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Abstract. In this paper we are interested in the solution by multigrid strategies of multilevel
linear systems whose coefficient matrices belong to the circulant, Hartley, or τ algebras or to the
Toeplitz class and are generated by (the Fourier expansion of) a nonnegative multivariate polynomial
f . It is well known that these matrices are banded and have eigenvalues equally distributed as f ,
so they are ill-conditioned whenever f takes the zero value; they can even be singular and need a
low-rank correction.

We prove the V-cycle multigrid iteration to have a convergence rate independent of the dimension
even in presence of ill-conditioning. If the (multilevel) coefficient matrix has partial dimension nr at

level r, r = 1, . . . , d, then the size of the algebraic system is N(n) =
∏d

r=1 nr, O(N(n)) operations
are required by our technique, and therefore the corresponding method is optimal.

Some numerical experiments concerning linear systems arising in applications, such as elliptic
PDEs with mixed boundary conditions and image restoration problems, are considered and discussed.
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1. Introduction. Let f(x), x = (x1, . . . , xd), be a continuous function on the
d-dimensional Euclidean space R

d, and let 〈 · | · 〉 denote the usual scalar product
between vectors. Henceforth, we suppose that f has period 2π with respect to each
variable and is real valued, so the Fourier coefficients of f ,

aj =
1

(2π)d

∫
[−π,π]d

f(x)e−i〈j|x〉 dx, i2 = −1, j = (j1, . . . , jd) ∈ Z
d,(1.1)

enjoy the relation a−j = āj for every j ∈ Z
d. From the coefficients aj one can build

[35] the sequence {Tn(f)}, n = (n1, . . . , nd) ∈ N
d, of multilevel Toeplitz matrices of

size N(n) =
∏d

r=1 nr. Every matrix Tn(f) is explicitly written as

Tn(f) =
∑

|j|�n−e

ajJ
[j]
n =

∑
|j1|�n1−1

. . .
∑

|jd|�nd−1

a(j1,...,jd)J
[j1]
n1

⊗ · · · ⊗ J [jd]
nd

.

Here ⊗ denotes the usual tensor product, so that A⊗B is the block matrix [aijB]ij ,

e = (1, . . . , 1) ∈ N
d and the relations between two multi-indices (as |j| � n−e) should

be intended componentwise. If n and j are integer numbers, then J
[j]
n ∈ R

n×n is the
matrix whose entry (s, t) equals 1 if s − t = j and is 0 elsewhere; in the case where

n and j are multi-indices, the symbol J
[j]
n denotes the tensor product of all the J

[jr]
nr

for r = 1, . . . , d. From the identity a−j = āj for every j, it follows that the matrices
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Tn(f) are Hermitian for every n. It is clear that, if f is a trigonometric polynomial of
degree c = (c1, . . . , cd), then the Fourier coefficient aj equals zero when |j| � c is not
satisfied; in that case the corresponding matrix Tn(f) shows a d-level structure with
bandwidth cr at level r ∈ {1, . . . , d}.

To the same coefficients aj in (1.1) we can also associate matrices belonging to
well-known trigonometric (multilevel) algebras. For instance, the d-level circulant
related to f is defined as

Cn(f) =
∑

|j|�n−e

ajZ
[j]
n =

∑
|j1|�n1−1

. . .
∑

|jd|�nd−1

a(j1,...,jd)Z
j1
n1

⊗ · · · ⊗ Zjd
nd
,

where Zn = J
[−1]
n +en e1

t if n is a scalar and ej denotes the jth vector of the canonical

basis. Analogously to the Toeplitz case, if n and j are multi-indices, then Z
[j]
n repre-

sents the tensor product of all the Zjr
nr

for r = 1, . . . , d. If f is even (with regard to
each variable xr separately) we have aj = a−j ∈ R, i.e., Tn(f) is real and symmetric.
In that case an interesting matrix algebra approximation is provided by the τ algebra
[3]. More specifically we define

τn(f) =
∑

0�j�n−e

bjH
[j]
n =

∑
0�j1�n1−1

. . .
∑

0�jd�nd−1

b(j1,...,jd)H
j1
n1

⊗ · · · ⊗Hjd
nd
,

where Hn = J
[1]
n + J

[−1]
n , the matrix J

[j]
n is defined as before, and the coefficients

bj can be uniquely determined by the coefficients aj through an invertible triangular
linear system (see [24]). A further characterization of the τ algebra is obtained by
observing that every matrix of the class can be written as a Toeplitz plus Hankel
matrix (a Hankel matrix is constant along the antidiagonals): more precisely, we have

τn(f) = Tn(f) −Hn(f),(1.2)

where Hn(f) is the centrosymmetric Hankel matrix generated by f . A Hankel matrix
is such that its entries are constant along any lower-left–upper-right diagonal: with
the same notations we have

Hn(f) =
∑

2e�j�n−e

ajK
[j]
n =

∑
2�|j1|�n1−1

· · ·
∑

2�|jd|�nd−1

a(j1,...,jd)K
[j1]
n1

⊗ · · · ⊗K [jd]
nd

,

(1.3)

where, in the unilevel case, K
[j]
n denotes the matrix of order n whose entry (s, t) equals

1 if s + t = j mod 2(n − 1) and equals zero otherwise: the multilevel version of K
[j]
n

is now defined via (1.3).
A third class of matrices which form an algebra and is of interest in applications is

represented by the Hartley matrices [4]. Unlike circulants and τ matrices, the Hartley
class does not have a generator, but it can be described by using circulant matrices.
In actuality, every matrix belonging to this class can be expressed as the sum of two
independent matrices, the first being symmetric and circulant, the second being the
product of a special permutation matrix J by a skewcirculant matrix. More precisely,
for a Hartley matrix generated by a unilevel function f we set J1,1 = Js,n+2−s = 1,
s = 2, . . . , n, and

Hn(f) = Cn(feven) + JCn(fodd),
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where feven(x) = (f(x) + f(−x))/2 and fodd(x) = (f(x)− f(−x))/2. In this way the
first column of Cn(feven) has αj coefficients such that αj = αn−j ∈ R, j = 1, . . . , n−1,
and the first column of Cn(fodd) has coefficients βj = −βn−j ∈ R, j = 1, . . . , n − 1,
β0 = 0, where α0 = a0 and (αj − iβj)/2 = aj for |j| � 1. We note that its multilevel
version amounts to performing the same even/odd splitting of f with respect to each
variable separately.

Since circulants, τ and Hartley matrices are algebras, they are all simultaneously
diagonalized by a given transform. In our case the involved transforms are all unitary
(or real unitary, i.e., orthogonal) and therefore these algebras are constituted by
normal matrices. More precisely the three classes can be formally defined as follows:

G(Qn) =
{
Qn · Diag (d) ·Q−1

n | d ∈ C
n
}

=
{
Qn · Diag (d) ·QH

n | d ∈ C
n
}
,

where the related transforms Qn (and some other information, such as the grid points

w
[n]
i , the In index range to which i belongs, and the name of the class C, τ,H generi-

cally denoted by A) are listed in the subsequent Table 1.1.

