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Abstract

The present work investigates the potential of neural adaptive learning to solve the correspondence problem within a

two-frame adaptive area matching approach. A novel method is proposed based on the use of the zero mean normalized

cross-correlation coefficient integrated within a neural network model which uses a least-mean-square delta rule for

training.

Two experiments were conducted for evaluating the neural model proposed. The first aimed to produce dense dis-

parity maps based on the analysis of standard test images. The second experiment, conducted in the biomedical field,

aimed to model 3D surfaces from a varied set of scanning electron microscope stereoscopic image pairs.

� 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Stereoscopic image analysis is a well-known

technique to recover the third dimension (Faug-
eras, 1993). The accuracy of the overall reconstruc-

tion process depends on the accuracy with which

the ‘‘correspondence problem’’ is solved. It con-

cerns the matching of points or other kinds of

primitives in two (or more) images such that the
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matched image points are the projections of the

same point in the scene. The disparity map ob-

tained from the matching stage is then used to

compute the 3D positions of the scene points given
the imaging geometry.

Stereo matching has been intensively studied

(Barnard and Fischler, 1982; Dhond and Aggar-

wal, 1989) and is still a major research topic within

the computer vision community to satisfy de-

mands in new application domains such as virtual

reality and virtual studio (McMillan and Bishop,

1995).
The large number of stereo matching methods

can be roughly classified into area-based and
ed.
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feature-based or a combination of the two. Other

types of stereo matching methods such as diffu-

sion-based, wavelet-based and phase-based tech-

niques have also been developed (Sun, 2002).

Feature matching techniques proceed from
human vision studies (Marr and Poggio, 1976)

and are based on the application of edge detection

operators to extract features such as segments or

contours then matched in two or more views using

heuristics or constraints. All the features are de-

scribed by their signatures and the correspond-

ences are established based on the selection of

the best matching signatures. These techniques
have the potential of precise positioning and relia-

ble results (Shapiro and Haralick, 1981; Barnard

and Thompson, 1980; Weng and Ahuja, 1989).

The main drawback of the feature-based approach

is that typically, irregularly distributed features are

matched producing sparse disparity maps. If a

dense disparity map is required an extra surface fit-

ting stage is needed. The literature contains several
detailed reviews of various approaches and com-

parisons of performances (Dhond and Aggarwal,

1989; Hsieh et al., 1992).

The requirement of dense output arises from

modern applications such as view synthesis and

image based rendering which require high quality

and resolution.

Area based approaches have the advantage of
directly generating dense disparity maps. Match-

ing elements for area-based methods are the indi-

vidual pixels over which the matching cost is

evaluated; pixel-to-pixel correspondence is evalu-

ated on image intensity function and similarity

statistics.

According to the taxonomy proposed by Schar-

stein and Szelinsky, the dense stereo matching
process can be divided into three tasks: matching

cost computation, aggregation of local evidence

and computation of disparity values (Scharstein

and Szeliski, 2002). Many dense stereo matching

methods have presented several different solutions

to one or more of these tasks. The most common

matching costs include squared intensity differences

(SD) and absolute intensity difference (AD) (Cox
et al., 1996; Scharstein and Szeliski, 2002).

The actual sequence of steps in the overall

matching procedure depends on the matching
algorithm and in particular, on its local or global

nature. Local, window-based algorithms, implic-

itly assuming smoothness, perform the aggregation

task by summing or averaging matching cost over a

support region. Some local algorithms, those
based on normalised cross-correlation (Chen and

Medioni, 1999) and rank methods (Zabih and

Woodfill, 1994) combine the first and second steps

directly computing cost on a support region. Glo-

bal algorithms make an explicit smoothness

assumption and directly solve an optimisation

problem usually formulated as an energy minimi-

sation, skipping the aggregation step and directly
computing disparity values (Scharstein and Szeli-

ski, 2002).

Local methods usually compute final disparity

adopting a local Winner Take All strategy which

selects the pair with the best matching cost under

assumption of uniqueness.

Generally speaking, area-based methods work

well especially when surfaces vary in smoothness
and images have an adequate visual texture. Seri-

ous difficulties may be encountered in regions with

low texture, periodic structures and depth discon-

tinuities. Occlusion is another crucial issue in

generating high-quality stereo maps. Many ap-

proaches ignore the effects of occlusion, whereas

others attempt to mitigate its effects in various

ways (Scharstein and Szeliski, 1996).
One of the principal factors influencing the suc-

cess of local area-based methods is the proper

selection of window shape and size. The windows

must be large enough to capture intensity variation

for reliable matching but small enough to avoid

the effects of projective distortions at the same

time. Appropriate window selection should im-

prove matching accuracy but requires an optim-
ised balance between the above opposite criteria.

