
Compositional Minimization in Span(Graph):

Some Examples

Piergiulio Katis1 ,2 N. Sabadini,1 ,3 R.F.C. Walters1 ,4

Dip. Scienze CC. FF. MM.
Università dell’Insubria

Como, Italy

Abstract

We study a class of examples of minimizing automata with respect to branching bisimulation in
the context of the Span(Graph) model. Compositional minimization is particularly efficient for
the class which includes the classical dining philospher problem and variants. The reason for the
efficiency is that finite subsets of the class generate finite submonoids of the bisimulation monoid.
We indicate how this may be used in studying deadlock. In the case of the dining philosopher the
critical fact is that (F · P)3 = (F · P)2 in the bisimulation monoid, where F is the fork and P the
philosopher.

Keywords: model checking, minimization, branching bisimulation, automata, monoid, dining
philosopher

1 Introduction

The classical notion of minimization of an automaton has been extended to
the compositional setting of Span(Graph) in [9], in particular with respect to
branching bisimulation. Similar minimizations are the basis for compositional
model checking (e.g. [2], [10], [12]), the attempt to circumvent the problem

1 The research has been financially supported by the Dipartimento di Scienze Chimiche,
Fisiche e Matematiche of the University of Insubria, Como, Italy, and by the Italian Progetti
Cofinanziati MUIR: Computational Metamodels (COMETA).
2 Email: piergiulio katis@hotmail.com
3 Email: nicoletta.sabadini@uninsubria.it
4 Email: robert.walters@uninsubria.it

Electronic Notes in Theoretical Computer Science 104 (2004) 181–197

1571-0661/$ – see front matter © 2004 Elsevier B.V. All rights reserved.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2004.08.025

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio istituzionale della ricerca - Università dell'Insubria

https://core.ac.uk/display/53543973?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:piergiulio_katis@hotmail.com
mailto:nicoletta.sabadini@uninsubria.it
mailto:robert.walters@uninsubria.it
http://www.elsevier.com/locate/entcs

of the exponential growth in state that may occur in exhaustive automated
state-space searches. The method has been used in practical model checking
programs (e.g. [4]) with success in a variety of problems, though the approach
has been shown to have its limitations ([3]).

It seems to be a very difficult mathematical problem to determine the class
of problems for which compositional minimization reduces the state space from
exponential to polynomial size. This paper is an investigation into a class of
examples where the method is shown to be extremely efficient.

The general algebraic situation of this paper is described in [9], but to
concentrate attention on the problem of minimization and to avoid an overload
of algebraic details, in this paper we consider only two types of spans: those
with two equal interfaces - a left and a right interface; and those with no
interfaces. We consider spans with given initial states and we consider only
two operations. If X and Y have two interfaces, we denote the reachable part
of the span composite (the communicating parallel product) as X · Y which
is again a span with two interfaces; this operation models the construction
of identifying the right interface of X with the left interface of Y (with the
effect of hiding the interface they now share). If X has two interfaces, we also
define Fb(X) which is a span with no interfaces; the construction of feeding
back the right interface of X to its left interface. These operations allow us
to model problems which consist of a line, or a ring, of parallel processes each
communicating with its two adjacent processes. Note that Span(Graph) [8]
permits the description of more general systems with a circuit like geometry.

In section 2 we review briefly what we require of our span model, together
with the notion of bisimilarity we will use – essentially branching bisimulation
(further details may be found in [9]). We introduce the notion of the bisimu-
lation monoid BisAut, whose elements are spans modulo branching bisimula-
tion. Section 3 reviews the compositional minimization of spans with respect
to branching bisimulation - we denote the minimization of X by min(X).

The fundamental complexity problem in compositional model checking is
as follows. Consider an infinite sequence X1, X2, ... of spans each with a maxi-
mum of c states and transitions. Then min(X1 ·X2 · · · · ·Xn) may be calculated
by a sequence of elementary minimizations and compositions. The number of
states and transitions of min(X1 ·X2 · · · · ·Xn) is clearly bounded by cn. The
question is for which sequences of spans may cn be replaced by a polynomial
in c. The technical content of the paper is dedicated to providing an infinite
number of sequences of spans with this property, including the classical din-
ing philosopher problem and variants of it. We obtain these examples by a
detailed analysis of spans which communicate through locking and unlocking.

The families of spans considered in these examples in fact generate finite

P. Katis et al. / Electronic Notes in Theoretical Computer Science 104 (2004) 181–197182

submonoids of BisAut; from this fact it can be immediately deduced that
the minimization algorithm applied to these families is linear. In the case of
the dining philosopher, the critical fact is that three forks and philosophers in
a row are bisimilar to two philosophers and forks in a row – in terms of the
bisimulation monoid, (F · P)3 = (F · P)2. This implies that a row of (more
than two) alternating forks and philosophers is bisimilar to just two forks
and philosophers. Though the dining philosophers is one of the most studied
examples of a concurrent system, this fact seems to be previously unremarked.

In the last section we describe how various results about the existence/non-
existence of deadlocks may be deduced. An implementation of the minimiza-
tion algorithm by Pierantonio Redaelli, Mara Barbera and R.F.C. Walters was
helpful in obtaining the particular results of the paper.