Table 1.1

Basics on our algebras: the unilevel case.

A In w[n] Qn

Circulants C 0, . . . , n− 1 w
[n]
i = 2πi

n
Fn = 1√

n

[
eijw

[n]
i

]n−1

i,j=0

Hartley H 0, . . . , n− 1 w
[n]
i = 2πi

n
Re(Fn) + Im(Fn)

Tau τ 1, . . . , n w
[n]
i = πi

n+1

√
2

n+1

[
sin

(
jw

[n]
i

)]n
i,j=1

Once again, whenever n is a d-index we define Qn the matrix of size N(n) as Qn1
⊗

· · · ⊗Qnd
. The matrices Cn(f), τn(f), and Hn(f) can be written (in order to provide

a uniform approach) as

An(f) = Qn · Diag
(
f
(
w[n]

))
·QH

n ,(1.4)

where A ∈ {C,H, τ}, f is a polynomial of degree less than n, and the vectors w[n] are
defined in the fourth column of Table 1.1 for scalar n and w[n] = w[n1] ×· · ·×w[nd] if
n is a d-index. For instance, in the circulant case we observe Qn = Fn and we write
An(f) = Cn(f) = Fn · Diag

(
f(w[n])

)
· FH

n .
It is immediate to see that Cn(f), τn(f), and Hn(f) are definitely ill-conditioned

if f has zeros in its basic definition set [−π, π]d (they are singular if the zeros contain
a grid point). It is interesting to recall that x = 0 is always a grid point for the
circulants and the Hartley matrices so that Cn(f) and Hn(f) are singular if these
matrices arises from the discretization of constant coefficients differential operators:
in that case it is known that x = 0 is a zero of the symbol and its order is associated
to the maximal order of the involved derivatives (see, e.g., [30]).

In such a case, setting e =
∑N(n)

j=1 ej , the classical Strang circulant preconditioner
(see, e.g., [9]) is replaced by its modified (or stabilized) version (see, e.g., [34]):

C̃n(f) = Cn(f) +
(

min
‖j‖∞=1

f
(
w

[n]
j

)) eet

N(n)
.(1.5)
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Of course the same approach can be followed in the case of the Hartley algebra.

In this paper we are interested in the solution of linear systems with matrices of
the form An(f) for A ∈ {C,H, τ, T} and f trigonometric polynomial. More specifi-
cally we are interested in (iterative) methods that show the best possible asymptotic
complexity. In this respect we define a formal notion of optimality of an iterative
method for a sequence of linear systems of increasing dimensions.

Definition 1.1. Given a sequence of linear systems of increasing dimensions
{Anxn = bn}, we write that an iterative method is optimal if

1. the arithmetic cost of every iteration is at most proportional to the complexity
of a matrix vector product with matrix An,

2. the number of iterations for reaching the solution within a fixed accuracy can
be bounded from above by a constant independent of n.

Such a method would be interesting in the case of the considered matrix al-
gebras A ∈ {C,H, τ} since the cost by direct methods using fast transforms is
O(N(n) logN(n)) while an optimal technique would require just O(N(n)) operations:
we recall that this kind of matrix algebra linear systems are widely used as precon-
ditioners for more complicated problems (dense Toeplitz, differential problems dis-
cretizations etc. [13, 25, 30]) or directly arise in the discretization of image restoration
problems with shift-invariant kernel and suitable boundary conditions (see [20, 29]).

In the case of Toeplitz systems the improvement would be much more striking.
For instance, in the multilevel Toeplitz setting the fast direct techniques are expen-
sive because they are unable to exploit the Toeplitzness at each level. Concerning the
preconditioned conjugate gradient (PCG) method, the matrix algebra preconditioners
lead to optimal solvers only in the unilevel case (see, e.g., [9]). Unfortunately, for mul-
tilevel problems the optimal preconditioning by matrix algebras is simply impossible
in general as proved by the last author and Tyrtyshnikov [32] (see also [21, 22, 26, 33]).
More precisely the number of iterations is an unbounded function as n and it is of the

order of O([N(n)]
d−1
d ), which is very unsatisfactory if d is large.

On the other hand, by using band Toeplitz preconditioners (see, e.g., [13]), it is
possible to reduce the computation with dense Toeplitz systems to the case of Toeplitz
linear systems whose coefficient matrices are generated by nonnegative polynomials.
Therefore it is of special interest to be able to solve in optimal time (i.e., computational
effort linear with respect to the size of the algebraic problem) linear systems whose
coefficient matrix is of the form Tn(f) with nonnegative polynomial f and our proposal
is the multigrid technique. We will give a formal proof of optimality of the V-cycle
multigrid iteration (MGM) in the matrix algebra case while in the Toeplitz case this
optimal behavior is demonstrated only by numerical experiments (for a formal proof
of optimal convergence rate, i.e., independent of n, related to the two-grid method
refer to [27]): our hope is that the theoretical tools introduced in this paper for the
matrix algebra case could be used for proving the V-cycle optimality in the Toeplitz
context as well. We stress that the proof technique introduced in this paper seems to
be new compared with the classical approaches used in the PDEs context (see, e.g.,
the beautiful review [37]). Indeed our tools are totally matrix oriented so that there
is no differential interpretation in the general case: for instance when the symbol
has a zero close to π, then the smoother (i.e., the iteration satisfying the smoothing
property according to Ruge and Stüben [23]) does not make the error smooth; i.e., it
reduces the components in the low frequencies and it does not reduce the components
in the high frequencies.

Finally, we mention that our technique can be easily extended with the same
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linear arithmetic cost to linear systems with coefficient matrices given by An(f) +∑s
t=1 ϑt · q[n]

it

(
q
[n]
it

)H
= An(f +

∑s
t=1 ϑtχw

[n]
it

+2πZ
), where the vector q

[n]
i is the ith

column of Qn, A ∈ {C,H, τ}, and χS denotes the characteristic function of a given
set S. We recall that these examples of coefficient matrices are a generalization of the
stabilized Strang preconditioner displayed in (1.5).

The paper is organized as follows. In section 2 we first introduce the multigrid
procedure by reporting the basic convergence results by Ruge and Stüben [23]; then
we describe our choices for the smoothing and prolongation operators. In section 3 we
show that “level independency” property is not sufficient to reach the optimality, while
in section 4 we prove the optimal convergence rate of our multigrid in the unilevel
case. Section 5 is devoted to the multilevel case, while in section 6 we generalize our
V-cycle algorithm to multilevel Toeplitz matrices. Section 7 contains wide numerical
experimentation that confirms the theoretical analysis, and section 8 is devoted to
concluding remarks, open problems and future work.

