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We study the elliptically polarized states in the spin-flip model for vertical-cavity-surface-emitting lasers.
The stability analysis reveals some unexpected features. In correspondence with particular values of the
birefringence parameter, which are shown to scale very simply with the ratio of the spin-flip rate to the
linewidth enhancement factor, the stability domain can be quite large. Moreover, in some cases two different
dynamical regimes can arise from the destabilization of the elliptically polarized states, and they can coexist in
a finite interval of the pump parameter. Finally, we show that the bifurcation from the lower frequency linearly
polarized state to the elliptically polarized states can be subcritical when the linewidth enhancement factor is
roughly smaller than 1.
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I. INTRODUCTION

In the study of laser dynamics the electric field is usually
treated as a scalar, in the sense that it is assumed to be al-
ways polarized along some fixed direction, and that the me-
dium also responds in that direction. Yet, the limited validity
of that assumption in some particular cases became clear
since the early 1960s, when the first He-Ne lasers displaying
simultaneous oscillations of two orthogonally polarized
modes appeared[1]. One of the first laser models where the
vectorial nature of the electric field is taken into account is
the so-called Zeeman laser[2]. Much more recently, the in-
terest in vector lasers was renewed by the progress made
especially with class-B lasers[3].

VCSELs (vertical-cavity-surface-emitting lasers) are an
example of class-B lasers whose dynamics can be described
adequately only using a vector model, because the two or-
thogonally polarized modes have almost equal gains. Polar-
ization switching(PS) is commonly observed in VCSELs as
one parameter, usually the injected current, is varied[4]. The
frequencies of the two orthogonally polarized modes are split
by birefringence. The switching from the high- to the low-
frequency mode is usually referred to as type I switching,
and the opposite one as type II.

In the literature these phenomena have been attributed to
two completely different mechanisms. In an earlier interpre-

tation, polarization switching is explained in terms of the
modification of gain with increasing current due, for in-
stance, to ohmic heating[5]. A different approach, the spin-
flip model (SFM), describes polarization switching as dy-
namical instabilities arising in a set of complex rate
equations, where an essential role is played by the linewidth
enhancement factor and the spin-flip rate[6].

A relevant difference between the two theoretical models
is the following: SFM can account for both type I and type II
switching, while only type I switching can be easily ex-
plained as an effect of the gain redshift with respect to the
cavity modes due to carrier heating. Only if the photon en-
ergy dependence of cavity losses is included in the thermal
model, type II switching can also appear, but it is always
preceded by a type I switching[7].

Moreover, according to SFM, in type II switching the
low-frequency polarized mode loses its stability with respect
to the high-frequency mode when the frequencies of the two
modes, split by birefringence in the cold cavity, lock due to
nonlinear interactions with the semiconductor material. Un-
der these conditions, the two-mode state which arises from
the instability of the low-frequency mode is phase locked,
which means that the laser emits elliptically polarized light.
Increasing the injected current, the elliptically polarized state
destabilizes and the VCSEL emits unpolarized light until it
switches to the high-frequency mode. Thus, in SFM the el-
liptical polarized state plays an important role, in that it me-
diates the transition between the two orthogonally polarized
states in type II switching.

That kind of switching has been recently demonstrated
and carefully investigated[8,9]. The reported results look in
agreement with SFM, but a complete comparison with the
model requires, for what we said before, an accurate analysis
of the properties of the elliptically polarized state in SFM,
which is the aim of our paper.

To our knowledge the stability of the elliptically polarized
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state in the framework of the complete SFM has been studied
only in a very limited number of cases, and mainly numeri-
cally [10,11]. A completely analytical study was performed
within a two-equations model derived from SFM with
asymptotic methods[12]. But one of the assumptions needed
to derive that reduced model is that the birefringence param-
eter must be of the same order of magnitude as the recom-
bination rate of carriers. Instead, as we will show in the
following, the most interesting phenomena associated with
the elliptically polarized state occur when the birefringence
parameter is of the same order as the spin-flip rate, which is
usually at least one order of magnitude larger than the re-
combination rate of carriers. Hence, there is no superposition
between our results and those of Ref.[12].

