-

tions.

Furthermore, if the λ-Khas’minnskii test is valid, then the λ-weak maximum
principle for C1 functions holds.

As mentioned above some of the implications hold if we assume that the
function ϕ satisfies only assumptions (0.1) (i)–(iv). The proofs in Section 2
below are organized in such a way as to show which implications are valid
in this greater generality, and where the extra assumptions are needed.

Our second main result is a comparison result with models for the parabo-
licity/stochastic completeness of a manifold with respect to the ϕ-Laplacian,
which extends to this class of operators results valid for the Laplacian
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(see [5]). Before stating the result, we recall the definition of a model man-
ifold in the sense of Greene and Wu ([4]): Let σ : [0,+∞) → [0,+∞)
be a smooth function satisfying σ(0) = 0, σ(t) > 0 for t > 0, σ′(0) = 1,
σ(2k)(0) = 0 for every k = 0, 1, . . . , the m-dimensional model defined by σ

is the manifold (M̃, 〈̃ , 〉σ), where M̃ = R
m with the metric defined in polar

coordinates (r, θ) by 〈̃ , 〉σ = dr2 +σ(r)2dθ2, where dθ2 denotes the canonical
metric of the unit sphere S

m−1 in R
m. Note that the requests on σ enable us

to extend the metric smoothly on all of M̃. The condition that the deriva-
tives of even orders vanish in 0 does not appear in [4], but, as shown in [11],
it is needed to guarantee the smoothness of the resulting metric.

Theorem B. Let (M, 〈 , 〉) be a complete Riemannian manifold, let o ∈ M
and denote by r(x) the Riemannian distance function from o, and by cut(o)
the cut locus of o. Assume that the function ϕ satisfies (0.1) (i)–(iv), and
suppose also that

(0.8) φ(t) → +∞ as t→ +∞.

(i) Assume that the differential inequality

(0.9) ∆r(x) ≤ (m− 1)
σ′

σ
(r(x))

holds in M \ ({o} ∩ cut(o)), where σ is a smooth function satisfying the
conditions listed in the definition of model manifold. If the λ-weak maximum

principle for the operator L̃ϕ holds on (M̃, 〈̃ , 〉σ), then it also holds for the
operator Lϕ on M.
(ii) Assume that o is a pole of M , that the differential inequality

(0.10) ∆r(x) ≥ (m− 1)
σ′

σ
(r(x))

holds in M \{o}. If the λ-weak maximum principle for the operator Lϕ holds
on M , then it also holds for L̃ϕ on M̃.

In Section 1 we prove the various implications, which lead to a proof of
Theorem A. We then consider the case of models, and obtain a necessary
and sufficient condition, expressed in terms of volume growth, for a model
manifold to satisfy the λ-Khas’minskii test for the ϕ-Laplacian. Using this
we obtain a comparison result for the Lϕ-parabolicitiy, resp. stochastic
completeness of general Riemannian manifolds. We then extend some of the
above considerations to the case of the operator Lϕ,h, and describe a suffi-
cient condition, expressed in terms of curvature, that the λ-Khas’minskii test
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for Lϕ,h holds. We end the paper discussing a problem raised by Holopainen,
concerning the vanishing of p-superharmonic functions belonging to Lp−1,
and which we will be referring to as the Lp−1-Liouville property. It is easy
to see that, for the ordinary Laplacian, the L1-Liouville property is implied
by the stochastic completeness of the manifold, and that this is in fact an
equivalence in the case of models. One is therefore led to expect that the
validity of the Lp−1-Liouville property for the p-Laplacian may be related to
the version of p-stochastic completeness defined in terms of λ-Liouville prop-
erty. We investigate this relationship in the case of model manifolds, and
exploiting the characterization of stochastic completeness of models in terms
of volume growth, we show that p-stochastic completeness indeed implies the
validity of the Lp−1-Liouville property if p ≤ 2, while the reverse implication
holds if p ≥ 2. We then show, adapting an example of Holopainen that
neither of the two implications can be reversed if p 6= 2.

1. Proof of Theorem A and related facts

We begin by collecting some general facts on the operator Lϕ,h. In particular,
we prove a comparison principle valid in our context, and describe how the
method of sub-super solutions, together with the regularity result, which
holds if the function ϕ and the tensor field h satisfy the additional conditions
(0.1) (v)-(vi), allow to show that the λ-Liouville property holds for C0∩W 1,p

loc

functions if and only if it holds for C1 functions.
The first lemma clarifies the role of the ellipticity condition (0.1) (iv).

Lemma 1.1. Assume that condition (0.1) (iv) holds. Then, for every ξ, η ∈
TxM we have

(1.1) h
(
|ξ|−1ϕ(|ξ|) ξ − |η|−1ϕ(η) η, ξ − η

)
≥ 0,

with equality if and only if ξ = η.

Proof. Let Xt be the vector field in TxM defined by Xt = tη + (1 − t)ξ,
and set ζ = ξ − η. Then the left hand side of (1.1) is equal to

h
(ϕ(|X1|)

|X1|
X1, ζ

)
− h

(ϕ(|X0|)
|X0|

X0, ζ
)

=

∫ 1

0

d

dt
h
(ϕ(|Xt|)

|Xt|
Xt, ζ

)
dt

=

∫ 1

0

{ϕ(|Xt|)
|Xt|

h(ζ, ζ) +
[
ϕ′(|Xt|) −

ϕ(|Xt|)
|Xt|

]〈Xt, ζ〉h(Xt, ζ)

|Xt|2
}
dt

and the required conclusion follows at once from (0.1) (iv). �
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Lemma 1.2. Assume that ϕ and h satisfy conditions (0.1) (i)–(iv), and let
Ω be a bounded open set. If u, v ∈ C0(Ω̄) ∩W 1,p

loc (Ω) satisfy

(1.2)

{
Lϕ,hu ≥ Lϕ,hv in Ω

u ≤ v on ∂Ω,

then

u ≤ v in Ω̄.

Proof. Clearly, it suffices to prove that for every δ > 0, we have

(1.3) u ≤ v + δ on Ω.

Toward this aim, fix δ > 0, and let Ω̃ be an open set with smooth
boundary such that

O = {x ∈ Ω : u(x) > v(x) + δ} ⋐ Ω̃ ⋐ Ω.

To construct Ω̃ choose a smooth, non-negative function ω such that ω ≡ 1
on O and ≡ 0 in M \ Ω. If c ∈ (1/4, 3/4) is a regular value of ω (which
exists by Sard’s theorem) then we may set Ω̃ = {x : ω > c}.

Let also α ∈ C1(R) be such that α(t) = 0 if t ≤ δ, and α′(t) > 0 if t > δ
(so that α(t) > 0 there). Let W be the vector field defined by

(1.4) W = α(u− v)
[ϕ(|∇u|)

|∇u| h(∇u, ·)♯ − ϕ(|∇v|)
|∇v| h(∇v, ·)♯

]
.