2. The multigrid procedure. Let A ∈ C
n×n be a Hermitian positive definite

matrix, b ∈ C
n, m integer with 0 < m < n. Fix integers n0 = n > n1 > n2 > · · · >

nm > 0, take P i
i+1 ∈ C

ni+1×ni full-rank matrices, and consider a class Ri of iterative
methods for ni-dimensional linear systems. The related V-cycle method (see [5, 17])
produces the sequence {x(k)}k∈N according to the rule x(k+1) = MGM(0,x(k),b),
with MGM recursively defined as follows:

x
(out)
i := MGM(i,x

(in)
i ,bi)

If (i = m) Then Solve(Amx
(out)
m = bm)

Else 1 ri := Aix
(in)
i − bi

2 bi+1 := P i
i+1ri

3 Ai+1 := P i
i+1Ai(P

i
i+1)

H

4 yi+1 := MGM(i + 1,0ni+1
,bi+1)

5 x
(int)
i := x

(in)
i − (P i

i+1)
H
yi+1

6 x
(out)
i := Rν

i

(
x

(int)
i

)
.

(2.1)

Step 1 calculates the residual of the proposed solution; steps 2, 3, 4, and 5 define the
recursive coarse grid correction by projection (2) of the residual, sub-grid correction
(3, 4) and interpolation (5), while step 6 performs some (ν) iterations of a “post-
smoother.”

By using the MGM as an iterative technique, at the kth iteration, we obtain

the linear systems Aix
(k)
i = b

(k)
i , i = 0, . . . ,m, where the matrices Ai ∈ C

ni×ni are
Hermitian positive definite. Only the last is solved exactly while all the others are
recursively managed by reduction to low-level system and smoothing. Ri are most of
the time one-point methods (see [23]) with prescribed linear part Ri ∈ C

ni×ni i.e.,

Ri(xi) = Rixi + (Ini −Ri)A
−1
i b

(k)
i , xi ∈ C

ni , i = 0, . . . ,m− 1.(2.2)

If we define the multigrid iteration matrix of level i as MGMi,

⎧⎨⎩
MGMm =Onm×nm ,

MGMi =Rν
i ·
[
Ini−

(
P i
i+1

)H(
Ini+1−MGMi+1

)
A−1

i+1P
i
i+1Ai

]
, i = m− 1, . . . , 0,

(2.3)
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it holds that x
(out)
i = MGMix

(in)
i +(Ini

−MGMi)A
−1
i bi, so in the finer grid we have

x(k+1) = MGM0x
(k) + (In0

− MGM0)A
−1
i b, and MGMi depends on i but not on

any x
(k)
i nor on b

(k)
i . The algorithm has essentially two degrees of indetermination:

1. choice of the projectors P i
i+1, i = 0, . . . ,m− 1;

2. choice of the smoothers Ri, i = 0, . . . ,m− 1.
The choice of the projectors P i

i+1 and the calculation of the matrices Ai are performed
before the beginning of the V-cycle procedure (precomputing phase).

Of course m stands for the number of subgrids in the algorithm. We also refer
the choice m = 1 as two-grid method (TGM), so we define the TGM linear action as

TGM0 = Rν
0 ·
[
In0 − (P 0

1

)H
A−1

1 P 0
1A0

]
.(2.4)

The term in square brackets in (2.4) is defined as exact coarse grid correction (CGC0).
It can be defined of course on each grid of the V-cycle algorithm, and hence we agree
to write

CGCi = Ini − (P i
i+1

)H
A−1

i+1P
i
i+1Ai, i = 0, . . . ,m− 1,(2.5)

and

TGMi = Rν
i · CGCi, i = 0, . . . ,m− 1.(2.6)

Specific TGMs and V-cycles have been devised for the τ multilevel algebra [15, 16],
while for multilevel circulants they have been studied in [31].

2.1. Convergence related theorems. Here we recall two theorems [23] con-
cerning the convergence of multigrid iterations. The first one is related to the easier
TGM algorithm; the other refers to the complete (i.e., with m > 1) multigrid pro-
cedure. For the sake of simplicity, in both the theorems we will assume just one
application of the smoother, i.e., ν = 1. By ‖ · ‖2 we denote the Euclidean norm
on C

n and the associated induced norm on C
n×n; if X is positive definite we also

denote ‖ · ‖X = ‖X1/2 · ‖2, and whenever X and Y are both Hermitian matrices the
notation X � Y means that X − Y is positive semidefinite.

Theorem 2.1 (TGM convergence [23]). Let n0, n1 be integers such that n0 >
n1 > 0 and let A ∈ C

n0×n0 be a positive definite Hermitian matrix, b ∈ C
n0 , and

also let R0 be defined as in (2.2). Fix P 0
1 ∈ C

n1×n0 full-rank matrix and let D =
Diag[aii]

n0
i=1 be the main diagonal of A. Suppose that α > 0 exists such that

‖R0x‖2
A � ‖x‖2

A − α ‖x‖2
AD−1A ∀x ∈ C

n0 .(2.7a)

Then for each γ > 0 such that

min
y∈Cn1

‖x − (P 0
1 )Hy‖2

D � γ ‖x‖2
A ∀x ∈ C

n0(2.7b)

it holds that α � γ and

‖TGM0‖A �
√

1 − α/γ < 1.(2.8)

From Theorem 2.1, it follows that {x(k)}k converges to the solution of Ax = b.
Furthermore, when α and γ are independent of n, the sequence {x(k)}k converges
with (at least) a constant error reduction by the factor

√
1 − α/γ independent of the
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dimension n of the system: therefore the corresponding TGM has optimal convergence
rate (i.e., it satisfies the second item in Definition 1.1).

Remark 2.2. Theorem 2.1 still holds if D ∈ C
n0×n0 is replaced by any Hermitian

positive definite matrix X (X = In0 could be a suitable choice): it is enough to repeat
verbatim the proof of Theorem 5.2 in [23] with X in place of D.

Theorem 2.3 (MGM convergence [23]). Let m,n be integers satisfying 0 < m <
n and suppose that A ∈ C

n×n is a positive definite Hermitian matrix and b ∈ C
n;

given now a sequence of m + 1 positive integers n = n0 > n1 > · · · > nm, let
P i
i+1 ∈ C

ni+1×ni be full-rank matrices for each i = 0, . . . ,m − 1. Define A0 = A
and choose a class of iterative methods Ri as in (2.2). If there exists a real positive
number δ satisfying

‖Ri x‖2
Ai

� ‖x‖2
Ai

− δ ‖CGCi x‖2
Ai

∀x ∈ C
ni(2.9)

for every i = 0, . . . ,m− 1, then it holds δ � 1 and

‖MGM0‖A �
√

1 − δ < 1.(2.10)

As in the case of the TGM, here also the sequence {x(k)}k converges to the solution
of Ax = b and when δ is independent of n it converges with at least a constant error
reduction not depending on the dimension of the system and, at most, �2δ−1 ln(ε−1)	
iterations are needed to reduce the error by a factor ε > 0.

