
Thermodynamics of solitonic matter waves in a toroidal trap

L. Salasnich,
1
A. Parola,

2
and L. Reatto

3

1
CNR-INFM and CNISM, Unità di Milano Università, Via Celoria 16, 20133 Milano, Italy

2
Dipartimento di Fisica e Matematica, Università dell’Insubria, Via Valleggio 11, 22100 Como, Italy
3
Dipartimento di Fisica and CNISM, Università di Milano, Via Celoria 16, 20133 Milano, Italy

sReceived 13 April 2006; published 19 September 2006d

We investigate the thermodynamic properties of a Bose-Einstein condensate with negative scattering length

confined in a toroidal trapping potential. By numerically solving the coupled Gross-Pitaevskii and

Bogoliubov–de Gennes equations, we study the phase transition from the uniform state to the symmetry-

breaking state characterized by a bright-soliton condensate and a localized thermal cloud. In the localized

regime, three states with a finite condensate fraction are present: the thermodynamically stable localized state,

a metastable localized state, and also a metastable uniform state. Remarkably, the presence of the stable

localized state strongly increases the critical temperature of Bose-Einstein condensation.

DOI: 10.1103/PhysRevA.74.031603 PACS numberssd: 03.75.Kk

In recent experiments, a repulsive Bose-Einstein conden-
sate sBECd has been produced and studied in a quasi-one-
dimensional s1Dd ring f1,2g. These experiments and also

previous experimental investigations with cold atoms in tor-

odial traps f3g are important steps to achieve ultrahigh-

precision sensors with atom interferometry ssee, for instance,
Ref. f4gd. The case of an attractive BEC in a ring has not yet

been experimentally investigated but appears very interest-

ing: a quantum phase transition from an azimuthally uniform

condensate to a bright soliton has been predicted f5,6g.
Dynamically stable multipeak bright solitons may also

appear f7g.
In this paper, we investigate the effect of temperature on

the uniform-to-localized phase transition by solving the

Gross-Pitaevskii equation sGPEd of the macroscopic wave

function of the Bose condensate and the Bogoliubov–de

Gennes equations for the quantum depletion and the thermal

cloud. We show that, for a fixed number N of atoms, the

uniform solution always exists but it is thermodynamically

stable only up to a critical interaction strength that depends

on the temperature. Above this critical interaction strength,

both the condensate and the thermal cloud become localized.

In addition, we determine the finite-temperature phase dia-

gram of the system for a sample of alkali-metal atoms in a

ring. Our results are relevant not only for the physics of cold

atoms but also for the nonlinear science of solitons. In fact, a

mixture of condensed and noncondensed attractive particles

f8g correspond to incoherent solitons of light in Kerr media

f9g.
We consider a Bose gas with negative scattering length

sas,0d confined in a toroidal potential and model the trans-

verse confinement with a harmonic potential of frequency

v'. The two characteristic lengths of the toroidal trap are the

azimuthal radius R and the transverse harmonic length

a'= f" / smv'dg1/2. To avoid the confinement-induced reso-

nance at uas u .a' f10g, we impose that uas u ≪a' f11g. At
low temperature T and with a finite number N of atoms, in

the Bose gas there is the thermal cloud but also the BEC.

Under the condition R≫a', the azimuthal wave function

fszd of the BEC in the ring satisfies the 1D nonpolynomial

Schrödinger equation sNPSEd f7,12g,

F− "2

2m
]z
2 + m„n0szd…Gfszd = m̄fszd , s1d

where z=Ru is the azimuthal coordinate with u the azimuthal

angle. This equation has been deduced from the 3D GPE by

using a Gaussian transverse wave function with a density-

dependent width and neglecting curvature effects f7,12g. The
nonpolynomial term m(n0szd) is a function of the BEC den-

sity n0szd=N0 ufszdu2 and it is given by m=]E /]n0, where

E= "v'n0s1+2asn0d1/2 and as,0 is the 3D s-wave scatter-

ing length f7g. The wave function fszd is normalized to 1

and satisfies the condition of periodicity fsz+Ld=fszd,
where L=2pR. The chemical potential m̄ is fixed by the