Various approaches have tackled this problem

such as shiftable windows (Bobik and Intille,

1999), windows with adaptive size (Okutomi and

Kanade, 1992), windows using image segmenta-

tion (Zhang and Kambhamettu, 2002), windows

based on connected components (Boykov et al.,

1997) and windows based on disparity space (Szeli-
ski and Scharstein, 2002). The adaptive window

addresses the problem of finding the appropriate

window size typically enlarging/reducing the win-



Table 1

Solutions adopted by AZNCC

Matching cost Zero mean normalised

cross-correlation coefficient

Aggregation Rectangular adaptive window

Optimisation WTA
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dow size according to the examined area. The pro-

posed techniques share the use of explicit con-

straints and criteria influencing and varying the

dimension of the aggregation window contextually

within the image.
The present work investigates the potential of

neural adaptive learning (Pao, 1989; Rumelhart

et al., 1986) to solve the correspondence problem

within a two-frame adaptive area matching ap-

proach. A novel method is proposed based on

the use of the zero mean normalized cross-correla-

tion coefficient (ZNCC) (Gonzalez and Woods,

2002) integrated within a neural network model
which uses the least-mean-square delta rule for

training (Rumelhart et al., 1986). In this context,

the neural learning task can be formulated as the

search for the proper window shape and size for

each support region.

Two experiments were conducted for evaluating

the neural model proposed. The first aimed to pro-

duce dense disparity maps based on the analysis of
test images from Scharstein and Szelinski�s Test

Data Set (Scharstein and Szeliski, 2002). For this

purpose, our matching algorithm was structured

according to the taxonomy mentioned above and

integrated in the stand-alone C++ implementation

framework made available on the Web at www.

middlebury.edu/stereo. We followed the evalua-

tion methodology proposed by Scharstein and
Szelinski using test images which include data with

a ground truth disparity map and evaluating per-

formances based on suggested quality metrics.

The second experiment, conducted in the bio-

medical field, aimed to produce disparitymaps from

a varied set of scanning electron microscope (SEM)

stereoscopic image pairs. Application requirements

suggested reformulating the matching algorithm by
inserting a pre-processing stage based on the use of

Laplacian Pyramid filtering technique for the

extraction of points of interest in the reference im-

age from which to attempt the matching process

and produce a disparity map.
2. Neural adaptive image matching

Table 1 lists the solutions adopted by our adap-

tive neural model based on ZNCC (AZNCC) in
accordance with the taxonomy proposed by Schar-

stein and Szeliski (2002).

Several matching costs have been proposed var-

ying in performance and computational costs
(Sun, 2002). ZNCC was used in our model show-

ing useful properties such as (Gonzalez and

Woods, 2002):

• optimal signal-to-noise ratio estimation,

• insensitivity to image intensity variations, due

to normalisation with respect to mean and

standard deviation.

The overall proposed algorithm is local, actu-

ally combining matching cost and aggregation

steps which act on the support region.

Setting the appropriate window size is a critical

task; problems may arise both with small windows

that do not cover enough intensity variation in tex-

tureless areas and with large windows near dis-
continuities and occluded regions (Lotti and

Giraudon, 1994).

To overcome this problem adaptive techniques

were investigated. Okutomi and Kanade (1992)

proposed a refinement of an initial disparity map

by adapting the local window to local variation

of intensity and disparity. Lotti and Giraudon

(1994) proposed a direct method based on the
use of correlation windows with dimensions

constrained by an edge map extracted from the

image.