We observe that inequality (2.9) is easily guaranteed by the following:

‖Ri x‖2
Ai

� ‖x‖2
Ai

− αi ‖x‖2
A2

i
(αi > 0) ∀x ∈ C

ni ,(2.11a)

‖CGCi x‖2
Ai

� βi ‖x‖2
A2

i
∀x ∈ C

ni .(2.11b)

If δ � αi/βi, then (2.9) holds for every i = 0, . . . ,m − 1 with the choice of δ =
min0�i�m−1{αi/βi}. We refer to (2.11a) as the smoothing property and to (2.11b)
as the approximation property (see [23, 37]). The approximation property depends
exclusively on the choice of projectors (i.e., P i

i+1) but not on smoothers, whereas
smoothing property is not related to P i

i+1. The separate study of these two properties
allows us to cope with the difficult part of the procedure (the verification of condition
(2.11b)) involving the projectors but not depending on the smoothers. Notice that the
direct verification of (2.9) is in principle much more intricate due to the simultaneous
presence of the projectors and of the smoothers in the inequalities.

Remark 2.4. The MGM smoothing property (2.11a) is nothing more than the
TGM smoothing property (2.7a) with D substituted by I, in accordance with Remark
2.2.

In such a situation, optimality is reached if δ is independent from both n and m,
i.e., it suffices to show that a constant value δ exists such that 0 < δ � mini{αi/βi}
is fulfilled for every possible choice of n and m. In this way, the number of iterations
required keeps being uniformly bounded by a constant irrespective of the dimension of
the problem. What is more, since each iteration has a computational cost proportional
to matrix-vector product, Definition 1.1 states that such a kind of MGM is optimal.

2.2. MGM for matrix algebras. We analyze a special instance of the MGM
(2.1), introduced in [15, 16, 31], where the smoother is the relaxed Richardson itera-
tion, namely Ri = Ini

− ωiAi (ωi is relaxing parameter), and on each step we essen-
tially halve the dimension (ni+1 = ni

2 for circulants and Hartley and ni+1 = ni−1
2 for

τ matrices).
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Dealing with circulants or Hartley matrices we start from dimension n0 = 2k0

and define the subgrid dimensions as ni = 2k0−i, while in τ algebra we start with
n0 = 2k0 − 1 and define ni = 2k0−i − 1. The cutting operator is defined by K i

i+1 :
C

ni −→ C
ni+1 and it selects even index components (we recall that the index range

is {0, . . . , ni − 1} in the circulant and Hartley algebras, while it is {1, . . . , ni} in the
τ algebra):

Circulant & Hartley algebra τ algebra

ni = 2k0−i ni = 2k0−i − 1

K i
i+1 =

[
1 0

1 0 ... ...
1 0

]
ni+1×ni

, K i
i+1 =

[
0 1 0

0 1 0... ... ...
0 1 0

]
ni+1×ni

.

(2.12)

We have defined the projector in the form P i
i+1 = K i

i+1·Ani
(pi) while pi is a real valued

polynomial which will be chosen in section 4.2 in order to satisfy the approximation
property (2.11b). Our choices on K i

i+1 brings (see [31]) to K i
i+1Qni =

[
Qni+1

| Qni+1

]
in the case of the circulant and Hartley algebras, while dealing with τ matrices we
have K i

i+1Qni
=
[
Qni+1 |0ni+1| − Jni+1Qni+1

]
with [Jn]h,k equals 1 if h + k = n + 1

and 0 if not. These two equalities play a basic role in maintaining the matrix algebra
structure on subgrids and represent the keystone for proving the following proposition.

Proposition 2.5 (see [27, 31]). Let k0, m be integers such that 0 < m < k0,
f0 and pi, i = 0, . . . ,m − 1, be real 2π-periodic functions (also even in the τ case),
P i
i+1 = K i

i+1 · Ani(pi) with A ∈ {C,H, τ} as in (1.4). Also define A0 = An0(f0) and

Ai+1 = P i
i+1Ai(P

i
i+1)

H
for i = 0, . . . ,m− 1. Then it holds that Ai+1 = Ani+1

(fi+1),
where

fi+1(x) =
1

2

[(
p2
i fi
)(x

2

)
+
(
p2
i fi
)(

π +
x

2

)]
, i = 0, . . . ,m− 1.(2.13)

Moreover each projector P i
i+1 is full-rank if p2

i (x) + p2
i (π + x) > 0 holds true for

every x.
Proposition 2.5 is basic for our purposes because it allows one to relate the func-

tions fi to the matrices Ai in the V-cycle procedure (2.1). Furthermore, we observe
that

h(x) =

k2∑
j=k1

aje
ijx ⇒ h

(x
2

)
+ h

(
π +

x

2

)
= 2

�k2
2 
∑

j=�k1
2 	
a2je

ijx(2.14)

represents a fundamental simplification in checking convergence and in evaluating the
computational costs. By defining Rk[x] =

{∑
|j|�k aje

ijx | aj = ā--j ∈ C
}
, and by as-

suming f(x) ∈ RT0 [x], pi(x) ∈ Rqi [x], we have fi ∈ RTi with Ti+1 = qi+
⌊
Ti

2

⌋
, and, by

induction, we deduce Ti � max{T0; 2qj−1 : 1 � j � i}. Consequently the bandwidth
of Ai is uniformly bounded if there exists a constant T such that T0, qi � T for every
i. Furthermore, if qi = q holds for every i, then Ti ↑ 2q− 1 (monotonic nondecreasing
convergence) if T0 � 2q−1, Ti ↓ 2q (monotonic nonincreasing convergence) otherwise.

The subsequent theorem has been proven in [27, 31], where it has been used for
proving the TGM optimality if a good choice of p0 is performed.
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Theorem 2.6 (see [27, 31]). Let An0
= An(f0) with A ∈ {C,H, τ}, f0 be

nonnegative, 2π-periodic (even in the τ case), and let P 0
1 = K0

1 · An0(p0), with p0

trigonometric polynomial (also even in τ case) such that f0(x
0) = 0 implies

lim
x→x0

p2
0(π + x)

f0(x)
<+∞,(2.15a)

p2
0(x) + p2

0(π + x) > 0 ∀x.(2.15b)

Then inequality (2.7b) in Theorem 2.1 is satisfied.
In what follows we will need a stronger version of (2.15a) to prove the V-cycle

optimality.

3. Level independency does not imply multigrid optimality. An informal
but dangerous (as we will see) way of defining the MGM is as recursive application
of TGM iterations. In particular, if the convergence rate

√
1 − α/γ defined in (2.8)

is independent of the recursion level, we have a property known in literature as “level
independency” [7].