normalization condition eufszdu2dz=1. Quantum and thermal

depletions of the BEC are obtained by solving the

Bogoliubov–de Gennes sBdGd equations f13g for the

quasiparticle amplitudes uaszd and vaszd, given by

LSuaszd

vaszd
D = eaSuaszd

vaszd
D , s2d

where ea are the energies of quasiparticle excitations and the

operator L is

L =1−
"2

2m
]z
2 − m̄ +

]sn0md
]n0

N0f
2
]m

]n0

− N0sf
*d2

]m

]n0

"2

2m
]z
2 + m̄ −

]sn0md
]n0

2 .

s3d

The local density of the quantum depletion reads

noutszd=oa uvaszdu2, while the thermal local density is nTszd
=oafuuaszdu2+ uvaszdu2gn̄a, where n̄a= fexpsea /kBTd−1g−1 are

the Bose numbers of occupation for the noninteracting qua-

siparticles, kB is the Boltzmann constant, and T is the

absolute temperature of the thermal cloud. The number Ñ of

noncondensed atoms is thus given by Ñ=Nout+NT, where

Nout=enoutszddz and NT=enTszddz. In the weak-coupling

limit, where asn0≪1, the energy density E becomes

E= "v'n0+ "v'asn0
2, the NPSE s1d reduces to the familiar
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1D GPE f7g, and the BdG equations s2d and s3d reduce to the

BdG equations of the strictly 1D problem. Note that Eqs.

s1d–s3d could be improved by taking into account Popov and

Beliaev corrections, which are usually not negligible only

when the condensed fraction is very small f14g.
In our approach, by fixing the total number N=N0+ Ñ of

atoms and the temperature T, the equilibrium configurations

are found from the Helmholtz free energy f13g,

F = E0 + Ẽ + m̄sN − N0d − TS , s4d

where

E0 = N0E F− "2

2m
f*szd]z

2fszd + E„n0szd…Gdz s5d

is the BEC energy. The out-of-condensate energy Ẽ and en-

tropy S are instead given by

Ẽ = o
a

eaFn̄a −E uvaszdu2dzG , s6d

S = − kBo
a

fn̄alogsn̄ad − s1 + n̄adlogs1 + n̄adg . s7d

The solution of the 1D GPE with periodic boundary

conditions is known analytically f5g: it is uniform for

0,gN0,p2a' /L, with g=2 uas u /a' the interatomic

strength, and becomes localized for gN0.p2a' /L. By using

the NPSE, we find that the transition strength approaches the

1D GPE one for large L f7g. The main difference between 1D

GPE and NPSE is that the NPSE correctly gives the collapse

of the localized solution for gN0.4/3, while the 1D GPE

does not predict collapse f7g. It is important to observe that

the uniform-to-localized transition depends on N0 and only

implicitly on N=N0+Nout+NT. We shall show that, for a

fixed number N of atoms, the uniform solution exists for any

value of the interatomic strength g but it is thermodynami-

cally stable only below a critical strength gc. Above gc, the

stable state is a localized solution that minimizes the free

energy.

The BdG equations s2d and s3d are easily solved if fszd is
uniform: fszd=1/ÎL. In this case, the quasiparticle ampli-

tudes ukszd= ūkeikz and vkszd= v̄ke
−ikz are plane waves and the

wave vector k is quantized: k= s2p /Ldj, with j an integer

number. When fszd is not uniform, one must numerically

solve Eqs. s1d–s3d. We use a finite-difference space discreti-

zation and diagonalize the matrix associated to the operator

L of Eq. s3d. In our calculations, we use various matrix di-

mensions up to 400034000. The numerical procedure is dis-

cussed in Ref. f15g. In our approach, the transverse excita-

tions do not contribute to the thermodynamics: this

assumption is reasonable only if the system is quasi-1D.