Adaptation criteria in both cases are statically

formulated in the light of some explicit assump-

tions. In this work we address the matching prob-

lem proposing an adaptive supervised correlation

model based on correlation coefficient measure,
able to learn the appropriate window shape and

size for each search in the target image from a

supervised set of examples, automatically ex-

tracted from the reference image.

http://www.middlebury.edu/stereo
http://www.middlebury.edu/stereo
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Fig. 1. Neural representation of correlation measure.
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Fig. 2. Function G(s, t), component of the activation function

obtained as difference of two sigmoid functions.
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2.1. Neural representation of correlation coefficient

for stereo matching

Let w(x,y) be a region (window) of the reference

image with dimensions JXK and f the matching
image. The correlation coefficient can be written

as follows:

cðx0; y0Þ ¼

Pa
s¼�a

Pb
t¼�b

½f ðx0 þ s; y0 þ tÞ � �f � � ½wðs; tÞ � �w�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPa
s¼�a

Pb
t¼�b

½f ðx0 þ s; y0 þ tÞ � �f �2
Pa
s¼�a

Pb
t¼�b

½wðs; tÞ � �w�2
s

ð1Þ
with J = 2a + 1 and K = 2b + 1.

It expresses the matching of window w within

the image f. Summations are taken where f and
w overlap. For one value (x0,y0) inside f, the appli-

cation of Eq. (1) yields one value of c. The window

w is centred in x0, y0; as x0, y0 are varied, w moves

around the image area consistently. �f is the aver-

age value of f in the region coincident with the cur-

rent location of w and �w is the average value of the

pixels in w.

The function c returns values ranging from �1
for situations in which window w and sub-image

f are not similar at all, to 1 for situations in which

they are identical. Eq. (1) can be rewritten in the

following form to fulfil the analytical requirements

imposed by our model:

cðx0; y0Þ ¼
½f ðx0 � a; y0 � bÞ � �f �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPa

s¼�a

Pb
t¼�b

½f ðx0 þ s; y0 þ tÞ � �f �2
s

	 ½wð�a;�bÞ � �w�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPa
s¼�a

Pb
s¼�b

½wðs; tÞ � �w�2
s þ � � � þ � � �

þ ½f ðx0 þ a; y0 þ bÞ � �f �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPa
s¼�a

Pb
t¼�b

½f ðx0 þ s; y0 þ tÞ � �f �2
s

	 ½wða; bÞ � �w�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPa
s¼�a

Pb
s¼�b

½wðs; tÞ � �w�2
s

¼
Xa

s¼�a

Xb

t¼�b

F ðx0 þ s; y0 þ tÞ � W ðs; tÞ ð2Þ
Proceeding from this formulation we represent

correlation within a neural structure as illustrated

in Fig. 1.

The neuron activation function C(x,y) is given

by the following formula:

Cðx0; y0Þ ¼
Xa

s¼�a

Xb

t¼�b

F ðx0 þ s; y0 þ tÞ � W ðs; tÞ � Gðs; tÞ

ð3Þ
where G(s,t) = G(s) ÆG(t) is the product of two

functions each obtained as the difference between

two sigmoid functions (Fig. 2).
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In the formula, exemplifying for one dimension

we have:

GðsÞ ¼ Lðs; a;�cxÞ � Lðs; a; cxÞ;

Lðs; a; cxÞ ¼
1

1þ e�aðs�cxÞ
ð4Þ

with a parameter which controls the shape of the

sigmoid function, cx is offset by the function L.

The neural model makes use of a Gaussian transfer

function T(x) having the following formula

T ðxÞ ¼ e
�ðx�dÞ2

2r2 ð5Þ

with d and r the centre and standard deviation,
respectively; d is assumed constant and equal to

1. The function T(x) maps values of the neuron

activation function in the 0–1 range. This function

was chosen to control the output of the neural

structure and to accelerate the convergence main-

taining significance with similarity correlation

measures; for r ! 0 the behaviour of the neuron

output increasingly becomes crisp in [0,1] range
(see Fig. 3).

2.2. Neural learning

The first goal of neural learning can be formu-

lated as the search for the most adequate correla-

tion window shape and size; it is achieved by

applying the delta rule training algorithm (Pao,
1989; Rumelhart et al., 1986; Bishop, 1995) to

parameters cx and cy in the function G(s, t) as

exemplified below:
2

2

2

)(

σ

dx

T (x) = e
−−

σ = 0.1

d=1
-1 0 1 2

0.5

1 T(x)

 