Definition 3.1. Let m,n be integers satisfying 0 < m < n and let us suppose
that we solve a system of dimension n with MGM. Then we have level independency
if the method TGMi induced on each level satisfies

‖TGMi‖Ai � c < 1, i = 0, . . . ,m− 1,

with c pure constant independent of n and m.
In some recent works, the level independency was indicated as a way for obtaining

the V-cycle optimality (see, e.g., [7]). Actually, we will prove that the level indepen-
dency is necessary but not sufficient for the MGM optimality. To explain this fact
intuitively, we observe that to consider the MGM as a recursive TGM application is
equivalent to having the exact knowledge of the error at each level, since the TGM
directly solves the system at the lower level. Indeed, for applying the TGM recur-
sively, we must only decide if the recursive call should be placed before or after the
direct resolution of the lower level system. It follows that in the first case we project
the problem at the lower level as for the MGM, but when we interpolate the solution
(the error) at each level this is exactly known at the lower level and it does not derive
from previous interpolation as for the MGM. In the second case we know exactly the
error that we project at each level, while for the MGM this derives from previous pro-
jections. On the other side, MGM replaces the direct solution of the system with the
recursive call, obtaining a more approximate procedure with respect to the recursive
TGM application. Therefore, the level independency is a necessary but not sufficient
condition for the MGM optimality.

Now we report a whole class of counterexamples to enhance the previous informal
description.

Proposition 3.2. Let A = τn0
(f0), P

i
i+1 = Ki

i+1τni(p), and

f0(x) = (1 − cos(x))q, q ∈ N,

p(x) = µ� q
2 	(1 + cos(x))�

q
2 	, µ ∈ R, µ �= 0,

for i = 0, . . . ,m−1. Then the level independency property holds for the MGM applied
to the system Ax = b, x, b ∈ C

n0 , where P i
i+1 is the projector at the level i.

Proof. Following Definition 3.1 we must prove that ‖TGMi‖Ai � c < 1 with c
absolute constant and, to this purpose, it is enough to prove θi =

√
1 − αi/γi � c < 1
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with c constant and independent of n for every level i = 0, . . . ,m−1. At the moment
we consider for simplicity only µ = ±2, but at the end we will show that we can
extend the proof for every nonzero µ ∈ R. At the first level with f0 and p0 = p we
are in the hypotheses of Theorem 2.6, therefore, at the first level, the TGM converges
with convergence rate θ0 < 1. Using the function relation (2.13) to find fi+1 from fi
and pi, we have to distinguish between q even and odd.
• q even: In this case we obtain f1 = f0 so that p1 = p0 satisfies again the conditions

(2.15) and then θ1 = θ0. Iteratively fi+1 = fi = · · · = f0 with pi = · · · = p0 = p for
1 � i � m− 1 and θi = θ0.

• q odd: Here we have f1 = 2f0, then p1 = p0 satisfies again the conditions (2.15)
and iteratively fi+1 = 2fi = · · · = 2i+1f0 with pi = · · · = p for 1 � i � m−1. Even
if fi changes at each level, in the computation of θi the factor 2i is simplified out
and then θi = θ0 for every i.

If µ �= ±2, as in the case of q odd, we obtain fj = ξjf0, ξ ∈ R and nonzero ξ, but
again θi = θ0.

In conclusion, with c = θ0 we have θi = c < 1 for every level i = 0, . . . ,m − 1,
i.e., the level independency property is satisfied.

Remark 3.3. The previous proposition can be generalized to every function f0

that vanishes at the origin with a zero of finite order. In particular, in this case, the
level independency holds under the same TGM optimality conditions (2.15) and does
not require more restrictive conditions.

Now we present an example where the projectors satisfy the previous proposi-
tion but are not sufficient for ensuring the V-cycle optimality. Moreover we will see
that a slight modification of the proposed projectors will be enough for an optimal
MGM convergence rate. We perform only a Richardson post-smoother iteration with

ω = 1/max(f0) and MGM is stopped when ‖r(k)
0 ‖2 ≤ 10−11‖b‖2. From the fourth

derivative discretization by finite differences and appropriate boundary conditions, we
obtain a system with coefficient matrix Tn(f0), where

f0(x) = (2 − 2 cos(x))2.

We consider its τ version τn0(f0) (which corresponds to the natural τ preconditioner
of Tn0

(f0)). Therefore, defining the projector at each level through the trigonometric
polynomial

p(x) = 2 + 2 cos(x),

we remark that the hypotheses of Proposition 3.2 are fulfilled and then the level in-
dependency property stands. From the numerical application of the corresponding
V-cycle algorithm to the system τn0(f0)x = b with the proposed projector, we ob-
serve that the iteration number grows (almost linearly) as the dimension n (refer to
Table 3.1). Therefore, the proposed method is not optimally convergent while the level
independency holds true. From the same table we can see that leaving unchanged the
post-smoother and increasing the projector degree by 1, it is possible to recover the
MGM optimality. The last column in Table 3.1 stresses as the fundamental choice
the projector and not the smoother, indeed, also increasing the Richardson iteration
number and adding some conjugate gradient (CG) iterations as post-smoother (ac-
celerator), the MGM iteration number diverges as the problem dimension tends to
infinity. We observe a similar behavior in image restoration problems: Compare these
results with section 7.5, especially Table 7.8, and with [6, 18].
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Table 3.1

MGM iteration number in the case of natural τ preconditioner for the monodimensional fourth
derivative.

1 Richardson iteration with ω = 1/max(f0) p(x) = 2 + 2 cos(x)

p(x) = 2 + 2 cos(x) p(x) = (2 + 2 cos(x))2 2 Richardson with
n level independency holds but MGM optimality and ω = 1/max(f0) and

the MGM is not optimal level independency are satisfied 2 CG iterations

27 − 1 283 83 113
28 − 1 510 83 196
29 − 1 899 83 299
210 − 1 1541 83 475

MGM0 spectral radius
n pa(x) pb(x)

15 0.75 0.75
31 0.8629 0.75
63 0.9297 0.75
127 0.9647 0.75
255 0.9823 0.75
511 0.9912 0.75

Fig. 3.1. Spectral radius of MGM0 with p(x) = pa(x) = 2 + 2 cos(x) (level independency but
not optimality) and p(x) = pb(x) = (2 + 2 cos(x))2 (level independency and optimality).

The difference between level independency and MGM optimality is underlined also
from Figure 3.1, where it is shown the spectral radius of the MGM iteration matrix
calculated by using recurrence (2.3). In our V-cycle algorithm, we solve the system at
dimension 7 by a direct method. Therefore, at dimension 15 we have that the MGM
is reduced to the TGM and we notice that the MGM with p(x) = pa(x) = 2+2 cos(x)
has the same spectral radius as the MGM with p(x) = pb(x) = (2 + 2 cos(x))2, due to
the optimality of TGM.

It is starting from these remarks that in the next section we propose an optimal
MGM and we prove its optimal behavior under mild assumptions on the symbol f0.

4. Proof of convergence and optimality: The scalar case. We now show
a way for satisfying the assumptions of Theorem 2.3, in their strong version (2.11a)
and (2.11b). The first inequality (2.11a) is quite simple (i.e., polynomial) so it can be
handled as in [27, 31]. The second is more difficult to show and it represents one of
the main contributions of the paper.