2 The model

2.1 Spans

A reflexive graph is a directed graph in which parallel edges may exist, and
which has for each vertex a specified edge beginning and ending at that vertex,
the reflexive edge at that vertex. We will consider particular spans of reflexive
graphs, namely reflexive graphs whose edges have two labellings in a finite set
A. We assume that the set A has a distinguished element which we denote
‘−’, which is to be thought of as a silent action.

Definition 2.1 A span of graphs with two equal interfaces A, or just a span,
is a tuple (G, g0, l, r), where:
(i) G is a finite reflexive graph. Its vertices and edges are sometimes referred
to as the states and transitions of the span. The reflexive edges are also called
idling transitions.
(ii) g0 is a vertex of G such that every vertex of G is reachable from g0, the
initial state of the span.
(iii) l and r are functions l, r : Edge(G) → A such that if α is a reflexive edge
then l(α) = r (α) = −. For each transition α of G, we call l(α) and r(α) the
left and right labellings of the transition respectively. If l(α) = − then we
say the transition e is invisible on the left interface. If r(α) = − then we say
the transition α is invisible on the right interface. A span with no interfaces
is just a pair (G, g0), where G is a finite reflexive graph and g0 is a vertex of
G such that every vertex of G is reachable from g0. If there is no cause for
confusion, we denote the span (G, g0, l, r), or the span (G, g0), merely by G.
A behaviour of G is a path (finite or infinite) in the graph G which starts at
the initial state.

P. Katis et al. / Electronic Notes in Theoretical Computer Science 104 (2004) 181–197 183

Example 2.2 We describe here two spans which can be used to model the
example of the dining philosophers. Each has two interfaces. When we list
the transitions of a span, we do not bother to list the reflexive edges, and a
transition α : v → w is denoted by l(α)/r (α) : v → w. For this and other
examples in this paper, we assume A contains the symbols ‘l’ and ‘u’, which
stand for ‘lock’ and ‘unlock’ respectively.
The first span F models a fork. It has three states 0, 1, 2 and the following
transitions: l/− : 0 → 1, u/− : 1 → 0, −/l : 0 → 2, −/u : 2 → 0. The
state 0 corresponds to the fork not being used, the state 1 to it being used, or
locked, on the left, and the state 2 to it being used on the right. The initial
state for F is 0. The second span P models a right-handed philosopher. It has
four states 0, 1, 2, 3 and the following transitions:

−/l : 0 → 1 l/− : 1 → 2 −/u : 2 → 3 u/− : 3 → 0.

The state 0 corresponds to the philosopher not holding either fork, the state
1 to holding, or having locked, the fork on the right, the state 2 to holding
both forks, the state 3 to only holding the fork to the left. The initial state
for P is 0.

2.2 Operations on spans

Definition 2.3 Given two spans (G, g0, lG, rG) and (H, h0, lH , rH) we define
their composite (G · H, k0, lG·H , rG·H) as follows. First we define a reflexive
graph G×A H called the restricted product of G and H . A vertex of G×A H
is an arbitrary pair of vertices (g, h) ∈ G×H . An edge of G×A H is a pair of
edges (α, β) ∈ G×H such that rG(α) = lH(β). The reflexive graph G·H is the
subgraph of G ×A H reachable from the vertex (g0, h0), this vertex being the
initial state k0 of the composite. The left labelling of an edge (α, β) ∈ G ·H is
defined by lG·H(α, β) = lG(α), and its right labelling by rG·H(α, β) = rH(β).

Definition 2.4 If G is a span with two interfaces then the feedback of G,
denoted Fb(G), is the span with no interfaces defined as follows. Define G† to
be the reflexive graph with the same vertices as G, but only those edges for
which the left labelling equals the right labelling. Fb(G) is the subgraph of
G† reachable from the initial state of G.

We define a straight-line system, or just a system, to be a composite X1 ·
X2 · ... ·Xn of spans, sometimes also denoted X1X2...Xn. A ring system is an
expression of spans of the form Fb(X1X2...Xn).

Example 2.5 The system (FP)nF models a system of n dining philosophers
sitting in a row. The classical problem of n dining philosophers sitting around
a table is modelled by the system Fb((FP)n).

P. Katis et al. / Electronic Notes in Theoretical Computer Science 104 (2004) 181–197184

Remark 2.6 The algebraic structure considered above is essentially a monoid
together with a feedback (or trace) function – that is, a monoid M , a set S and
a function Fb : M → S which satisfies the property that Fb(a · b) = Fb(b · a).
Here, the set of spans with two interfaces plays the role of the monoid M , and
the set of spans with no interfaces plays the role of the set S.

2.3 Bisimulation

The notion of bisimulation we define here is a slight variation of the notion of
branching bisimulation. By the Stuttering Lemma of [6], our notion gives the
same bisimilarity equivalence relation on spans as does branching bisimulation.

Definition 2.7 Suppose G and H are spans with two interfaces. A bisimu-
lation between G and H is a relation R ⊆ Vertex(G) × Vertex(H) such that
(g0, h0) ∈ R, and if (g, h) ∈ R then:
(a) if there is an edge a/b : g → g′ (where a and b may equal −), then there
is a path h = h0 → h1 → ... → hn in H such that (i) the first n − 1 edges are
invisible on both interfaces, (ii) the last edge is labelled a/b, (iii) for 0 ≤ i < n,
(g, hi) ∈ R and (iv) (g′, hn).
(b) The symmetric property for h in terms of g.