Fig. 3. Neuron transfer function T(x); d and r centre and

standard deviation, respectively; the function is exemplified for

d = 1 and r = 0.1.
cnewx ¼ coldx � g
oE
ocx

with
oE
ocx

¼ oE
oO

oO
oC

oC
ocx

oE
oO

¼ ðO� DÞ

oO
oC

¼ oT ðCÞ
oC

¼ T ðCÞ d � C
r2

oC
ocx

¼
X
s

X
t

F ðx0 þ s; y0 þ tÞ � W ðs; tÞ � oGðs; tÞ
ocx

� �
oGðs; tÞ
ocx

¼ oGðsÞ
ocx

GðtÞ

oGðsÞ
ocx

¼ a � ½Lðs; a;�cxÞ � ð1� Lðs; a;�cxÞÞ

þ Lðs; a; cxÞ � ð1� Lðs; a; cxÞÞ� ð6Þ

cnewy ¼ coldy � g
oE
ocy

with
oE
ocy

¼ oE
oO

oO
oC

oC
ocy

oC
ocy

¼
X
s

X
t

F ðx0 þ s; y0 þ tÞ � W ðs; tÞ � oGðs; tÞ
ocy

� �
oGðs; tÞ
ocy

¼ GðsÞ oGðtÞ
ocy

oGðtÞ
ocy

¼ a � ½Lðt; a;�cyÞ � ð1� Lðs; a;�cyÞÞ

þ Lðs; a; cyÞ � ð1� Lðs; a; cyÞÞ� ð7Þ

where D and O indicate the desired and obtained

outputs, respectively; cx and cy offset by the func-

tion L in x and y dimensions; E = 1/2(O � D)2 cri-

terion function representing the total squared

error between obtained and desired outputs.

The second learning goal consists in the search

for appropriate output function achieved by

applying the learning rule to r parameter in the
transfer function T(C), as exemplified below.

rnew ¼ rold � g
oE
or

with
oE
od

¼ oE
oO

oO
od

oE
oO

¼ ðO� DÞ

oO
or

¼ oT ðCÞ
or

¼ T ðCÞ ðC � dÞ2

r3

ð8Þ
2.3. Supervised training

The neural correlation model must be trained

with a supervised learning procedure before com-

puting the matching cost for each pixel. In general
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neural supervised learning is based on the presenta-

tion to the network of a set of training examples hav-

ing the structure [<features>; <expected value>].

In our context, the feature part of a given train-

ing example is the set of F(x,y) and W(s, t) values

(see formula (3) and Fig. 1 in Section 2.1); the ex-

pected value is the degree of correlation. Fig. 4

exemplifies the training set construction. Initially,
the template values are extracted positioning

W(x,y) on the reference image centered on the pixel

concerned pc. When F also is centered on pc the

training procedure associates an expected correla-

tion value equal to 1.0 (positive example). When

F is centered on pixels pi with i5 c, randomly se-

lected within a given training area in the reference

image, the training procedure associates a correla-
tion value equal to 0 (negative example). The train-

ing area is defined as the region, within the

reference image, positioned and dimensioned as

the search area in the matching image. To give

equal occurrence of positive and negative examples

in training, the overall training set is formed includ-

ing for each negative example the positive one.

The complete training set is employed by the
traditional delta rule algorithm to train the neural

correlation model. The underlying assumption of

this training strategy is that conditions for corre-
spondence, learned on the reference image, can

be successfully applied by the trained network

when acting on the matching image.

We base the termination of the learning process

on the following conditions (combined in AND):

• reaching the maximum number of epochs,

• reaching the minimum r value,
• reaching the minimum relative learning error;

the relative learning error is computed accord-

ing to the following formula

((mse_old � mse_current)/mse_old)

where mse_old is the mean squared error com-

puted by the network in a previous learning
cycle and mse_current the mean squared error

computed by the network in the current cycle.

Parameters were experimentally assessed; Sec-

tion 3.2 illustrates experiments aimed to find the

optimal setting of maximum number of epochs

parameter.

Suggested values for the other parameters are:

• minimum r value = 0.1,

• minimum relative learning error = 0.001.
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When trained, the correlation model is applied

to pixels of the matching image situated within

the search area to compute disparity values.
3. Experimental evaluation based on Scharstein and

Szeliski test dataset

The experiments illustrated in this section ad-

dressed the following questions:

• how did the adaptive neural model compare

with other correspondence matching appro-

aches? and

• how did the performance of the adaptive neural

model depend upon their main parameters?

The overall experimental activity was supported

by tools and test data available within the imple-
mentation framework proposed by Scharstein

and Szeliski (2002) in their paper and made avail-

able on the Web at www.middlebury.edu/stereo.

We included our stereo correspondence algo-

rithm in this framework, and applied it to the test

data available. Performances of the algorithm

were evaluated based on the available evaluation

module which allows comparison with other
implemented algorithms.