4.1. How to fulfill the smoothing property. We start with a result which is
a slight variation of analogous propositions in [27, 31].

Proposition 4.1. For every i = 0, . . . ,m−1, let Ai = Ani(fi) with A ∈ {C,H, τ}
as in (1.4), fi being nonnegative, and let ωi be such that 0 < ωi < 2/‖fi‖∞. If we
choose αi fulfilling αi � ωi(2 − ωi‖fi‖∞) and if we define Ri = Ini − ωiAi, then

‖Ri x‖2
Ai

� ‖x‖2
Ai

− αi ‖x‖2
A2

i
(4.1)

holds true for every x ∈ C
n.
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Proof. The essential steps for proving (4.1) can be found in [27, 31]. We just
observe that the best bound to αi is 1/‖fi‖∞ and it is obtained by taking ωi = ω∗

i =
1/‖fi‖∞.

4.2. How to fulfill the approximation property. We still have to show how
to satisfy the more intricate MGM hypothesis (2.11b). We will consider the following
set of conditions,

p2
i (x) + p2

i (π + x) > 0, lim sup
x→x0

∣∣∣∣pi(π + x)

fi(x)

∣∣∣∣ < +∞, i = 0, . . . ,m− 1,(4.2)

to hold for every x and where x0 is the unique zero of fi of order 2q. We observe that
the conditions above are stronger than those (2.15) considered for the TGM method:
a qualitative reasoning behind it is contained in section 3 and concerns the fact that
the level independency does not imply the MGM optimality.

It follows that pi must possess a unique zero of the same (or higher) order as f .
We will choose pi as follows:

pC,Hx
0
,q(x) =

[
1 + cos(x− x0)

]q
, pτx

0
,q(x) =

[
cos(x0) + cos(x)

]q
if x0 ∈ {0, π}.

(4.3)

In addition, if f has a zero at x0 /∈ {0, π} and we are in the τ case, then f is
even and also has a zero at 2π − x0: in that case of two zeros we choose pτ±x0

,q(x) =[
cos(x0)+cos(x)

]2q
. Finally, we consider a product of some of these basic polynomials

in the general multiple-zeros case (see also [15, 27, 31]).
We will also use the following factorization result.
Proposition 4.2. Let f be a trigonometric polynomial such that f(x0) = 0

and f(x) > 0 whenever x �≡ x0 mod 2π. Then there exists a positive trigonometric
polynomial ψ such that

f(x) = [1 − cos(x− x0)]
q · ψ(x)(4.4)

and 2q is the order of f at x0.
In the rest of the subsection and in section 4.3 we will focus our attention on

the important case where the symbol has a unique zero at x = 0 (this includes
various discretized boundary values problems) with the exception of Proposition 4.5
and Remark 4.7: the more general case of a zero not at x = 0 will be briefly treated
in sections 4.4 and 4.5.

Proposition 4.2 ensures a suitable factorization for our generating function f0,
i.e., f0(x) = [1 − cos(x)]

q
ψ0(x), ψ0 being a positive trigonometric polynomial, when

dealing with τ matrices. In the case of the circulant and Hartley algebras, we
must consider the one rank correction displayed in (1.5) in order to force the in-
vertibility. Therefore, by exploiting relation (4.4), we have f0(x) + c0χ2πZ(x) =
[1 − cos(x)]

q
ψ0(x) + c0χ2πZ(x). In order to get a uniform lower bound to αi/βi (in

particular to find an upper bound for the left side of (4.8)), it seems convenient to
obtain such a factorization for every generating function fi. We find the desired result
by using Proposition 2.5.

Proposition 4.3. Under the same assumptions of Proposition 2.5, let q be a
positive integer and let us suppose f0(x) = [1 − cos(x)]

q
ψ0(x) + c0χ2πZ(x), with ψ0

being a positive trigonometric polynomial and with c0 = f0(w
[n0]
1 ) in the circulant and

Hartley cases and with c0 = 0 in the τ case; define also pi(x) =
√

2 [1 + cos(x)]
q

+
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di χ2πZ(x) = p(x) + di χ2πZ(x) for each i = 0, . . . ,m − 1. Then each generating
function fi satisfies fi(x) = f̃i(x) + ciχ2πZ(x), f̃i(x) = [1 − cos(x)]qψi(x) with the
sequences {ψi} and {ci} defined as{

ψi+1 = Φq(ψi),

ci+1 = 1
2cip

2
i (0),

i = 0, . . . ,m− 1,

where Φq is an operator such that[
Φq(ψ)

]
(x) =

1

2q+
1
2

[
(pψ)

(x
2

)
+ (pψ)

(
π +

x

2

)]
.(4.5)

Moreover, each f̃i is a trigonometric polynomial that vanishes only at 2πZ with the
same order 2q as f0.

Proof. Taking into account the expression of p(x) =
√

2 [1 + cos(x)]
q
, the result

is a direct consequence of Proposition 2.5 and relation (2.14).
Proposition 4.4. Under the same assumptions of Proposition 2.5, let q be a

positive integer and let us suppose f0(x) = [1 − cos(x)]
q
ψ0(x) + c0χ2πZ(x), with ψ0

being a positive trigonometric polynomial and with c0 = f(w
[n0]
1 ) in the circulant and

Hartley cases and with c0 = 0 in the τ case; also define pi(x) =
√

2 [1 + cos(x)]
q

+
di χ2πZ(x) = p(x)+di χ2πZ(x) for each i = 0, . . . ,m−1. Then we can choose numbers
di such that, setting f̃i(x) = [1−cos(x)]qψi(x), we have fi(x) = f̃i(x)+ciχ2πZ(x) with

ci = 0 in the τ case and with ci = fi(w
[ni]
0 ) = f̃i(w

[ni]
1 ) > 0 in the case of circulants

and Hartley matrices.
Proof. In the τ setting we can choose di = 0. Therefore, since c0 = 0 there

is nothing to prove. In the remaining cases, the result follows from the relations
fi(0) = f̃i(0) + ci = ci, ci+1 = 1

2cip
2
i (0) = 1

2ci(
√

2 2q + di)
2 and from the fact that

c0 = f(w
[n0]
1 ): more specifically we have

di =

√√√√√2fi+1

(
2π

ni+1

)
fi

(
2π
ni

) −
√

2 2q.

Propositions 4.3 and 4.4 will allow us to find bounds for the constants αi and βi

involved in (2.11).
We now have the tools for defining a really recursive V-cycle technique (as ex-

plained in Proposition 4.5) and for proving that we can satisfy the approximation
property (Proposition 4.6).

Proposition 4.5. Let Ai = Ani
(fi), P i

i+1 = Ki
i+1Ani

(pi), with fi being a
nonnegative polynomial (also even in the τ case) and pi satisfying conditions (4.2)
(also even in the τ case).