Note that, the definition of α and Ω̃ imply thatW vanishes in a neighborhood
of ∂Ω̃ and since u, v ∈ W 1,p

loc (Ω), W ∈ L1(Ω̃). Further, a computation that
uses (1.2) shows that

div W = α(u− v)
[
Lϕ,hu− Lϕ,hv

]
+

α′(u− v)h
(ϕ(|∇u|)

|∇u| ∇u− ϕ(|∇v|)
|∇v| ∇v,∇u−∇v

)

≥ α′(u− v)h
(ϕ(|∇u|)

|∇u| ∇u− ϕ(|∇v|)
|∇v| ∇v,∇u−∇v

)
.

(1.5)

Denote by ρ the distance function from ∂Ω̃, with the convention that
ρ(x) > 0 if x ∈ Ω̃ and ρ(x) ≤ 0 if x ∈ M \ Ω̃, so that ρ is the radial
coordinate in the Fermi coordinates with respect to ∂Ω̃, and, by Gauss
Lemma, |∇ρ| = 1.
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Let Ω̃ǫ = {x ∈ Ω̃ : ρ(x) > ǫ}, and let ψǫ be the Lipschitz function
defined by

ψǫ(x) =





1 if x ∈ Ω̃ǫ

1
ǫ
ρ(x) if x ∈ Ω̃ \ Ω̃ǫ

0 if x 6∈ Ω̃.

Note that, since W vanishes in a neighborhood of ∂Ω̃, for every sufficiently
small ǫ > 0, W vanishes off Ω̃ǫ, and by definition of weak divergence, we
have

(1.6) 〈div W,ψǫ〉 = −
∫
〈W,∇ψǫ〉 = −1

ǫ

∫

Ω̃\Ω̃ǫ

〈W,∇ρ〉 = 0,

whence, using (1.5), and letting ǫ→ 0, we deduce that
∫

Ω̃

α′(u− v)h
(ϕ(|∇u|)

|∇u| ∇u− ϕ(|∇v|)
|∇v| ∇v,∇u−∇v

)
≤ 0.

According to Lemma 1.1, the expression involving h is non-negative, and
strictly positive if ∇u 6= ∇v. Since α′ ≥ 0, it follows that the integrand is
a.e. equal to zero in Ω̃.

To conclude, assume by contradiction that O is non-empty. Since
α(u− v) > 0 in O, again by Lemma 1.1, we conclude that ∇u = ∇v a.e.
in O. But then, u − v is constant in each connected component of O (see,
e.g., [7, Lemma 1.16]). But since u = v + δ on ∂O, this contradicts the
definition of O. �

We note that we will apply our comparison principle to functions that are
not necessarily C1(Ω), most notably to radial functions on the underlying
manifold, which are in general only Lipschitz. An alternative proof of the
comparison principe valid for Lipschitz functions may be obtained by us-
ing Lemma 1.1 to adapt to the case of the operator Lϕ,h the comparison
principle for the ϕ-Laplacian contained in [18, Proposition 6.1] (see also [21,
Lemma 3]).

We also remark that the conclusion of the lemma holds if we replace the
assumption that u, v ∈ C(Ω̄) and u ≤ v on ∂Ω, with the assumption

lim sup
x→∂Ω

u(x) ≤ lim inf
x→∂Ω

v(x).

Before stating the next result we recall that, given q ∈ L1
loc(Ω), a func-

tion u ∈ C0(M) ∩W 1,p
loc (M) satisfies the inequality Lϕ,hu ≥ q(x)u in Ω in

distributional sense if, for every nonnegative function ψ ∈ C∞
c (Ω)

−
∫

Ω

|∇u|−1ϕ(|∇u|)h(∇u,∇ψ) ≥
∫

Ω

q(x)uψ.
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Lemma 1.3. Assume that ϕ and h satisfy conditions (0.1) (i)–(iv) and let
q(x) ∈ L1

loc(Ω). If ui ∈ L∞
loc(Ω) ∩W 1,p

loc (Ω), i = 1, . . . n are sub-solutions of
Lϕ,hu = q(x)u, that is, they satisfy the differential inequality Lϕ,hu ≥ q(x)u
in Ω, then so does the function max{ui}. Similarly, if vi are super-solutions,
then so is the function min{vi}.

The Lemma is proved in [14], noting that condition (0.1) (iv) implies
assumption (H2) (see the discussion above), and that assumption (H3) is
never used in the proof.

Classical results of Tolksdorf, [26], and Kura, [12], assert that the L∞

super- and sub-solution method can be applied to p-Laplace type operators
in order to produce regular solutions to appropriate Dirichlet problems. As
mentioned above, conditions (0.1) (i)–(vi) and (0.3) are precisely the as-
sumptions needed to apply the Tolksdorf-Kura theory to operators in the
form Lϕ,h.

In the next lemma, which plays a central role in the paper, and will
be extensively used in the sequel, we adapt the method of super- and sub-
solutions to establish an existence and C1 regularity result for solutions of
the equation Lϕ,hu = q(x)u on M . The proof is modelled on that one gives
in the case of the Laplace operator.

Lemma 1.4. Assume that ϕ and h satisfy conditions (0.1) (i)–(vi) and (0.3),
respectively. Let q(x) ∈ L1

loc(M) and suppose that u− and u+ ∈ L∞
loc(Ω) ∩

W 1,p
loc (Ω) are a sub- respectively super-solution of the equation

(1.7) Lϕ,hu = q(x)u in M.

If u− ≤ u+ in M then there exists a C1(M)-solution u of (1.7) satisfying
u− ≤ u ≤ u+.

Proof. Let {Ωn} be an exhaustion of M by relatively compact domains
with smooth boundary ∂Ωn, and for every n consider the Dirichlet problem

(1.8)

{
Lϕ,hu = q(x)u in Ωn

u = u− on ∂Ωn.

Since u−, u+ are bounded sub- and super-solutions of (1.8), by [12, Theo-
rem 3.4], the problem has a solution un ∈ (W 1,p ∩ L∞)(Ωn) satisfying

(1.9) u− ≤ un ≤ u+ on , Ωn,

and, by [26, Theorem 1], un ∈ C1,α(Ωn). Furthermore, again by [26] and
by (1.9), the sequence {un}n≥2 is C1,α-bounded on Ω̄1, and since the em-
bedding C1,α(Ω̄1) →֒ C1(Ω̄1) is compact, by the Ascoli–Arzela’s Theorem,
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there exists a subsequence {un,1} which converges in C1(Ω̄1) to a function
ũ1 satisfying

Lϕ,hũ1 = q(x)ũ1 and u− ≤ ũ1 ≤ u+ in Ω1.

By induction, for every k one finds a subsequence {un,k} of {un,k−1} such
that {un,k} converges in C1(Ω̄k) to a function ũk satisfying

ũk = ũk−1 in Ω̄k−1, Lϕ,hũk = q(x) ũk and u− ≤ ũk ≤ u+ in Ωk.