We denote such a bisimulation by R : G =⇒ H . We say two spans G
and H are bisimilar if there exists a bisimulation R : G =⇒ H , and we write
G ∼ H .

The notion of bisimulation between spans with no interfaces is trivial – we
define any two spans with no interfaces to be bisimilar. This does not mean
we are not interested in such systems – the dining philosophers has no inter-
faces. However, analysis of the internal structure of a system (with or without
interfaces) may be facilitated by the use of bisimulations by abstracting parts
of the system to simpler processes - see Section 5

The following theorem (from [9]) regards the compositionality of bisimu-
lations.

Theorem 2.8 (i) If R : G =⇒ H and S : H =⇒ K are bisimulations, then
the composite relation R ◦ S ⊆ Vertex(G) × Vertex(K) defines a bisimulation
R ◦ S : G =⇒ K.
(ii) The identity relation on Vertex(G) is a bisimulation 1 : G =⇒ G.
(iii) If R : G =⇒ H is a bisimulation, then the dual relation R◦ : H =⇒ G is
a bisimulation.
(iv) If R : F =⇒ G and S : H =⇒ K are bisimulations, then the relation

R × S ⊆ (Vertex(F) × Vertex(H)) × (Vertex(G) × Vertex(K))

P. Katis et al. / Electronic Notes in Theoretical Computer Science 104 (2004) 181–197 185

when restricted to

Vertex(F ·H)×Vertex(G·K) ⊆ (Vertex(F)×Vertex(H))×(Vertex(G)×Vertex(K))

defines a bisimulation R · S : F · H =⇒ G · K.

Corollary 2.9 Bisimilarity is an equivalence relation on spans. Composition
of spans induces a monoid structure on the set BisAut of equivalence classes
of spans under the bisimilarity equivalence relation.

Proof. The identity for the monoid BisAut is the equivalence class of the
span (S(A), ∗, 1A, 1A), where S(A) is the graph with one vertex ∗, set of edges
A, and reflexive edge −. It is straightforward to check that for any spans
G, H, K we have S(A) · G ∼ G ∼ G · S(A) and G · (H · K) ∼ (G · H) · K. �

3 Compositional minimization

In this section we show how bisimulations give an example of a compositional
quotient structure. We use this structure to define an algorithm for calculating
the minimization of a system.

First we give the algorithm for constructing the maximal auto-bisimulation
of any span G with two interfaces. The construction follows the standard
method for constructing maximal bisimulations of transition systems (for ex-
ample, see [1]).

Given a relation R on the states of G define a new relation E(R) as follows:
(x, y) ∈ E(R) if
(i) for any transition a/b : x → x′ in G there is a path y = y0 → y1 → y2 →
... → yn with the first n−1 transitions invisible on the left and the right, with
(x, yi) ∈ R for i = 0, 1, .., n− 1, and with (x′, yn) ∈ R, and
(ii) the symmetric property for y in terms of x.
Commence with the total relation T - any x is related to any y. Then Ek(T)
(k = 1, 2, 3, ...) eventually stabilizes as an equivalence relation on the states of
G, which is a bisimulation from G to itself. We call this equivalence relation
the maximal auto-bisimulation of G.

For any G we define the minimization min(G) of G to be the following
span. Its set of states consist of the equivalence classes of states of G under
the maximal auto-bisimulation relation. There is a transition a/b : [g] → [h]
in min(G) if there is such a labelled transition in G for any representatives of
the classes. The initial state of min(G) is [g0].

Note that the construction of the minimization of G not only produces a
span min(G) but also a bisimulation εG : G =⇒ min(G) which is actually a

P. Katis et al. / Electronic Notes in Theoretical Computer Science 104 (2004) 181–197186

function: εG : g 	→ [g]. The functions ε may be used for locating deadlocks in
a system.

We note that minimization with respect to branching bisimulation can be
done in O(n(n + m)) time, where n is the number of states and m is the
number of transitions ([7],[5]).

The crucial property of the construction min is that it is compositional in
the sense of the following proposition.

Proposition 3.1 For any spans G and H,
(i) min(min(G)) = min(G),
(ii) min(G · H) = min(min(G) · min(H)) and,
(iii) εG·H = (εG · εH) ◦ εmin(G)·min(H).

Other notions of bisimulation (e.g. Milner’s strong or weak bisimulation)
have similar properties.