1. The projected matrix Ai+1 coincides with Ani+1(fi+1), where fi+1 has the
expression reported in (2.13).

2. If x0 ∈ [−π, π] is a zero of fi(x) then fi+1 has a corresponding zero y0 = 2x0.
3. fi and fi+1 have the same number of zeros, i.e., for any zero y0 ∈ [−π, π] of

fi+1 there exists a unique zero of fi such that the relations in the preceding
item holds true.

4. The order of the zero y0 of fi+1 is exactly the same as the one of the zero x0

of fi so that at the lower level the new projector is easily defined in the same
way.
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Proposition 4.6. For every i = 0, . . . ,m − 1, let Ai = Ani
(fi) with A ∈

{C,H, τ} as in (1.4) and let fi be as in Proposition 4.3. Let P i
i+1 = K i

i+1 · Ani(pi)
and let us define CGCi as in (2.5). Assume that pi(x) = p̃i(x) + di χ2πZ(x) with p̃i
fulfilling (4.2) (also even in the τ case) and with di as in Proposition 4.4 (for instance,
take p̃i(x) =

√
2 [1 + cos(x)]

q
as in Proposition 4.3). Then for every i = 0, . . . ,m−1,

there exists a real and positive value βi such that

‖CGCi x‖2
Ai

� βi ‖x‖2
A2

i
, x ∈ C

ni .(4.6)

Proof. Relation (4.6) can be rewritten in matrix form as

CGCH
i Ai CGCi � βiA

2
i .

By straightforward calculation we have CGCH
i Ai CGCi = Ai CGCi, and hence (4.6)

holds if and only if AiCGCi � βiA
2
i is satisfied. By multiplying from both the sides

by A
−1/2
i we get

Ini −A
1/2
i (P i

i+1)
H
[
P i
i+1Ai(P

i
i+1)

H
]−1

P i
i+1A

1/2
i � βiAi,

and then, by defining P̂ i
i+1 = P i

i+1 ·A
1/2
i , we infer

Ini − (P̂ i
i+1)

H
[
P̂ i
i+1(P̂

i
i+1)

H
]−1

P̂ i
i+1 � βiAi,(4.7)

where P̂ i
i+1 = K i

i+1 · Ani

(
p̂i(x)

)
with p̂i(x) = pi(x) · f1/2

i (x). We notice that (4.7)
can be found in [31] while showing the TGM approximation property for the circulant
algebra, and is also contained in the proof of Lemma 3.2 in [27], while showing the
same property in the τ algebra (the Hartley case is totally analogous to circulants).
Thus, by performing a block diagonalization of all the involved matrices (see Lemma
3.2 in [27]), to have (4.6), it is enough to prove

1

p̂2
i (x) + p̂2

i (x + π)

[
p̂2
i (π + x) −p̂i(x)p̂i(π + x)

−p̂i(x)p̂i(π + x) p̂2
i (x)

]
� βi

[
fi(x)

fi(π + x)

]
for every x ∈

⋃
j∈Ini+1

{
1
2w

[ni+1]
j

}
, and once again, by following the proof of Lemma

3.2 in [27], we deduce that (4.6) is guaranteed if

1

p̂2
i (x) + p̂2

i (π + x)
·
(

p̂2
i (x)

fi(π + x)
+

p̂2
i (π + x)

fi(x)

)
� βi ∀x ∈

⋃
j∈Ini+1

{
w

[ni+1]
j

2

}
.

Therefore, in terms of the involved generating functions, we obtain that the following
conditions have to be satisfied:

1

p2
i (x)

fi(π + x)
+

p2
i (π + x)

fi(x)

·
(

p2
i (x)

f2
i (π + x)

+
p2
i (π + x)

f2
i (x)

)
� βi ∀x ∈

⋃
j∈Ini+1

{
w

[ni+1]
j

2

}
.

(4.8)
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Finally, we observe that the first inequality in (4.2) implies the uniform boundedness
(with respect to ni and to x) of the term

1

p2
i (x)

fi(π + x)
+

p2
i (π + x)

fi(x)

,

while the second inequality in (4.2) implies the uniform boundedness (with respect to
ni and to x) of the term (

p2
i (x)

f2
i (π + x)

+
p2
i (π + x)

f2
i (x)

)
,

and therefore the proof is over with βi being the products of the two constants realizing
the above mentioned bounds.

Remark 4.7. The statement in Proposition 4.6, namely relation (4.6), holds
unchanged in the more general setting where the zero x0 is not 0. It is sufficient to
show that Ai is nonsingular and indeed the rest of the proof of Proposition 4.6 will
remain the same. Let Ai = Ani(fi) with A ∈ {C,H, τ} for i = 0, . . . ,m and let x0

be the unique zero of f0 in [0, 2π) (in the τ case f0 is even and has also a zero at
2π − x0).

1. If x0 /∈
⋃

j∈In0
{w[n0]

j } (also 2π − x0 /∈
⋃

j∈In0
{w[n0]

j } in the τ case), then,

by Proposition 4.5, fi vanishes only at xi /∈
⋃

j∈Ini
{w[ni]

j } (also at 2π −
xi /∈

⋃
j∈Ini

{w[ni]
j } in the τ case) and therefore Ai is nonsingular for every

i = 0, . . . ,m.

2. If ∃ j ∈ In0
: x0 = w

[n0]
j (also 2π−x0 = w

[n0]
n+1−j in the τ case), we proceed as

in the case x0 = 0 (see Propositions 4.3 and 4.4). We fix f̃i(x) = (1− cos(x−
xi))

q, c0 = min{f0(w
[n0]
j−1), f0(w

[n0]
j+1)} and fi(x) = f̃i(x) + ci χx0+2πZ(x) (also

fi(x) = f̃i(x) + ci χ−x0+2πZ(x) in the τ case), then, by Proposition 4.5, f̃i
vanishes at xi = w

[ni]
j (also at w

[n0]
n+1−j in the τ case) for i = 0, . . . ,m. The

quantities ci, di and pi(x) are calculated as in Propositions 4.3 and 4.4, where
0 is replaced by x0. In this case Ai is again nonsingular for every i = 0, . . . ,m.

4.3. MGM optimal convergence (i.e., verification of the inf–min con-
dition). In Propositions 4.1 and 4.6 we have proven that for every i (independent
of n = n0) the constants αi and βi are absolute values not depending on n = n0

but only depending on the functions fi and pi. However, in order to fulfill conditions
(2.11a) and (2.11b) with δ independent of n (which in turn imply the MGM optimal
convergence by Theorem 2.3), we should prove the following inf–min condition:

δ = inf
n

min
1�m�φ(n)

min
0�i�m

αi

βi
= inf

n
min

0�i�φ(n)

αi

βi
> 0.(4.9)

Here φ(n) is the maximal number of possible recursion levels and it equals log2(n) for
circulants and Hartley matrices and coincides with log2(n+ 1) for τ matrices. In the
following we will consider the case where the trigonometric polynomial f0 is positive
in the interval (0, 2π) and takes the zero value at the origin, and we will demonstrate
the inf–min condition (4.9).