In Sec. II we introduce the model equations and write the
stationary equations for the elliptically polarized state. In
Sec. III we present the results of the linear stability analysis
of that state. The conditions under which the transition from
the low-frequency linearly polarized state to the elliptically
polarized state is subcritical, leading to bistability, are stud-
ied in Sec. IV, where the effects of noise in such a situation
are also considered. Section V is devoted to the comments of
the main results and the concluding remarks.

II. MODEL AND ELLIPTICALLY POLARIZED SOLUTION

According to the spin-flip model[6], the dynamical equa-
tions for the two circularly polarized components of the elec-
tric field F±, for the total carrier densityN and for the differ-
ence densityn of carriers with opposite spin are

Ḟ± = ks1 + iadsN ± n − 1dF± − sga + igpdF7, s1d

Ṅ = m − Ns1 + uF+u2 + uF−u2d − nsuF+u2 − uF−u2d, s2d

ṅ = − nsgs + uF+u2 + uF−u2d − NsuF+u2 − uF−u2d. s3d

In these equations all variables are adimensional, and time
has been scaled to the carrier lifetime,k is the decay rate of
photons in the cavity,gs is the spin-flip rate,a is the line-
width enhancement factor,m is the pump parameter,ga and
gp are the linear anisotropy parameters, which describe, re-
spectively, dichroism and birefringence.

We assume that linear anisotropies are aligned. As soon as
this assumption is removed, it was shown in Ref.[13] that
the orthogonal linearly polarized states are no longer solu-
tions of SFM, and they are replaced by orthogonal ellipti-
cally polarized states, which reduce to the linearly polarized
ones only whenugpu@ ugau. A similar competition between
orthogonal elliptically polarized states was found in Nd-
doped fibre lasers[14]. Here we neglect these effects. The
only possible stationary states of the VCSEL in our case are
the two orthogonal linearly polarized states and the elliptical
polarized states which arise from a stationary instability of
the low-frequency linearly polarized state.

We remark also that, unlike in the models used for
neodymium-doped fibre lasers[15] and Nd:YAG (YAG,
yttrium aluminum garnet) lasers[16], in SFM stable two-
mode solutions, with the two orthogonal linearly polarized

modes oscillating simultaneous at different frequencies, were
never found. However, noise can sustain two-frequency
emission in a VCSEL close to threshold and with small gain
anisotropy[17].

We look for stationary solutions of the formF±

=Q±,s expfisvt±csdg, N=1+N̄s, n=ns, where Q±,s, cs, N̄s,
andns are independent of time, andv is the frequency offset
with respect to the reference frequency, which is the laser
frequency in absence of any anisotropies. The linearly polar-
ized solutions are well known, since they have been studied
in detail in several previous works. We only remind that for
these solutions

I = 2Q±,s
2 =

m

mth
− 1, N̄s = mth − 1, ns = 0, s4d

where I is the stationary intensity, and thex-polarized and
y-polarized solutions are characterized by the following
thresholds, frequencies, and relative phases

mth,x = 1 +
ga

k
, vx = − gp + aga, cs,x = 0, s5d

mth,y = 1 −
ga

k
, vy = gp − aga, cs,y = p/2. s6d

Choosing for definitenessgp positive, the above equations
show that thex-polarized solution is the one oscillating at the
lower frequencysthe conditionaugau,gp is usually veri-
fiedd, and it has the lowershigherd lasing threshold for
ga,0sga.0d.

The analysis of the elliptically polarized solution is a
much more difficult task. In the framework of the complete
SFM it has been performed previously only in the limitga
=0 [10,11,18]. The inclusion of dichroism makes the calcu-
lation very involved. We found it convenient to proceed as
follows, although we cannot exclude that more convenient
strategies exist. From the stationary equations for the carrier
densities

m = sN̄s + 1ds1 + Q+,s
2 + Q−,s

2 d + nssQ+,s
2 − Q−,s

2 d, s7d

0 = sN̄s + 1dsQ+,s
2 − Q−,s

2 d + nssgs + Q+,s
2 + Q−,s

2 d, s8d

it is easy to obtain the stationary intensitiesQ±,s
2 in terms of

the stationary densitiesN̄s andns,

Q±,s
2 =

m − N̄s − 1 7 gsns

2sN̄s + 1 ± nsd
. s9d

The stationary equations for the fieldsF± can be written as

e7i2cs =
fks1 + iadsN̄s ± nsd − ivg

ga + igp

Q±,s

Q7,s
. s10d

Multiplying side by side the above two equations we elimi-
nateQ±,s andcs, and obtain a complex equation containing