We selected as quality evaluation measure the

percentage of bad matching pixels expressed by

the following formula:

B ¼ 1

N

X
ðx;yÞ

jdCðx; yÞ � dTðx; yÞj > ddð Þ ð9Þ

where dC(x,y) is the computed disparity map,

dT(x,y) is the ground truth disparity map and dd
is a disparity error tolerance set to the suggested

value equal to 1.

This measure is intended computed over the

whole image and on three different kinds of re-

gions in the whole image:

• textureless regions: regions where the squared

horizontal intensity gradient averaged over a
square window of a given size (suggested value

3) is below a given threshold (suggested value 4.0);

• occluded regions: regions that are occluded in

the matching image;
• depth discontinuity regions: pixels whose neigh-

boring disparity differs by more than a given

threshold (suggested value 2.0), dilated by a

window of a given width (suggested value 9).

These regions are computed by pre-processing

reference images and ground truth disparity maps

yielding binary segmentation.

We have selected two data sets.

• the monochromatic ‘‘Map’’ constituted by a

pair of images and corresponding disparity

map,
• the ‘‘Sawtooth’’ constituted by a 9 frame stereo

sequence and corresponding disparity map.

In all our experiments, we used a stereo pair of

images as input even when more images were

available in the data set considered.

Readers interested in additional explanations

concerning the data sets, their segmentation and
the metrics used are referred to (Scharstein and

Szeliski, 2002).

Fig. 5 show the two reference images together

with the ground-truth disparities of the selected

data.
3.1. Matching cost

In this section we describe the experiment con-

ducted to evaluate the performances of the individ-

ual matching cost component of our algorithm

without considering adaptive learning solutions.

The evaluation was based on the monochromatic

Map image pair.

To this purpose the matching cost ZNCC was

implemented and integrated within the above men-
tioned implementation framework. To compare

performances of ZNCC with those of other stand-

ard matching costs, we implemented the correla-

tion-based matching cost NCC, and used the

available AD and SD standard matching cost.

All the matching costs were implemented within

a local algorithm with fixed aggregation window

and WTA optimization strategy.
Fig. 6 shows the results obtained aggregat-

ing the matching costs with 5 · 5, 9 · 9, 13 · 13

http://www.middlebury.edu/stereo


Fig. 5. Stereo images with ground truth used in this study: the monochromatic ‘‘Map’’ and the ‘‘Sawtooth’’ color image. The figure

shows the reference images and the ground truth disparities.
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windows (the aggregation with AD and SD is

named SAD and SSD, respectively). All the

matching costs considered show comparable per-

formances in the whole image and there is little

difference among them in specific regions. In more

detail, the performances of ZNCC are strongly

influenced by the window dimension in textureless
areas. A large window dimension can help for

ZNCC and SAD: when 9 · 9 and 13 · 13 win-

dows are used, they prevail on the other matching

costs. In occluded regions, the ZNCC shows the

best behavior independently from the window

dimension. SAD and SSD prevail on both ZNCC

and NCC correlation measures near disconti-

nuities.

3.2. Sensitivity analysis

In this experiment we attempted to demonstrate

how performances of the global adaptive algo-

rithm AZNCC depend upon two main parameters:

maximum number of epochs which controls the

number of iterative presentation of examples dur-
ing learning and maximum window size which lim-

its the automatic enlarging of the correlation

window.
Fig. 7 shows plots of the performances obtained

in occluded, non-occluded, textureless and discon-

tinuity regions of the data set Map and Sawtooth.

Plots are as function of maximum number of

epochs. Overall there are few differences varying

the parameter value. In discontinuity regions per-

formances slightly increase when the maximum
number of epochs decrease. Inversely, in texture-

less regions of Sawtooth image, performances de-

crease when the maximum number of epochs

decrease. In the other regions performances are

nearly constant.

It is important to note that a relatively small

number of epochs can be used to train the network

in this application; experiments were conducted
demonstrating that the increase in the number of

epochs over the value 80, implies a decrease of per-

formances due to overfitting conditions.