The compositional minimization algorithm applied to a system X1...Xn is
simply to calculate min of the value of the system by alternately calculating
min and evaluating composition from the left. We assume the Xi’s are already
minimal. (If not, minimize them first.) Explicitly: initially set M1 = X1; for
i = 2 to n {calculate Mi−1 · Xi; calculate min(Mi−1 · Xi) and εMi−1·Xi

; set Mi

equal to min(Mi−1 · Xi)}.
Proposition 3.1 guarantees the correctness of this algorithm; namely that

Mn = min(X1...Xn) and that

εX1·...·Xn = (εM1·X2 · 1X3 · ... · 1Xn) ◦ (εM2·X3 · 1X4 · ... · 1Xn) ◦ ... ◦ εMn−1·Xn

3.1 Polynomial problems

Definition 3.2 A minimization problem is an infinite sequence X1, X2, ... of
spans for which there exists a number c such that, for all i, the number of
states and transitions of Xi is less than c. The problem is said to be bounded
by a function b : N → N if the number of states and transitions of min(X1 ·
X2 · · · · · Xn) is less than b(n) (for all n). A problem is said to be polynomial
(resp. linear or constant) if it is bounded by a polynomial (resp. linear or
constant) function.

Every problem X1, X2, ... is bounded by the exponential function b(n) = cn,
where c is the maximum number of states and transitions that an Xi may
have. With regards to model checking, we are interested in problems that are
bounded by polynomial functions.

In most cases, the Xi’s will all belong to a finite family F . For an example
of a typical problem, let F = {P, P ◦}, where P ◦ is the span obtained by swap-
ping the left and right labellings of P ; P ◦ may be thought of as a philosopher

P. Katis et al. / Electronic Notes in Theoretical Computer Science 104 (2004) 181–197 187

who wants to pick up his left fork first. A consequence of what we show below
is that any problem of the form F, P1, F, P2, F, P3, ... where Pi ∈ F is bounded
by a constant function. (Note there is no symmetry in this class of problems,
as we have not made any assumption about the distribution of the Pi’s.)

To get an example bounded by a linear function, consider the span B
with two states 0, 1 and two (non-reflexive) transitions m/− : 0 → 1 and
−/m : 1 → 0. This models a buffer, or message passer, of capacity one: the
state 0 corresponds to the buffer being empty, and the state 1 to the buffer
being full. It can be shown that min(Bn) has n + 1 states: the intuition is
that Bn is a model of a buffer of capacity n. So the problem B, B, B, ... is
bounded by the linear function n + 2.

To obtain an example that is not bounded by a polynomial function, con-
sider the span C with three states 0, 1, 2 and three (non-reflexive) transitions
m/− : 0 → 1, m/− : 1 → 2 and −/m : 2 → 0. Think of this as a device which
waits to receive two messages, then outputs only one and returns to its initial
state. The problem C, C, C, ... is not polynomial. To see this notice that the
span Cn can accept

∑n
k=12

k – and no more – messages before outputting a
message. Thus it contains at least

∑n
k=12

k states which are not bisimilar.

The following simple observation will be useful in our analysis of spans
that lock and unlock.

Proposition 3.3 Suppose the submonoid 〈F〉 of BisAut generated by the
bisimulation equivalence classes of the members of a finite family F is finite.
Then any problem X1, X2, ..., where each Xi ∈ F , is bounded by a constant
function.

Proof. Take the constant to be the maximum number of states that a minimal
span in any equivalence class of 〈F〉 may have. �

The following propositions relate the notion of polynomial and linear prob-
lems to the time complexity of the minimization algorithm.

Proposition 3.4 Suppose X1, X2, ... is a polynomial problem. Then there
exists a polynomial function t : N → N such that, for any n, the time taken
to apply the minimization algorithm to the system X1...Xn is less than t(n).

Proof. The minimization of a labelled transition system with respect to
branching bisimulation can be done in O(s(s+ t)) time, where s is the number
of states and t is the number of transitions ([7]). Since we assume the alphabet
A (in which the interfaces are labelled) is finite, it can be done in polynomial
time with respect to the number of states. Let us say that the time taken to
minimize a span with s states is bounded by a polynomial f(s). Now suppose
the polynomial q bounds the problem X1, X2, Let c be the upper bound on

P. Katis et al. / Electronic Notes in Theoretical Computer Science 104 (2004) 181–197188

the number of states that a span Xi may have. Then the number of states of
min(X1...Xn)·Xn+1 is bounded by the polynomial q(n)×c. Let g(n) be a poly-
nomial which is an upper bound on the time taken to calculate the product
of min(X1...Xn) and Xn+1. Now the function t(n) =

∑n
i=1(g(i) + f(q(i) × c))

bounds the time taken to minimize X1...Xn. The result now follows (since the
integral of a polynomial is a polynomial). �

Proposition 3.5 Suppose X1, X2, ... is a constant problem. Then then there
exists linear function t : N → N such that, for any n, the time taken to apply
the minimization algorithm to the system X1...Xn is less than t(n).

Proof. There exists a constant c such that, for all i, the time taken to calculate
the product of min(X1...Xi) and Xi+1 and then minimize the result is less than
c. Thus the time taken to apply the minimization algorithm to X1...Xn is less
than c × n. �

Corollary 3.6 Suppose F is a finite family of spans and the submonoid 〈F〉
of BisAut generated by the bisimulation equivalence classes of the members
of the family F is finite. Then the time taken to apply the minimization
algorithm to any system X1...Xn, where Xi ∈ F , is linear in n.

4 The Examples

In this section we consider some examples of finite submonoids of BisAut,
and thus of problems which are bounded by constants and can be minimized
in linear time. In particular, we study classes of, what we call, ‘lock-unlock’
spans. One of these classes includes the example of the dining philosopher.