only N̄s, ns, andv. Setting separately equal to zero the real
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and imaginary parts of this equation we get an expression for
the oscillation frequency

vel =
k2asN̄s

2 − ns
2d − gagp

kN̄s

s11d

and an auxiliary equation, biquadratic in bothN̄s andns,

a2k4ns
4 + k2fk2N̄s

2s1 − a2d + 2agagpgns
2 − k4N̄s

4 + k2N̄s
2sga

2

− gp
2d + ga

2gp
2 = 0, s12d

which will be used later. From Eq.s10d two couples of ex-
pressions for coss2csd and sins2csd can also be obtained,
which read, taking into account Eq.s11d,

coss2csd =
Q±,s

Q7,s

k2sns ± N̄sdsgpnsa ± gaN̄sd + gagp
2

kN̄ssga
2 + gp

2d
,

s13d

sins2csd =
Q±,s

Q7,s

k2sns ± N̄sdsgpN̄s 7 gansad 7 ga
2gp

kN̄ssga
2 + gp

2d
.

s14d

Of course these expressions are only apparently different,
since they refer to the same stationary state. Imposing that
the two expressions for coss2csd coincide and taking into
account Eq.s9d, we obtain an equation forns

2 in terms of

only N̄s and of the system parameters

ns
2 =

N̄ssN̄s + 1dsN̄s + 1 −mdagp + gaAsN̄sd

gagsN̄s + agpsN̄s + 1 −m − gsd
, s15d

AsN̄sd ; N̄s
3gs + N̄s

2s1 + gsd + N̄sfsgs − 1dgp
2/k2 − sm − 1dg

+ sm + gs − 1dgp
2/k2. s16d

Finally, we may insert this equation into Eq.s12d to obtain a

direct connection betweenm and N̄s. We obtain a quadratic
equation inm, which gives only one physical solutionsthe
unphysical one simply gives values ofm below lasing thresh-
oldd. In this way, for a given set of parametersk, a, gs, gp,
andga the elliptically polarized solutions as a function of the

pump parameterm can be constructed usingN̄s as a param-
eter. The following relations betweenQ±,s and the intensities
Ix and Iy of the linearly polarized components of the field

Ix,y = 1
2fQ+

2 + Q−
2 ± 2Q+Q− coss2cdg, s17d

where the upperslowerd sign holds for thex-polarized
sy-polarizedd solution, can be used to plotIx and Iy as a
function of m.

It is known that the elliptically polarized solution in the
SFM model bifurcates from thex-polarized one. Therefore,

the lower value ofN̄s for which the elliptically polarized
solution can be found is that associated with thex-polarized

solution,N̄s=ga/k. For this particularN̄s, the physical solu-
tion of the quadratic equation form coincides with the sta-
bility threshold of thex-polarized solution,

mx,s = mth,xF1 +
gssgp

2 + ga
2d

ska − gpdgp + sk + agpdga
G . s18d

The elliptically polarized solution begins to exist where the
x-polarized solution ceases to be stable. In the following sec-
tion we will investigate under which conditions the ellipti-
cally polarized solution is stable.

III. LINEAR STABILITY ANALYSIS OF THE
ELLIPTICALLY POLARIZED STATE

The analysis of the stationary properties of the elliptically
polarized state performed in the preceding section suggests
that to study the stability of such a solution it is convenient
to introduce, in place of the complex variablesF±, the real
variablesQ±, x, andc defined by

F± = Q±eisx±cd. s19d

The quantitiesQ± and 2c have the same meaning of real
amplitudes and relative phase as the corresponding stationary
quantities already encountered in the analysis of the station-
ary state; 2x is the phase sum, and the derivative with respect
to time of x represents thesinstantaneousd oscillation fre-
quency with respect to the reference frequency. The impor-
tant point is that the equation forx is decoupled from the
others, so we can limit our attention to the set of five equa-
tions:

Q̇+ = ksN + n − 1dQ+ − fga coss2cd + gp sins2cdgQ−,

s20d

Q̇− = ksN − n − 1dQ− − fga coss2cd − gp sins2cdgQ+,

s21d

ċ = kan +
ga

2
sins2cdSQ+

Q−
+

Q−

Q+
D +

gp

2
coss2cdSQ+

Q−
−

Q−

Q+
D ,

s22d

Ṅ = m − Ns1 + Q+
2 + Q−

2d − nsQ+
2 − Q−

2d, s23d

ṅ = − nsgs + Q+
2 + Q−

2d − NsQ+
2 − Q−

2d. s24d

However, the stability analysis remains a difficult task, be-
cause, unlike for the linear polarized states, here the set of
equations obtained by linearizing Eqs.s20d–s24d around the
stationary state are all coupled. Thus, the characteristic equa-
tion is a fifth degree equation of the form

a5l5 + a4l4 + a3l3 + a2l2 + a1l + a0 = 0, s25d

where, apart froma5=1, the coefficientsai have extremely
involved expressions, which we do not report here. Since we
know that the instability of the elliptically polarized solution
always gives rise to a dynamical regime, we focus on the
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condition for a Hopf instability which is, according to the
Routh-Hurwitz criterionf19g,

sa1a2 − a0a3dsa3a4 − a2a5d − sa0a5 − a1a4d2 , 0. s26d

The numerical study of this condition allowed us to obtain,
for every value of the system parameters, the pump threshold
mel above which the elliptically polarized state becomes
unstable. We fixedk=600, a=3, andgs=100.

As for the amplitude anisotropy parameterga, we con-
sider two possible mechanisms that can contribute to it. First,
the material strain, which we assume to be constant, neglect-
ing a possible dependence on the injected current and then
on the pump parameterm. Second, following the analysis
developed in Ref.[20], we introduce inga a term propor-
tional to the birefringencegp, which simulates the spectral
dependence of gain, namely, the fact that the orthogonally
polarized modes, being separated in frequency by an amount
which is essentially 2gp, experience different gain. If the
frequencies of the two modes lie to the left of the gain peak,
the higher frequency statesyd will have larger gain, hence the
contribution toga is positive. In the opposite situation, the
lower frequency statesxd has the larger gain, and the contri-
bution to ga is negative. According to the above discussion
we write ga as

ga = ga,0 + hgp, s27d

wherega,0 is the term related to dichroism and the propor-
tionality coefficient h is essentially the derivative of gain
with respect to frequency. In our simulations we setga,0
=0.1, h=0.01 when ga is positive and ga,0=−0.1, h
=−0.01 whenga is negative, withgp always positive. The
situation in which the two contributions have different
signs has not been considered.

In Fig. 1 the thresholdmel for the elliptically polarized
solution is plotted together with the instability thresholds of
the linearly polarized solutions that we denote asmx,s, mx,H,
andmy,H. We distinguish between negativega [Fig. 1(a)] and
positivega [Fig. 1(b)], because the instability thresholdsmx,H
andmy,H strongly depend on the sign ofga. Instead,mel and
mx,s, are almost independent of it. The thresholds for the
linearly polarized solutions are known from previous studies
of the SFM. The expression formx,s is given by Eq.(18); the
other two thresholds have longer expressions that we do not
report here. The main difference of Fig. 1 with respect to
similar stability diagrams of SFM presented in several pre-
vious works is that the exact stability domain of the ellipti-
cally polarized solution is also shown. We will discuss later
the properties of that stability domain. Before, we briefly
resume the results about the stability of the linearly polarized
solutions.

For negativega [Fig. 1(a)], the x-polarized solution is
stable below the curvemx,s, and they-polarized solution is
stable to the left of the curvemy,H, which tends asymptoti-
cally to the vertical linegp=Gc, where the critical birefrin-
genceGc is defined as

Gc =
gs

2a
. s28d

For positivega fFig. 1sbdg, the x-polarized solution also ex-
periences a Hopf instability close to threshold, and it is stable
in the region between the curvesmx,H and mx,s; the
y-polarized solution is stable to the left of the curvemy,H,
which has a C shape, extending fromgp.Gc to the right.
Actually, for reasonable values of the pump parameterm,
only the lower branch of the C is visible. The upper branch
can be seen for small values ofm only when gain saturation
is consideredf20g.