Fig. 8 shows plots of the performances of

AZNCC as a function of maximum window size

parameter for Map and Sawtooth images. Only

in regions with discontinuities of both the images,

does the AZNCC show performances influenced
by the maximum window size parameter which

varies from 31 to 9. In the other regions perform-

ances show few differences.



window  5x5 

0.0000

0.2000

0.4000

0.6000

0.8000

1.0000

ALL NON OCCL OCCL TEXTURED TEXTURELESS NEAR
DISCONTN

Pe
rc

en
ta

ge
 o

f b
ad

 p
ix

el
s 

(B
)

SAD
SSD
NCC
ZNCC

window 9x9

0.0000

0.2000

0.4000

0.6000

0.8000

1.0000

ALL NON OCCL OCCL TEXTURED TEXTURELESS NEAR
DISCONTN

Pe
rc

en
ta

ge
 o

f b
ad

 p
ix

el
s 

(B
) SAD

SSD
NCC
ZNCC

window 13x13 

0.0000

0.2000

0.4000

0.6000

0.8000

1.0000

ALL NON OCCL OCCL TEXTURED TEXTURELESS NEAR
DISCONTN

Pe
rc

en
ta

ge
 o

f b
ad

 p
ix

el
s 

(B
) SAD

SSD
NCC
ZNCC

Occluded pixels

0.9000

0.9200

0.9400

0.9600

0.9800

1.0000

SAD SSD NCC ZNCC

Pe
rc

en
ta

ge
 o

f b
ad

 p
ix

el
s 

(B
)

5x5
9x9

13x13

Textureless

0.0000

0.0700

0.1400

0.2100

0.2800

0.3500

SAD SSD NCC ZNCC

Pe
rc

en
ta

ge
 o

f b
ad

 p
ix

el
s 

(B
)

5x5
9x9

13x13

Fig. 6. Performances of different matching costs aggregated with 5 · 5, 9 · 9 and 13 · 13 window and applied on MAP image.

MAP

0

20

40

60

80

100

num ephocs max

P
er

ce
n

ta
g

e 
o

f 
b

ad
 p

ix
el

s 
(B

)

non occlusion

textureless

discontinuities

occlusion

non occlusion 3.38 3.35 3.15 2.92

textureless 3.57 3.57 3.57 3.57

discontinuities 28.08 27.74 26.38 24.12

occlusion 93.88 93.81 93.71 93.42

80 40 15 5

Sawtooth

0

20

40

60

80

100

num ephocs max

P
er

ce
n

ta
g

e 
o

f 
b

ad
 p

ix
el

s 
(B

)

non occlusion

textureless

discontinuities

occlusion

non occlusion 6.26 6.19 6.02 6.07

textureless 7.88 8.01 8.48 9.22

discontinuities 33.54 33.17 31.55 30.56

occlusion 93.75 93.94 93.51 93.37

80 40 15 5

Fig. 7. Plots of the performances of AZNCC as a function of maximum number of epochs.
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3.3. Adaptive correlation versus fixed window

correlation

This experiment was aimed to identify and eval-

uate the contribute of neural adaptive learning in

the global matching algorithm. To this purpose

we compared AZNCC with a local fixed window

algorithm which uses the same matching cost,

ZNCC and the same optimisation strategy based

on WTA. The evaluation was based on a mono-
chromatic MAP pair of images.

AZNCC was used selecting the best parameter

values, determined by the experiments described

in the section above:

maximum number of epochs = 10,

maximum window size = 11.

The local fixed window algorithm aggregated

with 5 · 5, 10 · 10 and 13 · 13 window.

Fig. 9 shows the disparity map and the perform-

ances obtained. In all the regions considered, with

the exception of regions with discontinuity, the

adaptive algorithm shows performances compara-

ble with those obtained by the best fixed window

algorithm. In regions with discontinuities, the fixed
window algorithm with window dimension 5 · 5

slightly prevails.

To evaluate the computational burden of the

adaptive algorithm, we evaluated the CPU time

on a Windows platform with a 300MHz proces-

sor, and 384Mb RAM. The training phase for
all the pixels in the image took about 97.511s.

The whole procedure including optimisation took
410.42s.

This can be considered an acceptable perform-

ance; a small number of epochs is sufficient in

the learning stage for training the network.

3.4. Overall comparison

We compared the results of our neural model
with results provided by Scharstein and Szeliski

(2002) in their paper. The authors developed an

overall comparison analysis of different stereo

methods using the data sets available on the web

site. Among the algorithms considered, we have se-

lected the following six (three among those with

better performances and three among those with

worse performances):

• SSD—21 · 21 shiftable window SSD;

• Max-flow/min-cut algorithm (one of the first

method to formulate matching as a graph flow

problem);

• Genetic algorithm (a global optimisation tech-

nique operating on quadtrees);

• Fast correlation algorithm (an efficient imple-
mentation of correlation based matching with

consistency and uniqueness validation);

• Discontinuity-preserving regularisation (amulti-

view technique for virtual view generation);

• Maximum surface technique (a fast stereo algo-

rithm using rectangular subregions).