Setting u = ũk on Ωk gives the desired solution. �

As a corollary of the above Lemma, we begin to prove, that if ϕ and h
satisfy the all assumptions listed above, then the λ-Liouville property holds
for C1 functions if and only if it holds for (C0 ∩W 1,p

loc )(M) functions. This
extends well known results for the Laplace operator, and allows one to define
the Lϕ,h-parabolicity (resp. stochastic completeness) of a manifold using the
degree of regularity appropriate for the situation at hand.

Lemma 1.5. Assume that ϕ and h satisfy the conditions listed in the state-
ment of Lemma 1.4. Then operator Lϕ,h has the λ-Liouville property for
C0(M) ∩ W 1,p

loc (M) functions if and only if the property holds for C1(M)
functions.

Proof. Only the sufficiency of the condition requires proof. We consider
only the case where λ = 0. The case λ > 0 is similar. To this end, assume
that u ∈ C0(M) ∩ W 1,p

loc (M) is not constant, bounded above and satisfies
Lϕ,hu ≥ 0

By suitably translating u we may assume that the sets Ω+ = {x : u(x)>0}
and Ω− = {x : u(x) < 0} are both not empty, and choose q ∈ C∞

c (M) non-
negative, and non-identically zero, with support contained in Ω−. It follows
from Lemma 1.3 that u− = max{u, 0} is nonnegative, non-constant and
satisfies Lϕ,hu− ≥ q(x)u− on M. On the other hand, if u+ is a constant
larger than supu, then u+ solves Lϕ,hu+ ≤ q(x)u+ and u− ≤ u+. Accord-
ing to Lemma 1.4, the equation Lϕ,hu = q(x)u has a solution u ∈ C1(M)
satisfying u− ≤ u ≤ u+. In particular, u is bounded above, non constant,
nonnegative, and since q is nonnegative, u is Lϕ,h-subharmonic.

We therefore conclude that if the λ-Liouville property holds for C1 func-
tions, then a contradiction is reached, and the only bounded above, C0(M)∩
W 1,p

loc (M) Lϕ,h-subharmonic functions are necessarily constant, i.e., the λ-
Liouville property holds for C0 ∩W 1,p

loc functions. �

The conclusion of the next Proposition holds assuming only that ϕ and h
satisfy the restricted set of conditions (0.1) (i)–(iv).
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Proposition 1.6. Assume that ϕ satisfies conditions (0.1) (i)–(iv). Then
the following implications hold:

(a) If the λ-weak maximum principle for C1 (resp. for C0 ∩ W 1,p
loc )

functions holds, then so does the λ-Liouville property;

(b) If the λ-Khas’minskii test holds then so does the λ-weak maximum
principle for C1 functions.

Proof. To prove (a), assume that the λ-weak maximum principle holds
on M (for functions in the appropriate regularity classes).

If λ = 0, let u be bounded above and satisfy Lϕ,hu ≥ 0, on M. If u
were nonconstant, this would contradict the 0-weak maximum principle.
Therefore u is constant, showing that the 0-Liouville property for C1 (resp.
C0 ∩W 1,p

loc ) functions holds.
If λ > 0, let u be a nonnegative, bounded above function satisfying

Lϕ,hu ≥ λu on M. If u is not identically zero, then, for every 0 < η <
u∗ = sup u, u satisfies inf Lϕ,hu ≥ λη on the set Ωη = {x : u(x) > η},
contradicting the assumed validity of the λ-weak maximum principle (under
the appropriate regularity conditions).

To prove (b), suppose that the λ-Khas’minskii test holds, so that there
exists a compact set K and for every ǫ > 0 and every xo 6∈ K there exists
a positive λ-superharmonic function γ on M \K, which tends to infinity at
infinity and is such that γ(xo) < ǫ.

Assume by contradiction that the λ-Liouville property for C1 functions
is not valid.

Thus, if λ = 0, there exists a function u ∈ C1(M) which is non-constant,
bounded above and satisfies infΩη

Lϕ,hu ≥ 0 for some η < u∗. Since ϕ increas-
ing and h positive definite, according to [19], the strong maximum principle
holds for Lϕ,h. It follows that u cannot attain its maximum on Ωη, so that Ω̄η

is not compact, and by choosing η closer to u∗, if needed, we may assume that
K ∩ Ωη = ∅. Pick xo ∈ Ωη such that u(xo) > η + (u∗ − η)/2 = (u∗ + η)/2,
and let γ be a function with the properties listed above, and satisfying
γ(xo) < (u∗ − η)/2. Finally, let A be the connected component containing
xo of the set {x : u(x) > η + γ(x)}. Since γ > 0 and tends to infinity
at infinity, Ā is a compact subset of Ωη, so that Lϕ,hu ≥ 0 ≥ Lϕ,h(η + γ)
on A and u = η + γ on ∂A. Thus, by comparison, u ≤ η + γ on A, thus
contradicting the definition of A.

The case where λ > 0 is similar. Again, we assume that u is bounded
above, and that, for some η < u∗

Lϕ,hu ≥ c > 0 on Ωη.

Then u does not attain its maximum on the set Ωη, and it may be assumed
that Ωη ∩K = ∅, and that λ(u∗ − η) < c.
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We choose xo ∈ Ωη such that u(xo) > (u∗ + η)/2, and a positive function
γ which satisfies Lϕ,hγ ≤ λγ on M \K and γ(xo) < (u∗ − η)/2. If A is the
connected component containing xo of the set {x : u(x) > η + γ(x)}, then
Ā is compact in Ωη, and, by definition γ < u∗ − η in A, so that

Lϕ,hu ≥ c > λ(u∗ − η) ≥ λγ ≥ Lϕ,hγ = Lϕ,h(η + γ)

in A, and a contradiction is reached as in the case λ = 0. �

We can now complete the proof of Theorem A.

Proof of Theorem A. It is trivial that (i) implies (ii). The implication
(ii) ⇒ (iii) is the content of Lemma 1.6 (a), and the implication (iii) ⇒ (iv)
follows from Lemma 1.5.

It remains to prove that (iv) implies (i). To this end, suppose first that
λ = 0, and let u be a bounded above function in C0(M) ∩ W 1,p

loc (M). By
adding to it a suitable constant we may assume that u∗ > 0. Assume by
contradiction that there exists 0 < η < u∗ such that

Lϕ,hu ≥ 0 on Ωη.

If η′ ∈ (η, u∗), then the function defined by

v = max{u, η′}
is not constant, and, since both u1 = u and the constant function u2 = η are
solutions of Lϕ,hu ≥ 0 in Ωη \Ωη′, by Lemma 1.3, v satisfies Lϕ,hv ≥ 0 in M.
But then (iv) implies that v is constant, yielding the required contradiction.

The case where λ > 0 is similar. Again, we assume by contradiction that
there exists η < u∗ such that

Lϕ,hu ≥ c > 0 on Ωη.