Figures 1(a) and 1(b) allow to describe all the possible
polarization switchings that may occur in the framework of
SFM, and the role of the elliptically polarized state in these
processes.

For negativega [Fig. 1(a)], at threshold the laser emits
x-polarized light, because they-polarized state is Hopf un-
stable. As the pumpm is increased, the laser switches to the
elliptically polarized state atm=mx,s and to a dynamical state
at m=mel. At this point, if gp,Gc, for a certain value ofm
that cannot be predicted by the stability analysis, the laser

FIG. 1. Complete stability diagram for the linearly and ellipti-
cally polarized stationary solutions of SFM. The fixed parameters
arek=600,gs=100, anda=3. ga is negative in(a) and positive in
(b), and it depends ongp according to Eq.(27). The meaning of the
instability thresholdsmel, mx,s, mx,H, andmy,H and of the particular
birefringence valuesGc, G1, G2, andG3 is explained in the text.
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will abandon the dynamical state and precipitate on the
stabley-polarized solution, completing the PS II(from the
lower to the higher frequency state). In contrast, forgp.Gc,
the laser will remain on the dynamical state for anym.mel.

For positive ga.0 [Fig. 1(b)], the x-polarized state is
Hopf unstable close to the lasing threshold, and the first
emitted mode is always they-polarized one. Ifgp,Gc the
laser will remain always in they-polarized state increasing
the pumpm from the lasing threshold. Ifgp.Gc a PS I
switching to thex-polarized state(from the higher to the
lower frequency state) occurs atm=my,H. Then, the laser
switches to the elliptically polarized solution atm=mx,s and
finally it enters the dynamical regime atm=mel and it re-
mains there for anym.

The transition to the elliptically polarized state is associ-
ated with a PS II when the two conditionsga,0 andgp,Gc
hold. The transition is not followed by a PS II, and it is
preceded by a PS I switching, forga.0 andgp.Gc.

Let us analyze now the stability domain of the elliptically
polarized solution, which displays some unexpected features.

First, the instability thresholdmel always presents a maxi-
mum at a characteristic value of the birefringenceG1, smaller
than Gc. Around this point the size of the stable domain
sharply increases.

Second, the stability domain displays anS-shaped region,
between the birefringence valuesG2 andG3. The existence of
this region implies that forG2,gp,G3, as the pumpm in-
creases, the laser crosses three stability boundariesmel,i, i
=1,2,3. Inother words, in this region there are two disjoint
stability domains for the elliptically polarized solution
mx,s,m,mel,1 andmel,2,m,mel,3.

Since these domains are always placed to the right ofGc,
i.e., in a region where, abovemx,s, both linearly polarized
solutions are unstable, as soon as the first stability boundary
mel,1 is crossed in a forward sweep of the pump parameterm
[Fig. 2(a)], the laser enters a dynamical regime, and it re-
mains there even whenm is further increased and the upper
stability domain is reached.

But our numerical study of the dynamical equations
(1)–(3) revealed an interesting feature: for a certain value
m̄.mel,3 of the pump, the laser switches to a new dynamical
regime, characterized by oscillations with different fre-
quency and amplitudes. For the chosen parameters, the tran-
sition occurs at aboutm̄=6.8, and this value represents a true
deterministic threshold, in that it is independent from the
initial seed of the noise generator.

If now the pump is decreased in a backward sweep[Fig.
2(b)], we observe that, unlike in the forward sweep, the up-
per stability domain of the elliptically polarized solution be-
comes accessible, and stable elliptically polarized light is
emitted between the pump valuesmel,2 andmel,3. Only below
mel,2 the same behavior as in the forward sweep is found. But
this hysteretic behavior is not observed, and the backward
sweep is always identical to the forward one, if the backward
sweep of the pump parameterm begins when the laser is still
in the first dynamical state, i.e., belowm̄.

We can conclude that, among the three Hopf bifurcations
of the elliptically polarized state that exist forG2,gp,G3,
two (mel,1 and mel,3) are supercritical, while the other one
smel,2d is subcritical. The two observed dynamical states are

associated with the two supercritical Hopf bifurcations and
they coexist in a finite interval of values betweenmel,3 andm̄.
Instead, betweenmel,2 and mel,3, i.e., in the upper stability
domain, bistability between the elliptically polarized state
and the first dynamical regime is observed.