Fig. 9. Disparity map and plots of performances obtained by AZNCC and local algorithms implementing the matching cost ZNCC

and 5 · 5, 10 · 10 and 13 · 13 aggregation windows.
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Readers interested in additional explanations

concerning the algorithms considered and their

parameter settings, are referred to (Scharstein

and Szeliski, 2002).

Table 2 lists the performances obtained for the

Map image in non-occluded and discontinuity
regions.

Table 2––comparative performances of stereo

algorithms. The algorithms are listed roughly in

decreasing order of overall performance. The met-

rics used in the comparison is that proposed by

Scharstein and Szelisky for the Map image.

For all the algorithms considered, a complete

analysis of the comparison results involves an in-
depth investigation of factors influencing perform-

ances such as parameter setting, capability of the

individual algorithm components in relation to

stereo image characteristics. This is beyond the
Table 2

Comparative performances of stereo algorithms

B measurements

in non-occluded

measures

B measurements

in discontinuity

regions

SSD 0.66 9.35

Genetic 1.04 10.91

Max flow 3.13 15.98

AZNCC 2.45 21.08

Discont-preserving 2.36 33.01

Fast correlation 8.42 12.68

Max surf. 4.17 27.88
scope of the present work. We conclude that our
approach shows competitive performances, but

improvements are required to exploit the potential

of the solutions adopted. The neural adaptive

model processes textureless, occluded and discon-

tinuity regions with different performances. In par-

ticular, the combined use of ZNCC and adaptive

window size reduction yields satisfactory results

when dealing with textureless areas, as shown in
Figs. 6 and 9. On the contrary, solutions for occlu-

sion and discontinuity are ineffective as confirmed

by the experimental findings shown in Table 2.
4. 3D surface reconstruction from SEM images

The proposed image matching strategy was ap-
plied to stereoscopic SEM image analysis for 3D

automatic surface reconstruction.

4.1. Imaging geometry

A SEM generates an image by a finely focused

electron beam, sequentially raster-scanned across

the specimen by conventional electromagnetic
coils. The interaction of the electron beam with

the specimen surface originates a wide range of sig-

nals (secondary electrons, back-scattered electrons,

Auger electrons, X-rays, etc.), reflecting different

features of the specimen, which are individually

collected by dedicated sensors. An image of the
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specimen is then reconstructed on a separated cath-

ode-ray screen in synchronism with the scanning

beam. As is evident, the optical system of the

SEM is far simpler in principle than that of an opti-

cal microscope, since lenses and apertures are only
used in the generation and focusing of the electron

beam while the signal emerging from the specimen

is just collected, with no further processing.

The image geometry, which is therefore entirely

determined by the focusing and scanning parame-

ters, is a central (perspective) projection where the

specimen is imaged as seen from a nodal point of

the electro-optical system corresponding to the
centre of the final diaphragm. The projection length

is defined as the distance between this point and

the specimen surface. Different magnifications are

obtained by just varying the scan width, whilst

the projection length is usually kept constant. At

adequately high magnifications, the scan width be-

comes negligible with respect to the projection

length, and the imaging geometry can be reasona-
bly approximated to a parallel (orthoscopic)

projection.

In the Philips XL-30 FEG SEM used in the pre-

sent study the specimen was mounted on a motor-

ized micrometric X–Y–Z stage. It can be freely

rotated around the optical axis of the system and

manually tilted around an orthogonal axis, corre-

sponding to the X axis of the image (the ‘‘fast’’
scanning axis). The tilt angle can be directly read

on a large, analog readout.

The electron beam is a coherent beam generated

by a Schottky field-effect electron source; the scan

coils are driven by computer-controlled and linea-

rized DACs, and the projection length between the

nodal point and the specimen surface, also called

working distance, can be determined with a typical
accuracy of 1%.

4.2. Materials used and application-specific

assumptions

The present study was explicitly aimed at the

reconstruction of surfaces, rather than volumes.