1. Let Z be the span with one state, and whose only transition is the
reflexive edge. This span has the property that ZGZ ∼ Z, for any G. Imme-
diate consequences of this are that (ZG)(ZH) ∼ ZH and (GZ)(HZ) ∼ GZ,
for any G and H . So any finite family comprising spans of the form ZG and
HZ generate a finite submonoid of BisAut. The span Z may be thought of
as one which blocks an interface, and thus prohibits the exponential growth
of state in model checking. For example, if we wanted to check a property
such as deadlock of the system ZG1ZG2G3ZG4...ZGnZ, it is intuitively clear
we only need check the spans ZG1Z, ZG2G3Z, ..., ZGnZ separately for this
property; and the time taken for such a process will increase linearly with
respect to n.

2. Let N be the span with two states 0, 1 and transitions m/− : 0 → 1,
m/− : 1 → 1, −/m : 1 → 1, m/m : 1 → 1 and −/m : 1 → 0. We call this
span a non-deterministic buffer or a buffer of an undetermined capacity. It
has the property that N 2 ∼ N ; that is, its equivalence class is idempotent in

P. Katis et al. / Electronic Notes in Theoretical Computer Science 104 (2004) 181–197 189

BisAut. The problem N, N, ... is bounded by a constant.

3. In Example 1. above constant problems were identified by using the
span Z to ‘break up’ systems – i.e. to limit the communication that can occur
in a system. We will consider a more interesting instance of this phenomenon
in this example. Instead of Z we will use F , the fork span of Example 2.2.

We call X a lock-unlock span if it has the following property: from every
state of FXF there is a path to the initial state. The idea is that X is a
process which wants to complete a ‘cycle’, and to do so it may require to lock
and unlock a resource on its left and one on its right, perhaps many times and
perhaps non-deterministically. A simple example of a lock-unlock span is the
philosopher P , described in Example 2.2.

We will define four infinite classes F1, F2, F3 and F4 of lock-unlock spans
(one of which will include P) such that for X in any of these classes (FX)2 ∼
(FX)3. Moreover, we will show that any finite subset of

F (F1 ∪ F2 ∪ F3 ∪ F4) = {FX | X ∈ F1 ∪ F2 ∪ F3 ∪ F4}
generates a finite submonoid of BisAut. To do so we require the following
definitions.

We say a path in G is invisible if every transition in the path is invisible
on the left and on the right.

A state (2, x, 2) ∈ FXF is said to be bound if there does not exist a y ∈ X
and an invisible path in FX from (2, x) to (0, y). In other words, (2, x, 2) is
bound if in order for X to unlock its left fork X must gain access to its right
fork.

Similarly, a state (1, x, 1) ∈ FXF is said to be bound if there does not
exist a y ∈ X and an invisible path in XF from (x, 1) to (y, 0).

A state (f, x, 2) ∈ FXF is said to be free if there is a y ∈ X and an
invisible path in FX from (f, x) to (0, y), and if there is no invisible path in
FX from (f, x) to (2, z), where (2, z, 2) is a bound state. Note that this means
f = 1.

Similarly, we say a state (1, x, f) ∈ FXF is free if there is a y ∈ X and
an invisible path in XF from (x, f) to (y, 0), and if there is no invisible path
in XF from (x, f) to (z, 1), where (1, z, 1) is a bound state. Note that this
means f = 2.

A state (f, x, 2) ∈ FXF is said to be free-bound if one of the following two
conditions hold: (i) (f, x, 2) is bound; or (ii) there is a y ∈ X and an invisible
path in FX from (f, x) to (0, y), and there is no invisible path in FX from
(f, x) to (g, z), where (g, z, 2) is a free state. So a free-bound state is bound
or can become bound.

Similarly, we say a state (1, x, f) ∈ FXF is free-bound if one of the fol-

P. Katis et al. / Electronic Notes in Theoretical Computer Science 104 (2004) 181–197190

lowing two conditions hold: (i) (1, x, f) is bound; or (ii) there is a y ∈ X and
an invisible path in XF from (x, f) to (y, 0), and there is no invisible path in
XF from (x, f) to (z, g), where (1, z, g) is a free state.

We now define the four classes of lock-unlock spans.

(i) X ∈ F1 if and only if all states of the forms

(1, x, 1), (1, x, 0), (0, x, 2), (2, x, 2) ∈ FXF

are free. So if X performs a lock on the left (resp. right), it is able to
follow that action with an unlock on the left (resp. right).

(ii) X ∈ F2 if and only if all states of the forms

(1, x, 1), (1, x, 0), (0, x, 2), (2, x, 2) ∈ FXF

are free-bound.

(iii) X ∈ F3 if and only if all states of the forms (1, x, 1), (1, x, 0) ∈ FXF are
free and all states of the form (0, x, 2), (2, x, 2) ∈ FXF are free-bound.

(iv) X ∈ F4 if and only if all states of the forms (1, x, 1), (1, x, 0) ∈ FXF are
free-bound and all states of the form (0, x, 2), (2, x, 2) ∈ FXF are free.