Another rather trivial consequence of theS-shaped stabil-
ity domain is that, in a forward sweep of the pump parameter
m, the size of the stability domain for the elliptically polar-
ized solution sharply varies in correspondence withG3, being
much larger to the right of this birefringence value.

A better estimate of the relative importance of the ellipti-
cally polarized states in a VCSEL can be provided by the
quantity

r =
mel − mx,s

mx,s − mth,x
, s29d

which measures the relative size of the stability domains of
the elliptically polarized state to thex-polarized state. We
plot in Fig. 3 this quantity for the same parameters as in Fig.

FIG. 2. Behavior of the intensity of thex-polarized(solid line)
andy-polarized(dashed line) emitted light during a forward(a) and
backward(b) scan of the pump parameterm. The parameters are the
same as in Fig. 1(b), with gp=60. The pump parameterm is adia-
batically varied at a rate of one unit every 0.1 ms. The meaning of
the particular valuesmx,s, mel,1, mel,1, mel,1, and m̄ of the pump
parameterm is explained in the text.
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1. This figure shows that the ratior reaches comparable val-
ues in correspondence with the two critical parametersG1
andG2. In these points the size of the stability domain of the
elliptically polarized state could be as large as 30% to 50%
of the stability domain of thex-polarized state, while there
is a large region betweenGc andG2 where it is only a few
percent.

Our calculations showed that the shape of the stability
domain of the elliptically polarized solution depends strongly
on the spin-flip rategs. In Fig. 4 we considerga=0 and
compare the curves forr obtained with gs=50,100,150.
Clearly the critical valuesG1, G2, andG3 increase asgs in-
creases. In particular, we checked, using also other values for
a, that G1 andG2 are approximated very well by the simple
equations

G1 .
gs

4a
=

Gc

2
, s30d

G2 .
3gs

2a
= 3Gc. s31d

The ratiogs/a, which contains the main ingredients of SFM,
i.e., spin flip and saturable dispersion, reveals in this way its

ubiquitous character in SFM. It determines not only the po-
sition of the Hopf instability domain for they-polarized so-
lution, as seen previously, but also the shape of the stability
domain for the elliptically polarized solution.

IV. SUBCRITICAL BIFURCATION TO THE
ELLIPTICALLY POLARIZED STATE

In this section we want to analyze if and under which
conditions the static bifurcation which leads to the ellipti-
cally polarized state from thex-polarized state may be sub-
critical. If this happens, the elliptically polarized solution
which emerges from thex-polarized state at the bifurcation
point mx,s will extend initially to the left ofmx,s, until a turn-
ing point msub is reached.

The interest for such a situation lies on the fact that it
implies that both the elliptically polarized state and the
x-polarized state exist in the intervalmsub,m,mx,s. There-
fore, if the elliptically polarized state is stable in that interval
there is bistability between the two states. In a deterministic
system, a hysteresis cycle would be observed sweeping for-
ward and backward the pump parameterm, with discontinu-
ous jumps from one state to the other atm=mx,s and m
=msub.

The analysis of the possible subcritical character of the
bifurcation can be carried out much more simply in the limit
ga=0. Therefore, we will consider first that limit and then we
will extend the result to the general situation. Forga=0 we

know that N̄s=0 in the x-polarized state andN̄s.0 in the
elliptically polarized state. To investigate the condition for a
subcritical bifurcation we consider the equation that relates

N̄s with m, which, in this limit, reduces to[11]

k2fN̄ssgs + m − N̄s − 1d + a2sN̄s + 1dsm − N̄s − 1dg

3fN̄ssgs + 1d + 1 −mg + gp
2sgs + m − N̄s − 1d2 = 0.

s32d

We assume thatN̄s is positive and much smaller than 1. This

allows for a series expansion ofm of the typem=mx,s+pN̄s

+OsN̄s
2d. The bifurcation is subcriticalssupercriticald for

negativespositived p. The calculated coefficientp is

p = 1 −
kgssk − ka2 + 2agpd

2ska − gpd2 , s33d

and the bifurcation is subcritical when the inequality

2ska − gpd2 , kgssk − ka2 + 2agpd s34d

is satisfied. In terms of the parametera this condition can be
reformulated as

gp

k
−

1

k
Îgssk2 + gp

2d
2 + gs

, a ,
gp

k
+

1

k
Îgssk2 + gp

2d
2 + gs

.

s35d

Taking into account thata is positive andgs@1 we can
consider the single approximated condition

FIG. 4. Plot showing the ratior for the indicated values of the
spin-flip rategs. The other parameters are the same as in Fig. 1,
with ga=0.

