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We investigate the Bose-Einstein condensation of fermionic pairs in a uniform two-component Fermi gas,
obtaining an explicit formula for the condensate density as a function of the chemical potential and the energy
gap. We analyze the condensate fraction in the crossover from the Bardeen-Cooper-Schrieffer �BCS� state of
weakly interacting Cooper pairs to the Bose-Einstein condensate of molecular dimers. By using the local-
density approximation we study confined Fermi vapors of alkali-metal atoms for which there is experimental
evidence of condensation also on the BCS side of the Feshbach resonance. Our theoretical results are in
agreement with these experimental data and give the behavior of the condensate on both sides of the Feshbach
resonance at zero temperature.
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Several experimental groups have reported the observa-
tion of the crossover from the Bardeen-Cooper-Schrieffer
�BCS� state of weakly bound Fermi pairs to the Bose-
Einstein condensate �BEC� of molecular dimers with ultra-
cold two-hyperfine-component Fermi vapors of 40K atoms
�1–3� and 6Li atoms �4,5�. The detection of a finite con-
densed fraction also in the BCS side of the crossover �2,4�
stimulated a debate over its interpretation �6–10�. Extended
BCS �EBCS� equations �11–13� have been used to reproduce
in a satisfactory way density profiles �14� and collective os-
cillations �15� of these Fermi gases. As this EBCS mean-field
theory is defined for any value of the coupling, it provides an
interpolation between the BCS weak-coupling regime and
the BEC strong-coupling limit �16,17�. Despite well-known
limitations �16� the EBCS theory is considered a reliable
approximation for studying the whole BCS-BEC crossover at
zero temperature, giving a simple and coherent description of
the crossover in terms of fermionic variables.

Within the EBCS scheme, we derive an explicit formula
for the number of condensed fermionic pairs in the uniform
BCS ground state. We use the EBCS equations to study the
behavior of this condensate fraction as a function of the in-
teratomic scattering length aF in the BCS-BEC crossover:
from the BCS regime �small negative aF� crossing the uni-
tarity limit �infinitely large aF� to the BEC regime �small
positive aF�. In addition, by using the local-density approxi-
mation, we calculate the condensate fraction and density pro-
files of the Fermi gas in anisotropic harmonic confinement.
With no fitted parameters, we find a remarkable agreement
with recent experimental results �4� indicating a relevant
fraction of condensed pairs of 6Li atoms also on the BCS
side of the Feshbach resonance.

The Hamiltonian density of a dilute interacting two-spin-
component Fermi gas in a box of volume V is given by

Ĥ = −
�2

2m
�

�=↑,↓
�̂�

†�2�̂� + g�̂↑
†�̂↓

†�̂↓�̂↑, �1�

where �̂��r� is the field operator that destroys a fermion of

spin � in the position r, while �̂�
†�r� creates a fermion of spin

� in r. The attractive interatomic interaction is modeled by a
contact pseudopotential of strength g �g�0�. The field op-
erators satisfy the usual anticommutation rules and can be

expanded in Fourier series, �̂��r�=V−1/2�keik·râk�, in terms
of operators âk� destroying a fermion of spin � with linear
momentum �k. At zero temperature the BCS variational
state �18� is given by ���=�k�uk+vkâk↑

† â−k↓
† ��0�, where �0� is

the vacuum state, uk and vk are variational amplitudes, and
the state ��� is normalized to unity if uk

2+vk
2=1. The ampli-

tudes uk and vk are obtained by imposing the minimization of
the thermodynamic potential

� =	 d3r
Ĥ�r� − �n̂�r�� , �2�

where n̂�r�=��=↑,↓�̂�
†�r��̂��r� is the number density

operator and � is the chemical potential, determined by the
condition N=�d3r
n̂�r�� that fixes the average number N of
fermions. All averages are done over the BCS state ���.
Accordingly, the standard BCS equation for the number of
particles is

N = 2�
k

vk
2, �3�

and for the BCS gap is

− 1/g = �1/V��
k

�1/2Ek� �4�

�18,19�. Here

Ek = ���k − ��2 + 	2�1/2 �5�

and

vk
2 = 1

2 �1 − ��k − ��/Ek� , �6�

with the noninteracting fermion kinetic energy �k
=�2k2 / �2m�. The chemical potential � and the gap energy 	
are obtained by solving Eqs. �3� and �4�. Unfortunately, in
the continuum limit, due to the choice of a contact potential,
the gap equation diverges in the ultraviolet. A suitable regu-
larization is obtained by introducing the scattering length aF
via the equation
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m/4
�2aF = �1/g� + �1/V��
k