An example of a span in F1 is F ; Z is also an example. An example of a
span in F4 is P . An example of a span in F3 is P ◦, the left-handed philosopher
defined earlier this section. An example of a span in F2 is P + P ◦, the span
formed by taking the disjoint union of P and P ◦ and then smashing their
initial states together (it has 7 states and 8 non-reflexive edges).

The following is an example of a lock-unlock span P ′ which is not in one
of the above four classes. P ′ has six states 0,1,2,3,4,5 and the following tran-
sitions:

l/− : 0 → 1 −/l : 1 → 2 −/u : 2 → 3

u/− : 3 → 4 −/l : 4 → 5 −/u : 5 → 0

The reason why it does not fit into one of these classes is that the state
(1, 1, 2) ∈ FP ′F is bound and the state (0, 4, 2) ∈ FP ′F is free. As an aside
we note that (FP ′)2 is not bisimilar to (FP ′)3, but (FP ′)3 ∼ (FP ′)4.

Let F = F1 ∪ F2 ∪ F3 ∪ F4.

Claim 4.1 Suppose T ⊂ F is finite. Any problem of the form F, X1, F, X2, ...,
where each Xi ∈ T , is bounded by a constant.

We prove that if S ⊂ FF is finite then the submonoid 〈S〉 of BisAut is

P. Katis et al. / Electronic Notes in Theoretical Computer Science 104 (2004) 181–197 191

finite. This implies that problems of the form FX1, FX2, FX3, ... are bounded
by a constant; and from this the Claim is immediate.

Lemma 4.2 If X and Y are lock-unlock spans then XFY is a lock-unlock
span.

Proof. Consider a state (f, x, g, y, h) ∈ FXFY F . Either X or Y has, or
has access to, the middle fork. Assume X does. Then there is a path from
(f, x, g, y, h) to (0, 0, 0, y, h). There is a path from (0, 0, 0, y, h) to (0, 0, 0, 0, 0).�

We define a monoid structure on the four element set {1, 2, 3, 4} as follows:

∗ 1 2 3 4

1 1 1 1 1

2 1 2 3 4

3 1 3 3 1

4 1 4 1 4

Lemma 4.3 If X ∈ Fi and Y ∈ Fj then XFY ∈ Fi∗j.

Proof. First consider i = 1 and any j = 1, 2, 3, 4. Consider a state (2, x, f, y, 2)
in FXFY F . If f = 2 then, since X is a lock-unlock span, there is an invisible
path in FXF from (2, x, f) to (0, 0, 0), and thus an invisible path in FXFY F
from (2, x, f, y, 2) to (0, 0, 0, y, 2). Suppose f = 2. Since (2, x, f) ∈ FXF is
free, there is an invisible path in FX from (2, x) to (0, x), and thus an invisible
path in FXFY F from (2, x, f, y, 2) to (0, x, f, y, 2). Since we have not placed
any restrictions on (x, f, y) ∈ XFY , the states (2, x, f, y, 2) are free as they
can never become bound. Consider a state of the form (1, x, f, y, 1). If f = 1
then there is an invisible path in FY F from (f, y, 1) to (0, 0, 0), since Y is a
lock-unlock span; and thus an invisible path from (1, x, f, y, 1) to (1, x, 0, 0, 0).
If f = 1 then, since (1, x, 1) ∈ FXF is free, there is an invisible path in XF
from (x, 1) to (x′, 0), and thus an invisible path in FXFY F from (2, x, f, y, 2)
to (0, z, 0, y, 2), which brings us to the previous case f = 1. Since we have not
placed any restrictions on (x, f, y) ∈ XFY , the states (2, x, f, y, 2) are free, as
they can never become bound. This proves that if X ∈ F1 and Y ∈ Fj then
XFY ∈ F1. A symmetric argument shows that if X ∈ Fi and Y ∈ F1 then
XFY ∈ F1.

We now consider the case X ∈ F2 and Y ∈ F3. Arguments similar to those
given in the previous paragraph can be used to show any state (1, x, f, y, 1)
is free. We need to show that there is an invisible path from any state

P. Katis et al. / Electronic Notes in Theoretical Computer Science 104 (2004) 181–197192

(2, x, f, y, 2) to a bound state. If f = 2 then there is an invisible path to a state
(2, x′, 2, y, 2), since X is a lock-unlock span. So assume f = 2. Since X ∈ F2

there is an invisible path in FX from (2, x) to (2, x′), where (2, x′, 2) ∈ FXF
is bound. Since Y ∈ F3 there is an invisible path in FY from (2, y) to a
state (2, y′, 2) ∈ FY F which is bound. Thus there is an invisible path in
FXFY F from any (2, x, f, y, 2) to a bound state (2, x′, 2, y′, 2). So XY ∈ F3.
The remaining cases can be argued in similar ways. �

Lemma 4.4 For i = 1, 2, 3, 4, if X, Y ∈ Fi then FXF ∼ FY F .

Proof. For any X ∈ F , we partition the states of FXF into eight sets
U1, U2, U3, U4, U5, U6, U7, U8 (some of which may be empty).

1. For all x, (f, x, g) ∈ U1 if f ∈ {0, 2} and g ∈ {0, 1}.
2. For all x, (1, x, 2) ∈ U2.

3. (f, x, 2) ∈ U3 if it is free.