By adding a constant to u, we may assume that η < 0 < u∗ and that λu∗ < c,
so that u satisfies

Lϕ,hu ≥ c > λu∗ ≥ λu on Ωη.

Since, clearly u0 ≡ 0 satisfies

Lϕ,hu0 = λu0 on M,

by Lemma 1.3, the function

v = u+ =

{
max{u, u0} on Ωη

u0 on M \ Ω0,

is a C0(M) ∩ W 1,p
loc (M) non-identically vanishing solution of Lϕ,hv ≥ λv

satisfying 0 ≤ v ≤ u∗. The required contradiction now follows from (iv).
The last assertion in the statement is the content of Proposition 1.6 (b). �
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Corollary 1.7. Under the hypotheses of Theorem A, if the λ-Liouville prop-
erty holds for some λo > 0, then it holds for every λ > 0.

2. Model manifolds, and applications

In this section, we consider the case where the underlying manifolds is a
model in the sense of Greene and Wu. As it is often the case, some one
sided implications become equivalences in this simplified setting, but still
the results obtained may help to shed light on the situation in the general
case.

We begin by considering the case of the ϕ-Laplacian. In this case we
obtain a complete characterization of the validity of the λ-Liouville property
in terms of volume growth. Using this, we then prove the comparison result
which is the content of Theorem B. It should be pointed out that, although
the result on models is expressed in terms of volume growth, the result
for general manifolds (which follows from the aforementioned comparison)
depends on curvature assumptions.

So let σ be a smooth function with the properties listed before the state-

ment of Theorem B, and let (M̃, 〈̃ , 〉σ) be the m-dimensional model manifold
defined by σ.

Lemma 2.1. Let σ be a C1 positive function defined on (0,+∞) and assume
that the function Vλ,c defined by

(2.1) Vλ,c(r) =




ϕ−1

(
cσ(r)1−m

)
if λ = 0

ϕ−1
(
cσ(r)1−m

∫ r

R
σ(t)m−1dt

)
if λ > 0,

is defined on [R,+∞) for some R > 0, and every c > 0 sufficiently small.
Then the function

(2.2) α(r) = αλ,c(r) =

∫ r

R

Vλ,c(t) dt+ αo,

is defined in [R,+∞) and there satisfies

(2.3)
[
σm−1ϕ(α′)

]′
=

{
0 if λ = 0

cσm−1 if λ > 0.

Moreover, given λ ≥ 0, ǫ > 0 and ro > R, for c, αo > 0 sufficiently small we
have

(i) α(ro) < ǫ

(ii) σ1−m
[
σm−1ϕ(α′)

]′ ≤ λα in [R,+∞).
(2.4)
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Clearly, the assumption on Vλ,c is automatically satisfied if ϕ(t) → +∞
as t→ +∞.

Proof. The first assertion follows from a straightforward computation.
The second assertion is trivial if λ = 0, so assume that λ > 0. Choosing
αo = c/λ, it follows from (2.3) that

σ1−m
[
σm−1ϕ(α′)

]′
= c ≤ λαo ≤ λα on [R,+∞),

and then the inequality α(ro)< ǫ holds provided c > 0 is sufficiently small. �

Proposition 2.2. Let (M̃, 〈̃ , 〉) be an m-dimensional model manifold. As-
sume that the function ϕ satisfies conditions (0.1) (i)–(iv), and that the func-
tion Vλ,c defined in (2.1) is defined on [R,+∞) for some R > 0 and every
sufficiently small c > 0. Then the following properties of the ϕ-Laplacian Lϕ

on M̃ are equivalent:

(a) The λ-Khas’minskii test holds on M̃ ;

(b) The λ-weak maximum principle for C1 functions holds on M̃ ;

(c) The function Vλ,c 6∈ L1(+∞) for every sufficiently small c.

Remark 2.3. The proposition shows that if the λ-Khas’minskii test is valid
for some λo > 0 then it is valid for every λ > 0.

Recalling that on a model the volume of the sphere and the ball cen-
tered at 0 of radius r are given by vol ∂Br = cmσ(r)m−1 and volBr =
cm

∫ r

0
σ(t)m−1dt, the condition in (c) above may by be expressed in more

geometrical terms by saying that

(2.5)

ϕ−1
(
c

1

vol ∂Br

)
6∈ L1(+∞) if λ = 0,

ϕ−1
(
c

volBr

vol ∂Br

)
6∈ L1(+∞) if λ > 0.

In the case of the p-Laplacian, the condition in turn reads

(2.6)

( 1

vol ∂Br

)1/(p−1)

6∈ L1(+∞) if λ = 0,

( volBr

vol ∂Br

)1/(p−1)

6∈ L1(+∞) if λ > 0,

which, for the standard Laplace operator (p = 2) reduce to the well known
necessary and sufficient condition for the parabolicity, respectively stochastic
completeness, of models.
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Observe also that if we assume that ϕ satisfies the structural condi-
tion (0.1) (iii) with κ = 0 then condition (c) is implied by (2.6). It was
proved in [23], by entirely different methods, that, under the stated assump-
tion on ϕ, the condition for λ = 0 implies the ϕ-parabolicity of arbitrary
manifolds. This can be recovered using the comparison result contained in
Theorem B (i). However, the assumption (0.9), on which the comparison
rests, expresses a condition on the radial Ricci curvature of the manifold.

Proof of Proposition 2.2. According to Proposition 1.6, the implication
(a) ⇒ (b) holds on a general manifold.

To prove that (b) ⇒ (c), let R be as in the statement of Lemma 2.1,
and let α be the function defined in (2.2). Define a function v ∈ C1(M) by
setting it equal to α(r(x)) in M \BR and extending to M is such a way that
v(x) < αo in BR. Since ∇v = α′∇r, α′ > 0, and ∆r(x) = (m− 1)σ′/σ,

(2.7) Lϕv(x) = div
(
ϕ(α′)∇r

)
(x) = σ1−m(r(x))

[
σm−1ϕ(α′)

]′
(r(x))

on the set {x : v(x) > αo} = M \BR. Thus, applying (2.3) we deduce that

Lϕv(x) =

{
0 if λ = 0

c if λ > 0,

so that, if (b) holds, then v cannot be bounded above. Therefore α(r)
diverges as r → +∞, i.e., Vλ,c 6∈ L1(+∞).

Finally, to prove that (c) ⇒ (a), let again R be as in Lemma 2.1. Given
xo 6∈ BR, and ǫ > 0, let α and v be defined as above, with c and αo

small enough as to guarantee that α(r(xo)) < ǫ and that (2.4) (ii) holds on
[R,+∞). Then v ∈ C1(M) satisfies v(xo) < ǫ, and, by (c), v(x) → +∞ as
r(x) → +∞. Moreover, by (2.4) and the computation done in (2.7),

Lϕv(x) = σ1−m(r(x))
[
σm−1ϕ(α′)

]′
(r(x)) ≤ λα(r(x)) = λv(x)

on M \BR, showing that the λ-Khas’minskii test holds. �

Applying Proposition 2.2 we can now give a proof of Theorem B. For the
case of the Laplacian see [5, pp. 221–222].