In Fig. 1, we plot the results of our numerical calculations

of the free energy F as a function of the scaled interatomic

strength g=2 uas u /a' for increasing values of the tempera-

ture T. We choose N=104 atoms and a toroidal geometry

with L /a'=100. While the uniform solution sdashed lined
exists for any strength g, the localized solution ssolid lined
exists only above a critical strength ge. As expected, at

T.0 we find gc.p2a' /L=0.0987. For a given g sg.ged,
there are two localized states: one is thermodynamically
stable slower solid lined and the other is metastable supper
solid lined. The metastability is guaranteed by the Bogoliu-

bov eigenvalues being real. At very low temperature, see

panel sad of Fig. 1, for g.ge the solid line of the metastable

localized solution is very close to the dashed line of the

metastable uniform solution. At higher temperature, see pan-

els sbd and scd of Fig. 1, the free energy of the metastable

localized solution, but also the free energy of the stable one

at small g.ge, is higher than the free energy of the uniform

solution. The strength gc at which the dashed line crosses the

lower solid line determines the point where the first-order

transition takes place. At T.0, we find that gc.ge. The

strength gc grows with the temperature T, but in general gc

does not coincide with the strength ge at which the localized

solutions appear. Thus, at finite temperature, for 0,g,ge

there is only the stable uniform state; for ge,g,gc, there

are two metastable localized states and the stable uniform

state; for g.gc, the stable state is one of the two localized

states while the other localized state and the uniform state are

metastable.

A coherent bright soliton and a thermal cloud coexist in

the stable state, as in the metastable localized state. This is

clearly illustrated in Fig. 2, where we plot the condensate

fraction N0 /N as a function of g for different temperatures.

At low temperature, see panel sad of Fig. 2, the uniform state

sdashed lined is a quasipure BEC for 0,g,ge. For g.ge,

the condensate fraction of the uniform state quickly de-

creases. At low temperature, the uniform-to-localized phase

transition does not produce a relevant quantum depletion

Nout /N at the transition point. This result is obtained with a
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FIG. 1. Free energy F as a function of the scaled interatomic

strength g=2 uas u /a' for an attractive Bose gas of N=104 atoms in

a toroidal trap with L /a'=100. Dashed line: uniform solution.

Solid line: localized solutions. The energies F and kBT are in units

of "v'.
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fixed number of atoms sN=104d. We have verified that by

fixing N0 instead of N sas done in Ref. f5gd, the condensate

fraction N0 /N goes to zero for gN0.p2a' /L.

At higher temperature, see panels sbd and scd of Fig. 2,

BEC and noncondensate components coexist also in the uni-

form state. Figure 2 shows that the condensate fraction of the

localized states is higher than the condensate fraction of the

uniform state. Remarkably, at the transition strength gc there

is a sizeable jump in the condensate fraction. Moreover, for

the stable localized state, the ratio N0 /N initially grows by

increasing the interatomic strength. As discussed previously,

the BEC soliton of the localized state will collapse at

gN0.4/3, but the true collapse is avoided by populating the

out-of-condensate cloud with Ñ=N−N0 atoms for Ng.4/3.

We have verified that in the stable localized state, the number

N0 of condensed atoms is always very close to the collapse

value 4/ s3gd and, for a fixed g, the number N0 has a very

small temperature dependence. It follows that one can esti-

mate the condensed fraction of the stable localized state as

N0 /N.4/ s3Ngd. This estimation is not so rough: choosing,

for instance, Ng=2, one finds N0 /N.2/3, in good agree-

ment with the result shown in the upper solid line of Fig. 2

ssee where N0 /N=0.66d.
In the previous calculations, transverse modes have been

neglected and the thermally excited quasiparticles are al-

lowed to populate only the lowest transverse state. This as-

sumption can be justified by a simple argument: In the

weakly localized regime slow Ngd, the spectrum of elemen-

tary excitations is well approximated by the free Bose gas,

where the longitudinal modes have energies Os"v'a'

2 /L2d

much lower than the Os"v'd transverse modes. In this limit,

we have explicitly verified that, with the chosen parameters

sL /a'=100d, for kBT&5"v' the number of quasiparticles

in the excited transverse modes is indeed negligible. In the

strongly localized region, both longitudinal and transverse

low-energy excitations are known in the large-L limit f6,17g,
where a finite Os"v'd gap separates the two branches.