�1/2�k� , �7�

and then subtracting this equation from the gap equation
�11–13�. In this way one obtains the regularized gap
equation

− m/4
�2aF = �1/V��
k

�1/2Ek − 1/2�k� . �8�

The EBCS equations �3� and �8� can be used to study
the evolution from BCS superfluidity of Cooper pairs
�aF�0� to the Bose-Einstein condensation of molecular
dimers �aF�0� �11–13,16�. This transition is conveniently
studied as a function of the dimensionless inverse interaction
parameter y= �kFaF�−1, where kF= �3
2n�1/3 is the Fermi
wave vector of noninteracting fermions of the same density
�20–22�.

As previously stressed, several properties of ultracold
Fermi gases have been investigated in the last few years
by using the EBCS equations �14,15�. Here we analyze
the condensate fraction of fermionic pairs that is strictly re-
lated to the off-diagonal long-range order �ODLRO� �23� of
the system. As shown by Yang �24�, the BCS state ��� guar-
antees the ODLRO of the Fermi gas, namely, that, in the
limit wherein both unprimed coordinates approach an infinite
distance from the primed coordinates, the two-body density
matrix factorizes as follows:


�̂↑
†�r1���̂↓

†�r2���̂↓�r1��̂↑�r2�� = 
�̂↑
†�r1���̂↓

†�r2���
�̂↓�r1��̂↑�r2�� .

�9�

The largest eigenvalue N0 of the two-body density matrix �9�
gives the number of Fermi pairs in the lowest state, i.e., the
condensate number of Fermi pairs �24,25�. This number is
given by

N0 =	 d3r1 d3r2�
�̂↓�r1��̂↑�r2���2, �10�

and it is straightforward to show �25� that

N0 = �
k

uk
2vk

2. �11�

It is quite remarkable that such a formula can be expressed
in a simple form as a function of the chemical potential �
and the energy gap 	. In fact, in the continuum limit
�k→V / �2
�3�d3k→V / �2
2��k2 dk, taking into account
the functional dependence �6� of the amplitudes uk and vk on
� and 	, we find

n0 = N0/V = �m3/2/8
�3�	3/2��/	 + �1 + �2/	2. �12�

By the same techniques, also the two EBCS equations can be
written in a more compact form as

− 1/aF = �2�2m�1/2/
�3�	1/2I1��/	� , �13�
n = N/V = ��2m�3/2/2
2�3�	3/2I2��/	� , �14�

where I1�x� and I2�x� are two monotonic functions which can
be expressed in terms of elliptic integrals, as shown by
Marini, Pistolesi, and Strinati �26�.

Simple analytical results from Eqs. �12�–�14� can be ob-
tained in three limiting cases: �i� the BCS regime, where

y�−1,� /	1, and the size of weakly bound Cooper pairs
exceeds the typical interparticle spacing kF

−1; �ii� the unitarity
limit, with y=0 �thus aF= ±��; �iii� the BEC regime, where
y1,� /	�−1 and the fermions condense as a gas of tight
dimers.

(i) BCS regime. � approaches the noninteracting Fermi
energy �F=�2kF

2 / �2m�. One finds that I1�x��x�ln�8x�−2�
and I2�x�2x3/2 /3. It follows that the condensate density is
given by

n0  �mkF/8
�2�	 = �3
/2e2�n exp��
/2�y� , �15�

with an exponentially small energy gap 	
=8e−2�F exp�y
 /2�.

(ii) Unitarity limit. I1�x�=0 and I2�x�1.16 with x
=� /	0.85. In addition one finds �0.59�F and 	
0.69�F, and the condensate fraction is

2N0/N  0.6994. �16�

(iii) BEC regime. The condensate fraction approaches the
ideal Bose gas value 2N0 /N1, with all pairs �molecular
dimers� moving into the condensate. In addition one finds
that I1�x�−
��x� /2 and I2�x�
 / �8��x��. From these ex-
pressions we obtain

n0  n/2  �m2aF/8
�4�	2, �17�

which is precisely the condensate density deduced by Pieri
and Strinati in this BEC regime using a Green-function for-
malism �27�. In this limit the chemical potential approaches
half the dimer binding energy �−�2 / �2maF

2�=−�Fy2 and
the gap 	4�3
�−1/2�Fy1/2.