Proof of Theorem B. To prove (i), let R > 0 and fix xo ∈ M \ BR(o)
and ǫ > 0. Let α be the function considered in Proposition 2.2, and let
v(x) = α(r(x)). Arguing as in the proof of Proposition 2.2, we see that
for every c > 0 sufficiently small we have v(xo) < ǫ and the differential
inequality

(2.8) Lϕv(x) = [ϕ(α′)]′ + ϕ(α′)∆r(x) ≤ [ϕ(α′)]′ + (m − 1)
σ′

σ
ϕ(α′) = λv

holds on M \ [BR(o) ∪ cut(o)].
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Since v is locally Lipschitz, and α′ > 0, by an extension of an argument
of Yau’s (see [28]) the inequality holds weakly in M \ BR(o). On the other
hand, since the weak maximum principle holds on M̃ , by the characteri-
zation given in Proposition 2.2, for every sufficiently small c > 0 we have
Vλ,c 6∈ L1(+∞) and therefore, for all such c > 0, v(x) → +∞ as x → ∞.
Thus the λ-Khas’minskii test holds on M and the conclusion follows from
Proposition 1.6.

To prove (ii), let α be the function considered above, let v ∈ C1(M) be
equal to α(r(x)) on M \BR(o) and less than αo in BR(o), and let ṽ ∈ C1(M̃)
be defined in a similar way. Since ∆r ≥ (m−1)σ′/σ = ∆̃r̃, the computation
that leads to (2.8), and the the properties of α yield the inequality

(2.9) Lϕv(x) ≥ [ϕ(α′)]′ + (m− 1)
σ′

σ
ϕ(α′) =

{
0 if λ = 0

c if λ > 0,

in M \ BR(o) = {x : v(x) > αo}. On the other hand, if the λ-weak maxi-
mum principle didn’t hold on M̃ , the function ṽ would be bounded above,
by Proposition 2.2, and therefore so would be v. But then, (2.9) would
contradict the assumed validity of the λ-weak maximum principle on M. �

Corollary 2.4. Let (M, 〈 , 〉) be a complete Riemannian manifold, and as-
sume that the differential inequality

(0.9) ∆r ≥ (m− 1)
σ′

σ

holds in the complement of the cut locus. If, for every c > 0 sufficiently
small,

(2.10) ϕ−1
( c

σ(r)m−1

)
6∈ L1(+∞), or ϕ−1

(
c

∫ r

0
σ(t)m−1dt

σ(r)m−1

)
6∈ L1(+∞)

then the 0-weak, or the λ-weak maximum principle, respectively, hold on M.

Remark 2.5. As mentioned above, both (0.9) and its counterpart (0.10),
which are the main geometrical assumptions in Theorem B, are implied by
suitable curvature bounds. For instance, if we assume that the radial Ricci
curvature satisfies

(2.11) RicM(∇r,∇r) ≥ −(m− 1)G(r)

where G ∈ C∞([0,+∞)) is even at the origin, and satisfies

inf
r>0

G′(r)

G(r)3/2
> −∞,
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then the inequality (0.9) holds with

σ(r) = exp
(
A

∫ r

0

G(s)1/2ds
)
− 1

provided A > 0 is sufficiently large (see, e.g., [22]). The inequality (0.9)
in turns implies that vol ∂Br(o)/σ(r)m−1 is a decreasing function of r. In
particular, vol ∂Br(o) ≤ cmσ(r)m−1, and, by an argument of J. Cheeger,
M. Gromov and M. Taylor, [1], the function

volBr(o)/

∫ r

0

σ(t)m−1dt

is also decreasing. By taking derivatives, we deduce that

volBr

vol ∂Br

≥
∫ r

0
σ(t)m−1dt

σ(r)m−1
.

Thus, (2.10) implies that, for every c > 0 small enough,

ϕ−1
( c

vol ∂Br(o)

)
6∈ L1(+∞), or ϕ−1

(
c

volBr(o)

vol ∂Br(o)

)
6∈ L1(+∞),

respectively, and we see that the curvature condition (2.11) implies the vol-
ume growth condition (2.5) which was seen to characterize the validity of
the λ-weak maximum principle on models.

Remark 2.6. According to Theorem A, if assumptions (0.1) (i)-(vi) and (0.3)
hold, then, the validity of the 0-Khas’minskii test implies that the the op-
erator Lϕ,h satisfies the 0-Liouville property, that is that the manifold M is
Lϕ,h-parabolic. Proposition 2.2 shows that in the case of the ϕ-Laplacian
on model manifolds, the validity of the 0-Khasminskii test and the Lϕ-
parabolicity of the manifold are equivalent properties.

A theorem of Z. Kuramochi for Riemann surfaces, [13], whose proof
was simplified and extended to arbitrary dimensions by M. Nakai, see [16]
and [24], asserts that for the Laplace operator this equivalence holds on
arbitrary Riemannian manifold.

The proof is based on a capacity approach, and on Green’s functions
techniques, and as such is unlikely to carry over to the case of more general
operators like the ϕ-Laplacian, or the operator Lϕ,h. We are indebted to
I. Holopainen who pointed out to us that, in the case of the p-Laplacian,
or more generally the A-Laplacian, where both the capacity and Green’s
function techniques are available, the equivalence can be proved under the
(rather stringent) assumptions that the operator satisfies a global Harnack
inequality and that the manifold has only finitely many ends, and satisfies
the volume doubling property.
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We outline here the argument, restricting ourselves to the case of the
p-Laplacian for simplicity. By considering the complement of a compact
set K large enough the ends relative to K are pairwise disjoint, we may
further assume that the manifold has only one end. Assume therefore that
the manifold M is p-parabolic. In this context this means equivalently the
validity of the 0-Liouville property for the p-Laplacian, or the vanishing of
the p-capacity of the ideal boundary of the manifold.

Arguing as in the proof of Lemma 2.15 in [10] we construct a p-harmonic
function u : M \K → R with the property that, for every t≫ 1

sup
∂Bt(o)

u(x) ≥ C
(
capp(∂K, ∂Bt(o),M \K)

)1/(1−p)
,

for some constant C > 0 independent of t. Since the manifold satisfies the
doubling condition, there exists N such that ∂Bt(o) is covered by at most
N balls of radius t/2. On the other hand, since a global Harnack inequality
holds for the p-Laplacian, there exists a constant L independent of r such
that, if v is positive and p-harmonic in B2r(x) then

sup
Br(x)

v ≤ L inf
Br(x)

v.

We conclude that there exists a positive constantC1 such that, for every t≫1,

inf
∂Bt(o)

u(x) ≥ C1

(
capp(∂K, ∂Bt(o),M \K)

)1/(1−p)
.