FIG. 3. Plot of the ratior which measures the relative size of the
stability domain for the elliptically polarized solution. Same param-
eters as in Fig. 1. Solid line for negativega and dashed line for
positivega.
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a ,
gp

k
+Î1 +Sgp

k
D2

. s36d

Since we have alsogp!k for realistic values of the birefrin-
gence parametergp, it turns out that the condition for a sub-
critical bifurcation is simply

a , 1 +
gp

k
+ OSgp

k
D2

. s37d

If the effects of dichroism are also included allowingga for
being different from zero, we found that the critical value for
the a parameter can be approximated as

a . ac = 1 +
gp

k
− 2

ga

gp
. s38d

We see thatac is larger forga,0, which is also the condi-
tion under which thex-polarized solution is the first lasing

solution and hence the bifurcation to the elliptically polar-
ized state can be more easily observed.

In Fig. 5 the stationary intensities of the elliptically polar-
ized state are shown in one case where the bifurcation from
the x-polarized state is subcritical, fork=600, gs=100, a
=0.9, gp=20, andga=−0.3 sga,0=−0.1,h=−0.01d. The lin-
early polarized state is also shown, with dashed lines above
the bifurcation pointmx,s, where it is unstable. For this choice
of the parameters Eq.(38) gives the critical valueac
=1.063. We checked numerically that the exact value is
1.054.

Similarly to what we have done in the preceding section,
we introduce the ratio

rsub=
msub− mx,s

mx,s − mth,x
, s39d

which is negative by definition, and whose absolute value is
the relative size of the region where the elliptically and
x-polarized solution coexist with respect to the region where
the latter is stable.

In Fig. 6 we show bothr and rsub as a function ofgp for
the same parameters as in Fig. 5. As in the previous cases,r
presents a maximum for a small value of the birefringence
which, however, is different fromgs/4a. In the coexistence
region there is bistability untilr remains positive. For nega-
tive r the elliptically polarized state is stable only in a part of
the coexistence region. In our calculation we found that there
is always a fourth critical valueG4 of the birefringence pa-
rameter at which the stability domain of the elliptically po-
larized solution shrinks to zerosmel=msubd, and the whole
upper branch is unstable. We checked that alsoG4 increases
with increasinggs, but we were not able to determine a
simple link withGc, also because the conditiona,ac for the
subcritical bifurcation does not allow to explore a wide range
of values fora.

In a real experiment the deterministic hysteresis cycle be-
tweenmsubandmx,s will be affected by the presence of noise.
If noise is small, this simply means that the size of the cycle
is reduced. Larger noise induces irregular jumps between the
two coexisting states for any value ofm, and the hysteresis
cycle could disappear. In this case the existence of an under-
lying bistability can be inferred looking at the intensity his-
tograms of the two linearly polarized modes, which in a cer-
tain interval of injected current should present two distinct
peaks. Similar effects were observed in presence of bistabil-
ity between orthogonally polarized first-order transverse
modes[21].

In order to simulate this behavior we introduced in Eqs.
(1) some sources of Gaussian noisej± which reproduce the
effects of spontaneous emission. The complex functionsj±
have a zero mean value and ared correlated in time

kj±stdl = 0, s40d

kj±stdj±st8dl = 0, s41d

FIG. 5. Stationary intensities for the two orthogonally polarized
components of the electric field in a region around the instability
threshold of thex-polarized component fork=600, gs=100, a
=0.9,gp=20, and negativega. Thex-polarized state bifurcates sub-
critically to the elliptically polarized state.