4. (f, x, 2) ∈ U4 if it is free-bound and not bound.

5. (f, x, 2) ∈ U4 if it is bound.

6. (1, x, f) ∈ U5 if it is free.

7. (1, x, f) ∈ U6 if it is free-bound and not bound.

8. (1, x, f) ∈ U6 if it is bound.

For X ∈ F , this partition is well defined. Notice that, by definition of the
Fi’s, for each X either U3 or (U4∪U5) will be empty, and either U6 or (U7∪U8)
will be empty. With this last observation in mind, it is easy to check that the
equivalence relation induced by this partition is an auto-bisimulation (in fact,
maximal). Furthermore, it is straightforward to show that if X, Y ∈ Fi then
the minimal spans of X and Y are the same. �

We can use the previous results to deduce that (FX)2 ∼ (FX)3 for X ∈
Fi. Lemma 4.3, together with the four element multiplication table above it,
implies that XFX ∈ Fi. Lemma 4.4 now implies that FXFXF ∼ FXF .
Hence, the desired result.

Lemma 4.5 If S ⊂ FF has s elements, then the number of elements of the
submonoid 〈S〉 of BisAut is less than or equal to 4 × s + 1.

Proof. Let F1, F2, F3, F4 be the four minimal spans such that for any X ∈
Fi, FXF ∼ Fi. By the previous two Lemmas, for any X1, ..., Xn ∈ F ,
FX1F...FXnF ∼ Fi, for some i. So any element of 〈S〉 equals the equiva-
lence class of FiX, for some i ∈ {1, 2, 3, 4} and X such that FX ∈ S. (The
additional 1 in the sum comes from counting the identity of the monoid.) �

This completes the proof of the claim.

P. Katis et al. / Electronic Notes in Theoretical Computer Science 104 (2004) 181–197 193

Remark 4.6 We give explicit descriptions of the four minimal spans F1, F2,
F3, F4. From the proof of Lemma 4.4, it is clear that F1 has 4 states (corre-
sponding to the cases 4,5,7 and 8 being empty), F2 has 6 states (cases 3 and 6
empty), and F3 (cases 3,7 and 8 empty) and F4 (cases 4,5 and 6 empty) have
5 states. We describe the minimal spans as sub-spans of the span Q which has
8 states (each state corresponds to one of the cases of the partition described
in the proof of Lemma 4.4) and the following transitions:

l/l : 1→2, −/l:1→3, −/l:1→4, −/l:1→5, l/−:1→6, l/−:1→7,

l/− : 1→8, u/u:2→1, u/−:2→3, u/−:2→4, −/u:2→6, −/u:2→7,

−/u : 3→1, l/−:3→2, l/u:3→6, l/u:3→7, −/u:4→1, l/−:4→2,

−/− : 4→5, l/u:4→6, l/u:4→7, −/u:5→1, u/−:6→1, −/l:6→2,

u/l : 6→3, u/l:6→4, u/−:7→1, −/l:7→2, u/l:7→3, u/l:7→4, −/− : 7→8, u/−:8→1.

F1 is the sub-span of Q with states 1,2,3 and 6. F2 is the sub-span of Q with
states 1,2,4,5,7 and 8. F3 is the sub-span of Q with states 1,2,4,5 and 6. F4 is
the sub-span of Q with states 1,2,3,7 and 8.

Remark 4.7 The above calculations may be interpreted as follows. Lock-
unlock spans form a submonoid LU of BisAut comprising bisimulation classes
of spans of the form FX where X is a lock-unlock span. Though the sub-
monoid 〈FF1 ∪ FF2 ∪ FF3 ∪ FF4〉 of LU is infinite, any finite subset S of it
generates a finite submonoid.

Remark 4.8 Exploration with a program implementing the algorithm have
revealed other examples of finite submonoids of BisAut. One in particular
is of interest. Suppose the fork F and the philosopher P are both modified
as follows: each nonreflexive label is replaced by two labels (for example lock
becomes beginlock and endlock) and each noneflexive transition is replace by
two transitions, the beginning of the transition and the end of the transition,
with the intermediate state being a new one. Then the new spans F ′and P ′

satisfy (F ′ · P ′)3 = (F ′ · P ′)2 in BisAut.

5 Deadlock

In this section we describe a simple result which in many cases allows us
to deduce the nonexistence of reachable deadlocks. The situation is rather
analogous to one in Number Theory [11] where the idea of reducing modulo
a natural number can lead to the conclusion that a diophantine equation has
no solutions in integers. To illustrate the point more concretely consider the

P. Katis et al. / Electronic Notes in Theoretical Computer Science 104 (2004) 181–197194

sequence of diophantine equations:

5kx2 − 34ky2 = 72k + 1 (k = 1, 2, . . .).

Even to check a single pair of integral values x, y seems to be, on the surface,
an exponential calculation in k. However considering modulo 4 and using
the compositional reduction modulo 4 the sequence of equations becomes the
single congruence x2 − y2 ≡ 2 mod 4 (k = 1, 2, . . .) which is easily seen
to have no solutions by just checking 16 cases. This implies that none of the
original diophantine equations has a solution in integers. Notice that using
compositional reduction modulo 2 does not allow the same deduction. It is
fundamental to the utility of congruences that information is lost, and that
they yield only negative information about the diophantine equation.