The required conclusion that u tends to +∞ at infinity now follows since
the assumption that the capacity of the ideal boundary is zero amounts to
saying that the capacity on the right hand side tends to zero as t→ +∞.

It seems to be an interesting problem to explore if the equivalence be-
tween the appropriate version of parabolicity and the validity of the cor-
responding form of the 0-Khas’minskii test holds in more complicated geo-
metrical situation, or for the more general operators Lϕ or Lϕ,h, where the
homogeneity conditition (0.4) is not assumed.

Our next task is to extend to the operator Lϕ,h on a manifold with a pole
the sufficient condition for the validity of the λ-weak maximum principle
given in Corollary 2.4. In accordance with the notation introduced, we let
o be a fixed reference point in M and denote by r(x) the distance function
from o. We begin by recalling the expression of Lϕ,hu when u is a function
depending only upon r(x).

Lemma 2.7. Let α be a strictly monotonic C2 function on [R,+∞) and set
v(x) = α(r(x)). Then, on M \ (BR ∪ cut (o)), we have

(2.12) Lϕ,hv(x) = (sgnα′)
{
[ϕ(|α′|)]′h(∇r,∇r)

+ ϕ(|α′|) [div h(∇r) + 〈h,Hess r〉S2T ∗M ]}.
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Proof. Recalling the definition of Lϕ,h, we compute

(2.13) Lϕ,hv(x) = (sgnα′)ϕ(|α′|)div [h(∇r, ·)♯]

+ 〈∇[(sgnα′)ϕ(|α′|)], h(∇r, ·)♯〉.

Now,

〈∇[(sgnα′)ϕ(|α′|)], h(∇r, ·)♯〉 = (sgnα′)[ϕ(|α′|)]′h(∇r,∇r).

On the other hand, if Ei is a local orthonormal frame, denoting by DEi
Y

the covariant derivative of the vector field Y in the direction of Ei, we have

div [h(∇r, ·)♯] =
∑

i

〈DEi
h(∇r, ·)♯, Ei〉

=
∑

i

Eih(∇r, Ei) − h(∇r,DEi
Ei)

=
∑

i

(DEi
h)(∇r, Ei) + h(DEi

∇r, Ei)

= (div h)(∇r) +
∑

i,j

h(Ei, Ej)Hess r(Ei, Ej)

= (div h)(∇r) + 〈h,Hess r〉S2T ∗M ,

whence the required conclusion follows upon inserting the above identities
into (2.13). �

Assume now that α′ > 0, that h satisfies

h−(r(x)) ≤ h ≤ h+(r(x)), and |div h|(x) ≤ β(r(x)),

for some positive functions β and h± : [0,+∞) → (0,+∞) and that

Hess r ≤ σ′

σ

(
〈 , 〉 − dr ⊗ dr

)

where σ is a smooth function with σ′ ≥ 0. Then, choosing an ortho-
normal basis of (∇r)⊥ which diagonalizes Hess r (which is possible since
Hess r(E,∇r) = 0 for every E), we have

h(∇r,∇r) ≥ h− and 〈h,Hess r〉S2T ∗M ≤ (m− 1)h+
σ′

σ
.

Inserting in (2.12) it follows that

Lϕ,hv(x) ≤ h(∇r,∇r)
{
[ϕ(α′)]′ +

1

h−
ϕ(α′)[β(r) + (m− 1)h+

σ′

σ
]
}

= h(∇r,∇r)
{
[ϕ(α′)]′ + ϕ(α′)(m− 1)

σ̃′

σ̃

}
,

(2.14)
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where σ̃ is the function defined by

(2.15) (m− 1)
σ̃′

σ̃
=

1

h−

[
β(r) + (m− 1)h+

σ′

σ

]
.

Let Ṽλ,c be the function defined as in (2.1) using σ̃ instead of σ, namely,

(2.16) Ṽλ,c(r) =




ϕ−1

(
cσ̃(r)1−m

)
if λ = 0

ϕ−1
(
cσ̃(r)1−m

∫ r

R
σ̃(t)m−1dt

)
if λ > 0.

We assume that, for some R > 0 and every c > 0 sufficiently small, the
function Ṽλ,c is is defined on [R,+∞). Then the function

(2.17) α(r) = αλ,c(r) =

∫ r

R

Ṽλ,c(t) dt+ α̃o,

is defined in [R,+∞) and satisfies the conclusion of Lemma 2.1.
We choose αo = λ/c, c > 0 small enough that (2.4) holds. Inserting

into (2.14) we obtain that

(2.18) Lϕ,hv(x) ≤ λv(x),

pointwise in M \(BR(o)∪cut (o)). In particular, if o is a pole, the inequality
holds in M \BR(o).

We therefore state the following version of Corollary 2.4.

Corollary 2.8. Let M be a manifold with a pole. Notation and the assump-
tions being as in the preceding discussion, assume that the function Ṽλ,c is
defined on [R,+∞) for some R > 0 and all sufficiently small c > 0, and that

(2.19) Ṽλ,c 6∈ L1(+∞).

Then the λ-Khas’minskii test for the operator Lϕ,h is valid on M, and there-
fore so is the λ-weak maximum principle.

We end the paper with a discussion of a version of the Liouville property
for functions belonging to suitable integrability classes. It is a classical result
that if (M, 〈 , 〉) is a (not necessarily complete) Riemannian manifold, then
the following properties are equivalent:

(1) If u ∈ C2(M) (or, equivalently, u ∈ C0(M)∩W 1,2
loc (M)) is nonnegative,

∆u ≤ 0 (in distributional sense) and u ∈ L1(M) then u ≡ 0;
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(2) If g(x) = g(x, o) is the Green kernel with singularity at o ∈M , that is
the minimal positive fundamental solution of ∆ then either g ≡ +∞
(that is, M is parabolic) or g < +∞ on M \ {o} and

(2.20)

∫

M\B1(o)

g(x) dx = +∞.

Indeed, the implication (1) ⇒ (2) follows from the fact that, if g < +∞ on
M\{o}, then the function u(x) = min{c, g(x)} belongs to C0(M)∩W 1,p

loc (M),
it is non-negative, non-identically zero, and satisfies ∆u ≤ 0. Thus, if (2.20)
did not hold, u would be in L1(M), and this would contradict (1).

The reverse implication is proved in [6], and we outline the argument for
the convenience of the reader. If g ≡ +∞ then M is parabolic, and (1) holds
without any integrability condition. So assume that g < +∞ on M \ {o},
and that its integral over M \ B1(o) diverges. Assume by contradiction
that there exists a non-negative, non-identically zero function u which is
superharmonic and integrable on M . By the maximum principle, u is in
fact strictly positive on M, and there exists c > 0 s.t. u > c on B1(o),
and therefore for every sufficiently small ǫ > 0, u ≥ ǫg on ∂B1(o). Next let
B1(o) ⋐ Ω1 ⋐ Ω2 . . .Ωn ր M be a sequence of relatively compact domains
with smooth boundary, and let gn be the Dirichlet Green kernel of Ωn with
pole at o so that gn ր g on M \ {o}. Since u ≥ ǫg ≥ ǫgn on ∂B1(o) and
u > ǫgn = 0 on ∂Ωn, by the comparison principle u ≥ ǫgn on Ωn \ B1(o),
whence, letting n→ +∞, we deduce that u ≥ ǫg on M \B1(o). Thus,

ǫ

∫

M\B1(o)

g(x) dx ≤
∫

M\B1(o)

u(x) dx < +∞,

which contradicts (2.20).
Assume now that M is stochastically complete, and let ht(x, y) be its

heat kernel, so that
∫

M
ht(x, y) dx = 1 for every t > 0 and every y ∈ M .