FIG. 6. The ratiorsub, whose absolute value measures the rela-
tive size of the region where, for a subcritical bifurcation, the ellip-
tically polarized andx-polarized linearly polarized solutions coex-
ist, is shown together withr. Same parameters as in Fig. 5, apart
from gp which is now a free parameter. Atgp=G4, the elliptically
polarized solution is always unstable.
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kj±
* stdj±st8dl = bd+,+d−,−dst − t8d. s42d

The strength of noise is measured by the parameterb. For
b=2.5310−3 we still observe a hysteresis cycle, although
its size is much smaller than that predicted by the deter-
ministic equations. Forb=5310−3 the hysteresis cycle
disappears, and two-peak histograms are found. Figure
7sad shows the time evolution of the two mode intensities
on a time interval of 100ms for the same parameters as in
Fig. 5 andm=4.878.Irregular jumps between the linearly
polarized stateIx=3.881,Iy=0 and the elliptically polar-
ized stateIx=3.447,Iy=0.424 areclearly visible. The two-
peak histogram of Fig. 7sbd has been obtained recording
23105 data, with a sampling rate of 2Gsamples/s, while
the time step in the numerical integration was 10 ps.

With the chosen value ofb two-peak histograms were
found for 4.876ømø4.882, i.e., in an interval of length
0.006 scaled to the threshold pump, which in the theoretical
model is unity. This interval looks very small, but we remark
that in Refs.[8,9] two-peak histograms in correspondence
with a PS II were reported in an intervalDI =30 mA, when
the lasing threshold wasI th=4.3 mA, which meansDI / I th
.0.007. However, the analogy between those experiments
and our numerical simulation probably ends here, because in
the experiments the two states between which the VCSEL

jumps are dynamical states, rather than elliptically and lin-
early polarized stationary states.

V. CONCLUSIONS

In this paper we have studied the stability of the ellipti-
cally polarized solutions in the SFM. The importance of this
analysis is due to the fact that, according to the SFM, ellip-
tically polarized states always exist as soon as the lower-
frequency linearly polarized state destabilizes. Hence, these
states play an important role in the so-called type II polar-
ization switching, from the lower- to the high-frequency
mode. In spite of this, the elliptically polarized states have
been often considered of little importance, because it was
assumed that they are stable only in a very limited range of
the pump parameter.

Our analysis showed that this is not always the case, and
in correspondence with particular values of the birefringence
parameter the size of the stability domain of the elliptically
polarized states can be considerably large.

Quite interestingly, those particular values of the birefrin-
gence are shown to scale rationally with the ratiogs/a,
which was already known to determine the position of the
Hopf instability domain for the high-frequency linearly po-
larized state. Thus, the role of the ratio of the spin-flip rate to
the linewidth enhancement factor in the SFM is further em-
phasized.

The linear stability analysis revealed also that in some
cases there is an interval of values for the birefringence pa-
rameter for which, as the pump parameter is increased, two
disjoint stability domains for the elliptically polarized states
are met. The dynamical simulations showed that, in corre-
spondence with the two supercritical Hopf bifurcations asso-
ciated with the upper stability boundaries of the two do-
mains, two different dynamical regimes are created, and they
can coexist in a finite interval of the pump parameter.

We have also shown that when the parametera is roughly
smaller than 1, the bifurcation from the lower-frequency lin-
early polarized state to the elliptically polarized state can be
subcritical. In that case there is bistability between the two
states and a hysteresis cycle can be observed sweeping for-
ward and backward the pump parameter. In presence of
noise, however, the hysteresis can disappear, and there is an
interval of values for the pump parameter where two-peak
histograms in the intensity of the two perpendicular compo-
nents of the emitted light can be observed, due to noise in-
duced jumps from one state to the other. Values ofa smaller
than 1 are not common, but they can be achieved by tem-
perature tuning the laser frequency to the blue side of the
gain spectrum[22,23], which is also the condition for which
the lower-frequency state is stable at threshold, and the bi-
furcation to the elliptical state can occur quite close to
threshold.
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FIG. 7. Dynamics of the electric field in a bistable case, where
noise induces jumps from one state to the other. Same parameters as
in Fig. 5, withm=4.878. Time evolution of the intensities of the two
orthogonally polarized components of the field(a), and histogram
for thex-polarized component, showing a two-peak distribution(b).
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