We use precisely analogous arguments to prove that many systems do not
have deadlock.

Definition 5.1 A deadlock of a span G (with two or no interfaces) is a state
g such that the only transition out of g is the idling transition.

An example of a deadlock state is the state (1, 1, 1, 1, 1, 1) of Fb((FP)3),
which is the state corresponding to each philosopher having their right forks.

Proposition 5.2 If g is a deadlock of span G then εG(g) is a deadlock of
min(G). If g is a deadlock of Fb(G) then εG(g) is a deadlock of Fb(min(G)).

Proof straightforward.

We wish to use these results together with the results of the previous
section to investigate the existence of deadlocks in systems of the form

Fb(FX1FX2...FXn) where X1, X2, ..., Xn ∈ F .

By the Proposition 5.2 if Fb(min(FX1FX2...FXn)) has no deadlocks then
also Fb(FX1FX2...FXn) has no deadlocks. But it is straightforward using
the results of the previous section to calculate min(FX1FX2...FXn). The
span min(FX1FX2...Xn−1F) is one of the four minimal spans (Remark 4.6)
F1, F2, F3, F4, say Fi. Which one can be calculated using the monoid structure
(Lemma 4.3) on the classes F1,F2,F3,F4. Then Fb(min(FX1FX2...FXn)) =
Fb(min(FiXn)). If this span has no deadlock we are able to deduce that the
ring of processes Fb(FX1FX2...FXn) also has no deadlocks.

Let us apply this in the case that X1, X2, ..., Xn ∈ {F, P + P ◦, P ◦, P}.
We are only able to obtain a result when Fb(min(FiXn)) has no deadlock. A

P. Katis et al. / Electronic Notes in Theoretical Computer Science 104 (2004) 181–197 195

simple calculation shows that this occurs exactly in the cases where Fi = F or
Xn = F or the following (i) Fb(min(F3P)), (ii) Fb(min(F4P

◦)). We illustrate
with two simple examples.

Example 5.3 Consider the ring of philosophers containing four right-handed
and two left-handed philosophers defined by the expression

Fb(FPFP ◦FPFP ◦FPFP).

Applying Lemma 4.3 repeatedly we see that PFP ◦FPFP ◦FP is in F1, and
hence min(FPFP ◦FPFP ◦FPF) = F1. Finally

Fb(min(FPFP ◦FPFP ◦FPFP)) = Fb(min(F1P))

which last has no deadlock and hence we deduce that the original ring of
philosophers has no deadlock.

Example 5.4 Consider the ring of four right-handed philosophers defined by
the expression Fb(FPFPFPFPFP). Applying Lemma 4.3 repeatedly we see
that PFPFPFP is in F4 and hence that min(FPFPFPFPF) is F4. Finally
Fb(min(FPFPFPFPFP)) = Fb(min(F4P)) which last does have a deadlock.
We can make no deduction about deadlocks by this argument (although more
careful examination of the minimization function ε in this case does allow the
detection of the single deadlock).

References

[1] A. Arnold, Finite transition systems, Prentice Hall, 1994.

[2] E. Clarke, D. Long, K. McMillan. Compositional model checking. In Proceedings of the Fourth
Annual IEEE Symposium on Logic in Computer Science, pp. 353-362, 1989.

[3] J.C. Corbett and G. S. Avrunin, Towards Scalable Compositional Analysis, Proceedings of the
Second Symposium on Foundations of Software Engineering, ed. David Wile, December, 1994.

[4] J Fernandez, Aldébaran: Manuel de l’utilisateur. Technical Report, LGI-IMAG Grenoble, 1988.

[5] J Fernandez, L. Mounier. A tool set for deciding behavioural equivalences. Preprint.

[6] R. van Glabbeek, P. Weijland, Branching time and abstraction in bisimulation semantics, in:
JACM 43(3), 1996, pp. 555-600.

[7] Groote J and Vaandrager F, An efficient algorithm for branching bisimulation and stuttering
equivalence. CS-R 9001, CWI, Amsterdam, 1989.

[8] P. Katis, N. Sabadini, R.F.C. Walters, Span(Graph): A categorical algebra of transition
systems, Proceedings Algebraic Methodology and Software Technology, volume 1349 of Lecture
Notes in Computer Science, 307–321, Springer Verlag, 1997.

[9] Rosebrugh R., Sabadini N, Walters RFC, Minimization and minimal realization in
Span(Graph), in press, MSCS.

P. Katis et al. / Electronic Notes in Theoretical Computer Science 104 (2004) 181–197196

[10] B. Steffen S. Graf, G Lüttgen. Compositional minimization of finite state systems. International
Journal of Formal Aspects of Computing, Vol 8, pp 607-616, 1996.

[11] R.F.C. Walters, Number Theory: an Introduction, Carslaw Publications, 1987.

[12] W Yeh, M Young. Compositional reachability analysis using process algebra. In Proc.
Symposium on Testing, Analysis, and Verification (TAV4), pp 178-187, New York, Oct 1991.
ACM SIGSOFT.

P. Katis et al. / Electronic Notes in Theoretical Computer Science 104 (2004) 181–197 197