Furthermore, if M is not parabolic, then g(x, o) =
∫ +∞

0
ht(x, o) dt. Thus

∫

M

g(x, o) dx =

∫ +∞

0

∫

M

ht(x, o) dx = +∞,

and since g ∈ L1(B1(o)) (indeed the local singularity is of the order of
r(x)2−n) we conclude that (2.20) holds.

In the case of models, the Green’s function with singularity at the pole o
is given by

(2.21) g(x) = cm

∫ +∞

r(x)

σ(t)1−mdt.
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Indeed, a straightforward computation shows that ∆g = 0 in M \ {o}, and
since σ(t) ∼ t as t → 0, we have g(x) ≍ r(x)m−2 as r(x) → 0, as required.
An application of Fubini’s theorem shows that

∫

M\B1(o)

g(x) dx =

∫ +∞

1

dr σ(r)m−1

∫ +∞

r

1

σ(t)m−1
dt

=

∫ +∞

1

dt
1

σ(t)m−1

∫ t

1

σ(r)m−1dr,

and we conclude that (2.20) above holds if and only if

(2.22)
1

σ(t)m−1

∫ t

1

σ(r)m−1 ≍ volBt

vol ∂Bt

6∈ L1(+∞),

which is the necessary and sufficient condition for the stochastic complete-
ness of the model manifold M .

In [10] Holopainen considered similar kinds of Liouville type results for
the A-Laplacian. In particular he proved that if u ∈ Lq(M) is a non-negative
p-superhamonic (respectively p-subharmonic) function and q < p−1 (respec-
tively, q > p−1), then u ≡ 0. He also showed that the conclusion fails at the
critical exponent q = p−1, and posed the question of finding conditions simi-
lar to (2.22) which ensure that Lp−1 non-negative p-superharmonic functions
vanish identically. In the sequel we will refer to this as the Lp−1-Liouville
property.

The fact that the L1-Liouville property is implied by the stochastic com-
pleteness on the manifold, and it is actually equivalent to it on models,
suggests that Lp−1-Liouville property may be related to the p-stochastic
completeness of the manifold, that is, to the validity of the λ-weak maxi-
mum principle, λ > 0 for the p-Laplacian.

We are going to investigate this relationship in the case of models. Adapt-
ing the argument used in the linear case, one verifies that, having denoted
by gp(x) a Green function for the p-Laplacian with pole at o (for the con-
struction of gp, see, e.g., [8]), the Lp−1-Liouville property is equivalent to the
fact that the following version of condition (2.20) holds:

(2.23)

∫

M\B1(o)

gp(x)
p−1 dx = +∞.

In the case of models, an explicit computation, similar to that performed
in the linear case shows that if the function defined by

(2.24) gp(x) =

∫ +∞

r(x)

σ(t)−
m−1
p−1 dt,
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is not identically equal to +∞, then it satisfies

∆pgp(x) = 0 on M \ {o}, and gp(x) ≍
{
r(x)−

m−p

p−1 if m 6= p,

log 1/r(x) if m = p

as r(x) → 0. Standard computations then show that

∆pgp(x) = δo,

and therefore gp is a multiple of the radial Green function for ∆p with pole
at o.

Proposition 2.9. Let M be a model manifold. Then the following holds

(1) Let p ≤ 2. If the volume growth condition

(2.25)
( volBr(o)

vol ∂Br(o)

)1/(p−1)

6∈ L1(+∞),

holds, then so does (2.23);

(2) Let p ≥ 2. If (2.23) holds, then so does (2.25).

Further, none of the reverse implications holds if p 6= 2.

Proof. Both the implications follows from suitable applications of the
integral Minkowskii inequality.

Assume first that p ≥ 2. Integrating in polar coordinates and using the
explicit expression of gp we have

∫

M\B1(o)

gp(x)
p−1dx =

∫ +∞

1

dr σ(r)m−1
(∫ +∞

r

σ(t)−
m−1
p−1 dt

)p−1

=
∥∥∥
∫ +∞

1

(σ(r)

σ(t)
χ[r,+∞)(t)

)m−1
p−1 dt

∥∥∥
p−1

Lp−1(dr)

≤
{∫ +∞

1

dt
∥∥(σ(r)

σ(t)
χ[1,t)(r)

)m−1
p−1

∥∥
Lp−1(dr)

}p−1

≤
{∫ +∞

1

dt
(∫ t

1

dr
σ(r)m−1

σ(t)m−1

) 1
p−1

}p−1

=
{∫ +∞

1

dt
(volBt − volB1

vol ∂Bt

) 1
p−1

}p−1

≤
{∫ +∞

1

dt
( volBt

vol ∂Bt

) 1
p−1

}p−1

,

showing that (2) holds.



826 S. Pigola, M. Rigoli and A. G. Setti

The proof in case p ≤ 2 is similar. Now we have q = 1
p−1

≥ 1, and
therefore

∫

M\B1(o)

gp(x)
p−1dx =

∫ +∞

1

dr σ(r)m−1
(∫ +∞

r

[
σ(t)−(m−1)

]q
dt

)1/q

=

∫ +∞

1

∥∥(σ(r)

σ(t)
χ[r,+∞)(t)

)m−1∥∥
Lq(dt)

≥
∥∥∥
∫ +∞

1

dr
(σ(r)

σ(t)
χ[1,r)(r)

)m−1
∥∥∥

Lq(dt)

=
{∫ +∞

1

dt
(∫ t

1

dr
σ(r)m−1

σ(t)m−1

) 1
p−1

}p−1

=
{∫ +∞

1

dt
(volBt − volB1

vol ∂Bt

) 1
p−1

}p−1

≍
{∫ +∞

1

dt
( volBt

vol ∂Bt

) 1
p−1

}p−1

,

showing that (1) holds.

To see that the reverse implications do not hold if p 6= 2, we elaborate
on an example of Holopainen, [9]. We let σ be such that, for r ≥ 2

σ(r)m−1 = r−1−ǫ exp(rq) q =
p+ ǫ

p− 1

with ǫ > 0. An application of de L’Hospital rule shows that, as r → +∞
∫ +∞

r

tb exp(−cta) dt ≍ rb−a+1 exp(−Cra),

whence, noting that, by the definition of q, 1 − q = − 1+ǫ
p−1

,

(2.26) gp(x) =

∫

r(x)

t
1+ǫ
p−1 exp

(
− tq

p− 1

)
dt ≍ exp

(
− rq

p− 1

)
,

and therefore,

(2.27)

∫

M\B1(o)

gp(x)
p−1dx ≍

∫ +∞

1

t−1−ǫdt =

{
+∞ if ǫ = 0

< +∞ if ǫ > 0.