The technical approach used is indeed appropriate
for the reconstruction of height maps, while differ-

ent, tomographic techniques would be required for

true 3D reconstruction.
All specimens were imaged from a working dis-

tance of 10.0mm, which is the distance for which

the electro-optical system is optimized, while the

tilt angle was kept at 5 degrees to limit the recipro-

cal occlusion of tall structures protruding from the
specimen surface.

All pictures were digitally acquired on-board

either as 720 · 484 or 1440 · 968 pixel TIFF files.

The only constraints hard-wired in the procedure

were that all images were expected to be 8bpp

grayscale, and that the tilt axis had to be parallel

to the X axis and to intercept the Y axis at mid-

height of the image.
4.3. Extracting points of interest

For this application, an important phase pre-

liminary to the image matching procedure con-

sisted in the search for points of interest within

the reference image, from which to attempt the

matching process. First of all the Laplacian Pyra-
mid filtering technique (Burt and Adelson, 1983)

was applied to the reference image; it enhanced

salient image points by subtracting a sampled

low-pass filtered copy of the image from the image

itself. The filtered image was then partitioned uni-

formly in windows of a given dimension (suggested

window dimension 7 · 7) and pixels corresponding

to local maxima within each window were selected
as points of interest.
4.4. Application results

The adaptive model was tested on several im-

age pairs, mostly taken––at different magnifica-

tions––from specimens of animal extracellular

matrix: fragments of human aortic wall and co-
lon, and of the ciliary body of the eye. For these

samples, the reconstruction process was evalu-

ated qualitatively by experts. It was plainly ob-

tained by visual comparison with the original

specimen.

The results obtained are shown in Figs. 10–12

where the source image, the digital elevation model

and the 3D surface reconstruction based on Delau-
nay triangulation technique, are illustrated for

each case.



Fig. 11. Fragment of human colon wall: (a) source image, (b) digital elevation model, and (c) 3D surface reconstruction.

Fig. 10. Fragment of human aortic wall: (a) source image, (b) digital elevation model, and (c) 3D surface reconstruction.
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To compare the accuracy of the proposed image

matching procedure when dealing with SEM ima-
gery, specific preparations of inorganic crystals

(NaCl) were imaged (see Fig. 13a). The regular
and known structure of the image patterns facili-

tates the qualitative evaluation of results.
We proceeded in the image matching task by

applying the adaptive correlation model to search



Fig. 12. Fragment of ciliary body of the eye: (a) source image, (b) digital elevation model, and (c) 3D surface reconstruction.

Fig. 13. (a) Reference and target images of specific preparations of inorganic crystals (NaCl). (b) Surface reconstructions obtained

with conventional correlation coefficient and adaptive neural correlation model.

1756 E. Binaghi et al. / Pattern Recognition Letters 25 (2004) 1743–1758
for corresponding points. Results were compared

with those obtained with a conventional correla-
tion coefficient operator which makes use of a

fixed 9 · 9 correlation window. The window
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dimension in the conventional procedure was se-

lected optimising the performances during a trial

and error procedure.

The results shown in Fig. 13b confirm that the

adaptive method performs better.
5. Conclusions

Our objective in this study was to investigate

the potentialities of neural learning in the field of

stereo matching. A new approach based on the

use of cross-correlation and neural techniques
adapting local windows in shape and size, has been

illustrated and experimentally evaluated.

Firstly the strategy was tested on standard data

sets available on the Web. As seen in this experi-

mental context the individual components of the

matching algorithm positively contribute to solv-

ing the global matching problem and the allied

use of correlation and adaptive techniques benefits
the matching in general. However, global compar-

ative evaluation highlighted some limitations. Bet-

ter performances, in fact, were obtained by other

methods both in non-occluded and discontinuity

regions.

Satisfactory results were obtained in the second

experimental evaluation aimed to reconstruct 3D

surfaces from SEM stereo image pairs.
Overall the computational complexity implied

by the neural learning stage was limited by the

low number of epochs required for training.

At present, in the light of the results obtained

in both the experimental contexts, we may con-

firm that neural learning has good potential in

the field of stereo matching. We consider this

study preliminary to further investigation involv-
ing both methodological and experimental is-

sues. For example, the present solution can

easily be reinforced implementing a varied set

of matching costs within the neural structure

and selecting the best solution for each case

and providing specifying solutions for disconti-

nuity such as adaptive variation of window

shape and size based on edge detection meas-
ures. Further experiments are planned to sub-

stantiate these new ideas.
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