The behavior of the condensate fraction 2N0 /N through
the BCS-BEC crossover is shown in Fig. 1 �solid line� as a
function of the Fermi-gas parameter y. The figure shows that
a large condensate fraction builds up in the BCS side already
before the unitarity limit, and that on the BEC side it rapidly
converges to the ideal boson gas value. The finding of a finite

FIG. 1. �Color online� Condensate fraction N0 / �N /2� of Fermi
pairs in the uniform two-component dilute Fermi gas as a function
of y= �kFaF�−1 �solid line�. The same quantity computed in the
local-density approximation for a droplet of N=6�106 fermions in
an elongated harmonic trap with �� /�z=47, as in the experiment
of Ref. �4�, plotted against the value of y at the center of the trap
�joined diamonds�. Open circles with error bars: experimentally de-
termined condensed fraction �4�.
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nontrivial 2N0 /N�1 around the unitarity limit contrasts with
the suggestion �6� that the condensate fraction could reach
unity already at y=0.

The local-density approximation �LDA� can be imple-
mented to calculate the properties of a nonuniform Fermi gas
of sufficiently slowly varying density, as in the case of a
large number N of particles in a smooth trapping potential
U�r�. In the spirit of the Thomas-Fermi method, we replace
the chemical potential � with the quantity �−U�r� into Eqs.
�12�–�14�. In this way the energy gap 	�r�, the total density
n�r�, and the condensate density n0�r� become local scalar
fields. In order to compare with the experiment of Ref. �4�
done with 6Li atoms, we solve the LDA equations for
N=6�106 fermions trapped in an external anisotropic har-
monic potential well defined by a transverse frequency ��

and an axial frequency �z:

U�r� = �m/2����
2 �x2 + y2� + �z

2z2� . �18�

We take an anisotropy ratio �� /�z=47. For given aF, and
for a given initial guess of �, the local chemical potential
�−U�r� is computed and Eq. �13� for 	 is solved numeri-
cally, and this calculation is repeated for each r on a spatial
grid. The total number N of fermions in the trap is then
computed by integrating Eq. �14� over the position r. The �
parameter is then adjusted iteratively in order to obtain the
required total number N of fermions within the droplet. The
final density, gap, and n0 functions are determined according
to Eqs. �12�–�14�.

We find that at the border of the droplet, all three of these
functions vanish together, for both positive and negative aF.
Figure 2 reports the computed axial density

nz�z� =	 dx dy n�x,y,z� �19�

and condensed density 2n0z�z� �defined analogously� for
three values of the scattering length aF. The fermionic cloud
is rather diffuse in the BCS region, and gets more and more
compact as the BEC regime is approached. The smoothly
vanishing behavior of nz�z� near the cloud border is due to
the integration over transverse coordinates: n�r� instead van-
ishes with a finite jump in its gradient component across the
surface. The same applies for the condensed quantities. Of
course, this sharp vanishing behavior is a consequence of the
LDA, while quantum delocalization effects �here neglected�
should smooth the density profile at the surface of the actual
droplet.

As shown in Fig. 2, the condensed fraction �dotted curve�
vanishes as one moves from center to border of the BCS
cloud, as pairing acts less efficiently as the density is low. On
the contrary, on the BEC side, the condensed fraction in-
creases to unity toward the cloud border, as the bosonic gas
suffers less from quantum depletion wherever its density is
smaller. In the unitarity limit, the condensed fraction is in
fact constant, and equals the uniform value of Eq. �16�: this
reflects the scale invariance of this special limit of infinitely
large scattering length.