On the other hand,

volBr(o) = cm

∫ r

0

σ(t)m−1dt ≍ t−ǫ−q exp
(
tq

)
, as r → +∞,
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so that

(2.28)
( volBr

vol ∂Br

)1/(p−1)

≍ t
− 1+ǫ

(p−1)2 as r → +∞,

and

(2.29)

∫ +∞

1

( volBr

vol ∂Br

)1/(p−1)

dt ≍
∫ +∞

1

t
− 1+ǫ

(p−1)2 = I(p, ǫ).

Now, if p < 2, then, for every ǫ ≥ 0, 1+ǫ
(p−1)2

> 1 and therefore,

(2.30) I(p, ǫ) < +∞ ∀ǫ ≥ 0.

If p > 2, then

(2.31) I(p, ǫ) =

{
+∞ if 0 ≤ ǫ ≤ (p− 1)2 − 1

= +∞ if 0 ≤ ǫ > (p− 1)2 − 1.

Thus, if p < 2, choosing ǫ = 0, we have

∫ +∞

1

gp(x)
p−1dx = +∞ and

∫ +∞

1

( volBt

vol ∂Bt

) 1
p−1

dt < +∞,

showing that the reverse implication does not hold in (1).
Similarly, if p > 2, choosing 0 < ǫ ≤ (p− 1)2 − 1, we have

∫ +∞

1

( volBt

vol ∂Bt

) 1
p−1

dt = +∞, and

∫ +∞

1

gp(x)
p−1dx = +∞,

showing that the reverse implication does not hold in (2). �

Remark 2.10. In the above example, one has simultaneously

∫

M\B1(o)

gp(x)
p−1dx = +∞ and

∫ +∞

1

( t

log volBt

)p−1

dt = +∞ (ǫ = 0),

or
∫

M\B1(o)

gp(x)
p−1dx < +∞ and

∫ +∞

1

( t

log volBt

)p−1

dt < +∞ (ǫ > 0).

This led Holopainen to conjecture that the Lp−1-Liouville property is implied
by (equivalent to) the volume growth condition

(2.32)

∫ +∞

1

( t

log volBt

)p−1

dt = +∞.
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In this respect, observe that standard arguments (see, e.g. [23, Proposi-
tion 1.3]) show that, if volBt ր +∞, then for every β > 0

∫ +∞

1

( volBt

vol ∂Bt

)β

dt ≥ C

∫ +∞

1

( t

log volBt

)β

dt,

so that one is led to compare the divergence of the following two integrals

(2.33)

∫ +∞

1

( t

log volBt

)1/(p−1)

dt and

∫ +∞

1

( t

log volBt

)p−1

dt.

While Proposition 2.9 provides circumstantial evidence that the divergence
of the first integral is relevant to the Lp−1-Liouville property, in all the
examples where the authors have been able to carry out the computations
the integral ∫

M\B1(o)

gp(x)
p−1dx

turned out to diverge exactly when the so did the second integral in (2.33).

The search for the correct geometric properties implying the validity of
the Lp−1-Liouville property suggests other interesting problems.

By way of example, observe that while the stochastic completeness of a
manifold is not invariant under quasi isometries (see [15]), conditions involv-
ing the divergence of the integral of powers of t

log vol Bt
clearly are invariant

under quasi-isometries. One is therefore led to ask the question if the Lp−1-
Liouville property is invariant under quasi-isometries. To the authors’ best
knowledge, the answer to this question is still not known.

Yet, the category of (non-parabolic) manifolds supporting a global el-
liptic Harnack inequality gives some indications. Indeed, let (M, 〈 , 〉) be a
manifold in this category. Let ρ(x) be a smooth exhaustion function (i.e.,
its level sets are relatively compact and ρ diverges at infinity), and denote
by Ωt the level set {x : ρ(x) < t}. We choose a reference point o in Ω1 and
use Sard’s theorem to find a diverging sequence tk with t1 > 1 such that Ωtk

has smooth boundary.
An argument of Holopainen, see Theorem 3.19 in [8], shows that the

Dirichlet, p-Green function gk of Ωtk with pole at o satisfies

(2.34) λ−1capp

(
Ω̄t,Ωtk

)1/(1−p) ≤ gk ≤ λcapp

(
Ω̄t,Ωtk

)1/(1−p)
on ∂Ωt

for every t ∈ [1, tk). Here λ > 1 is the global Harnack constant of (M, 〈 , 〉)
and capp

(
Ω̄t,Ωtk

)
is the p-capacity of the condenser

(
Ω̄t,Ωtk

)
which is vari-

ationally defined as

(2.35) capp

(
Ω̄t,Ωtk

)
= inf

{∫

M

|∇ϕ|p : ϕ ∈ C∞
0 (Ωtk) , ϕ ≡ 1 on Ω̄t

}
.
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Letting k → +∞, the sequence {gk} converges, locally uniformly on M , to
the p-Green function g of (M, 〈 , 〉) with pole o and capp

(
Ω̄t,Ωtk

)
converges

to the absolute capacity capp

(
Ω̄t

)
and from (2.34) we deduce

(2.36) λ−1capp

(
Ω̄t

)1/(1−p) ≤ g ≤ λcapp

(
Ω̄t

)1/(1−p)
on ∂Ωt

for every t ≥ 1. Now, suppose M is endowed with a second (non-parabolic)

metric 〈̃ , 〉 satisfying a global Harnack inequality. Denoting quantities re-
lated to this metric with a tilde ˜, with the obvious meaning of symbols we
have

(2.37) λ̃−1c̃app

(
Ω̄t

)1/(1−p) ≤ g̃ ≤ λ̃c̃app

(
Ω̄t

)1/(1−p)
on ∂Ωt.

for every t ≥ 1. If we assume that 〈 , 〉 and 〈̃ , 〉 are quasi isometric then,
according to (2.35), we have the further relations

(2.38) C−1
1 c̃app

(
Ω̄t

)
≤ capp

(
Ω̄t

)
≤ C1 c̃app

(
Ω̄t

)

for some absolute constant C1 > 1. Combining (2.36), (2.37) and (2.38) we
therefore conclude that, for some absolute constant C2 > 1,

C−1
2 g̃ ≤ g ≤ C2 g̃ on M − Ω1

proving that (M, 〈 , 〉) is (p− 1)-Liouville if and only if so is
(
M, 〈̃ , 〉

)
.
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Università dell’Insubria-Como
via Valleggio 11

I-22100 Como, Italy
alberto.setti@uninsubria.it