Moreover, our calculations show that for Ng,4/3, thermal

depletion does not affect deeply the thermodynamics of the

model up to the transition temperature.

For completeness, we have repeated the calculations by

using the 1D GPE. Also in this case we have found two

localized solutions, but the stable one always maintains a

condensate fraction close to 1, due to the fact that the 1D

GPE does not predict the collapse. Thus the transverse struc-

ture of the soliton, taken into account by the NPSE, strongly

modifies the thermodynamics of the attractive Bose gas.

In Fig. 3, we plot the density profile n0szd of the conden-

sate cloud ssolid lined and of the density profile nTszd
of the thermal cloud sdot-dashed lined for the stable

localized state and two values of g. We have verified

that the density profile noutszd of the quantum depletion

reduces by increasing the temperature T, and that

the quantum depletion Nout /N becomes relevant only

when kBT is of the order of the lowest Bogoliubov

energy level. This energy can be easily estimated as

kBT / s"v'd= f"2 / s2mdgs2p /Ld2 / s"v'd=2p2a
'

2 /L2.0.002.

In Fig. 4, we plot the phase diagram of the atomic cloud

of bosons in the plane sNg ,Td for L /a'=100 and N=104. In

the figure, we insert a dashed line at kBT / s"v'd=6.01,
which is the transition temperature TBEC of the Bose-Einstein

condensation above which the condensate fraction of the uni-

form state is zero. The transition temperature TBEC reduces

by increasing L /a'. In fact, it is easy to show f16g that

kBTBEC / s"v'd scales as Na
'

2 /L2. Figure 4 displays as a solid

line the curve of the uniform-to-localized transition. Remark-
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FIG. 2. Condensate fraction N0 /N as a function of the

scaled interatomic strength g=2 uas u /a' for N=104 atoms with

L /a'=100. Dashed line: uniform solution. Solid line: localized so-

lutions. The vertical dot-dashed line indicates the strength Ngc at

which the uniform-to-localized phase transition takes place.
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FIG. 3. Azimuthal density profiles of the thermodynamically

stable state for N=104 atoms with L /a'=100 and kBT / s"v'd=2.
Length z is in units of a'= f" / smv'dg1/2.
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ably, the BEC transition temperature of the localized solution

is much larger than the uniform one. Figure 4 shows

that with Ng.0.68, there is a first-order transition from

the localized BEC phase to the uniform thermal phase

without BEC. Instead, for Ng,0.68 the no-BEC phase is

obtained starting from the uniform phase by increasing the

temperature.

In conclusion, we have shown that an attractive Bose con-

densate in a quasi-one-dimensional toroidal trap displays at

finite temperature new and interesting features, such as

the coexistence of a coherent self-bound bright soliton with a

thermal cloud, the avoidance of true collapse via population

of the out-of-condensate sthermald component, and the

enhancement of the Bose-Einstein transition temperature

for the localized solution. We stress that our predictions can

be verified by using a magnetic ring with geometric param-

eters not too far from those used in Ref. f1g for trapping a

repulsive condensate of 87Rb atoms. For instance, a sample

of 7Li atoms, which have a negative scattering length

sas=−1.4 nmd, can be trapped in a ring with transverse width

a'.6 mm, which gives "v' /kB="2 / s2a
'

2 d.2 nK. In

this way, having N=104 atoms, the interaction strength is

Ng=N2 uas u /a'.5. Then, by taking the azimuthal radius

R=L / s2pd.100 mm, one can test the predictions of Fig. 4

varying the temperature or tuning the scattering length as
around a Feshbach resonance.
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