The experiment of Ref. �4� addresses the problem of mea-
suring the total condensate fraction of trapped interacting
fermions near the unitarity limit. Even though it would be
hard to demonstrate that the measured “condensed fraction”
coincides with the ODLRO 2N0 /N defined in Eq. �10�, we
attempt a comparison of the computed total condensed frac-
tion, reported in Fig. 1, with the experimental data at the
lowest temperature kBT=0.05�F. In the experiment the scat-
tering length is tuned by means of an external magnetic
tuned across a Feshbach resonance. Following Ref. �28�, the
scattering length aF as a function of the magnetic field B near
the Feshbach resonance is given by

FIG. 2. �Color online� Axial total density �nz�z�, solid� and con-
densed density �2n0z�z�, dashed� of a droplet composed of N=6
�106 fermions in an elongated harmonic trap with �� /�z=47, as
in the experiment of Ref. �4�. With 6Li atoms, the harmonic oscil-
lator length scale az=�1/2�m�z�−1/2=12 �m in the setup of Ref. �4�.
Dotted curves: the axial local condensate fraction 2n0z�z� /nz�z�. The
values of y at the center of the droplet are −1.2 �aF=−0.01az�,
−10−4 �aF=−100az�, and 0.87 �aF=0.01az�, representative of the
BCS, unitarity, and BEC regimes, respectively.
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aF = ab�1 + ��B − B0���1 + Br/�B − B0�� , �20�

where B0=83.4149 mT, ab=−1405a0, Br=30.0 mT, and
�=0.0040 �mT�−1. The measured condensed fraction at the
lowest temperature is reported in Fig. 1 as open circles with
error bars. The general increasing trend and the substantially
large value of the condensed fraction on the BCS side and
close to the unitarity limit agree quite well with the EBCS
LDA calculation �joined diamonds�. On the BEC side the
rapid drop of experimental data is due to inelastic losses and
thus these data are not reliable �4�. Note also that the con-
densate fraction measured near a Feshbach resonance of 40K
atoms �2� is much smaller than the values reported in Ref.
�4�. The origin of this discrepancy has not been clarified yet
�4,6–9�.

As suggested in the Introduction, the zero-temperature
EBCS theory has some limitations. In particular, it overesti-
mates the bosonic scattering length aB between molecular
dimers in the BEC regime: the theory predicts aB=2aF,
where aF is the two-fermion scattering length, but Monte
Carlo results �20� confirm the four-body scattering analysis
�29� which gives aB=0.6aF. To overcome such difficulties,
the EBCS theory can be further extended by including be-
yond mean-field corrections which improve the determina-
tion of the chemical potential, and reduce the bosonic scat-
tering length to aB=0.75aF �30�.

A finite-temperature formulation of the EBCS mean-field
theory is not difficult �19,31�: for the condensed number of
Fermi pairs we find the formula N0=�kuk

2vk
2 tanh2��Ek /2�,

where �=1/ �kBT�. It is then straightforward to express
this relation as an explicit function of �, 	, and �, pretty
much like Eqs. �12� at T=0. On the other hand, it is well
known �13,14,16,17� that in the BEC regime the finite-
temperature mean-field theory overestimates the critical Tc.

This is related to the dimer breaking energy rather than the
loss of coherence of the bosonic gas as it should. As a con-
sequence, the condensed fraction is overestimated near the
unitarity limit and in the BEC region: to get reasonable re-
sults beyond mean-field corrections are needed
�13,14,16,17,32�.

In this paper we have shown that the zero-temperature
EBCS mean-field theory gives a simple and nice formula for
the condensed fraction of Fermi pairs in the full BCS-BEC
crossover. On the BCS side of the Feshbach resonance our
theoretical results are in agreement with the low-temperature
measurements of Zwierlein et al. �4�. In fact, the quantitative
agreement of the measured and computed condensate frac-
tion �based on the off-diagonal long-range-order parameter�
is no demonstration that these two quantities can be identi-
fied. A quantitative microscopic simulation of the experimen-
tal procedure could in fact rigorously prove or disprove the
identification we are putting forward in the present work.
Such a simulation should be based on a microscopic theory
which contains an essentially correct internal dynamics of
the pairs across the crossover: this goes likely beyond the
capability of a mean-field method such as EBCS. Also alter-
native experimental techniques could be developed to pro-
vide an independent measurement of the condensed fraction,
possibly in closer contact with the off-diagonal long-range
order. Further work, both experimental and theoretical, could
help to elucidate this interesting issue.

On the BEC side of the Feshbach resonance the experi-
mental data of Ref. �4� are not reliable due to inelastic losses.
In this region our predictions may be a guide for further
experimental investigations.
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