In the following, for a given function f , we will write Mf = supx |f |, mf = infx |f |
and µ∞(f) = Mf/mf . In (2.11a) we simply find αi

(
ω∗
i = ‖fi‖−1

∞
)

= ‖fi‖−1
∞ �
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1/(2qMψi), while (from p(x) =
√

2[1 + cos(x)]q it follows that the range of p(x) +
p(π + x) is [

√
2 · 2,

√
2 · 2q]) in order to get an upper bound for the left-hand side in

(4.8), if x ∈ (0, 2π) we obtain

p2
i (x)

f2
i (π + x)

+
p2
i (π + x)

f2
i (x)

p2
i (x)

fi(π + x)
+

p2
i (π + x)

fi(x)

=
√

2

1

ψ2
i (π + x)

+
1

ψ2
i (x)

pi(x)

ψi(π + x)
+

pi(π + x)

ψi(x)

�
√

2

2

m2
ψi

p(x) + p(π + x)

Mψi

� Mψi

m2
ψi

so βi = Mψi
/m2

ψi
works fine, while if x = 0 we have also to require 1/fi(π) � βi to

ensure that inequality (2.11b) is satisfied: more precisely, at x = 0 (by (4.8), the case
is of interest only for circulants and Hartley matrices since x = 0 is not a grid point
for τ matrices), we have

pi(0) =
√

2 2q + di,

fi(0) = ci > 0,

pi(π) = 0,

fi(π) > 0,

and therefore (4.8) holds at x = 0 with any constant βi such that 1/fi(π) � βi. Since
(Mψi/m

2
ψi

) · fi(π) � fi(π)/mψi
� 1, it follows that β∗

i = Mψi
/m2

ψi
is the best value.

As a consequence, it follows that

αi

βi
� 1

2qMψi

·
m2

ψi

Mψi

=
1

2qµ2
∞(ψi)

.(4.10)

Therefore, to enforce the inf–min condition (4.9), it is enough to prove the existence
of an absolute constant L such that µ∞(ψi) � L < +∞ uniformly to deduce that
‖MGM0‖A0

�
√

1 − 2−qL−2 < 1: the latter follows from the next proposition.
Proposition 4.8. Under the same assumptions of Proposition 4.3, let ψ0 be

a positive polynomial and let us define ψi = [Φq]
i(ψ) for every i ∈ N, where Φq

is the linear operator defined as in (4.5). Then there exists a positive polynomial
ψ∞ ∈ Rq−1 such that ψi uniformly converges to ψ∞, and moreover there exists a
positive real number L such that µ∞(ψi) � L for every i ∈ N.

Proof. The proof is organized into two parts.
Part A. From the definition of the operator Φq in (4.5) and from the assumptions

on the polynomials pi (see Proposition 4.3), it follows that the positivity (and the
boundedness) of ψ0 implies the positivity (and the boundedness) of ψi for every i ∈ N,
i.e., there exist positive constants Li such that

µ∞(ψi) � Li.(4.11)

Part B. We give a linear algebra proof of the fact that, starting a polynomial
ψ0 such that ψ0(0) > 0, the operator Φq in (4.5) has a strictly positive fixed point
belonging to Rq, and therefore there exists a constant L∞ such that

lim
i→∞

µ∞(ψi) = L∞.(4.12)

Therefore the second result (µ∞(ψi) � L for i ∈ N and for a pure constant L > 0)
will be a straightforward consequence of (4.11) and of (4.12) which, in turn, is a
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consequence of the uniform convergence of the sequence ψi and of the fact that its
limit is a strictly positive function. The latter is what we are going to prove.

From (2.14) it follows that fi ∈ RTi
with Ti+1 = q + �Ti

2 
 if f0 ∈ RT0
, and hence,

since fi = ψi[1 − cos(x)]q, there exists an index j ∈ N such that ψi ∈ Rq when i � j
and we can suppose ψi ∈ Rq. We demonstrate a bit stronger result, i.e.,{

ψ ∈ Rq

ψ(0) > 0
⇒ ∃ψ∗ ∈ Rq : [Φq]

i(ψ)
uniformly−−−−−−→ ψ∗.

As Φq is linear, by expressing the problem in the basis {e−iqx; . . . ; eiqx} and by de-
noting by Φ̄q the matrix representing Φq in such a basis, the preceding implication is
equivalent to proving that{

a ∈ C
2q+1∑2q+1

j=1 aj > 0
⇒ ∃a∗ ∈ C

2q+1 :
[
Φ̄q

]i
a −→ a∗.(4.13)

If (4.13) holds true, then there exists ψ∗ ∈ Rq (defined by ψ∗(x) =
∑

|j|�q a
∗
j+q+1e

ijx)

such that ψi −→ ψ∗ uniformly and Φq(ψ
∗) = ψ∗. Moreover, from the assumptions on

pi (see Proposition 4.3), we have pi(π) = 0, p(0) = 2q+
1
2 and therefore, by (4.5), we

have

ψi+1(0) = Φq(ψi)(0) =
p(0)

2q+
1
2

ψi(0) = ψi(0).

Thus ψ∗(0) = ψ0(0) > 0. The last condition ensures ψ∗ > 0, because, from ψ∗(x̄) = 0
and from the definition of Φq(·), it follows ψ∗(x̄/2s) = 0 for every s ∈ N (use (4.5)),
and this is clearly impossible because ψ∗ is continuous and therefore

lim
s→∞

ψ∗(x̄/2s) = ψ∗(0) > 0.

We still have to show (4.13). In actuality, (4.13) follows if we demonstrate that Φ̄q

has one eigenvalue equal to 1 with algebraic multiplicity 1 and positive eigenvector
a∗, while all the other eigenvalues λi enjoy the relation |λi| < 1: to this aim we will

use the Perron–Frobenius theorem [19, 36]. Let us look at Φ̄q. We define b
(q)
j , |j| � q,

as the Fourier coefficient of 1

2q+ 1
2
p(x) (i.e., of cos2q(x/2)):

b
(q)
j =

1

2π

∫ π

−π

1

2q+
1
2

p(x)eijx dx =
(2q)!

4q(q − j)!(q + j)!
> 0, b

(q)
j = b

(q)
--j .

It holds that p(x)eikx =
∑k+q

j=k−q b
(q)
j−ke

ijx and hence Φ̄q has (by (2.14)) the following
matrix form:

Φq

(
eikx

)
=2

�k+q
2 
∑

j=�k−q
2 	

b
(q)
2j−ke

ijx ⇒ Φq =2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b
(q)
--q

... b
(q)
1--q b

(q)
--q

...
...

. . .
. . .

b
(q)
q b

(q)
q--1 b

(q)
1--q b

(q)
--q

. . .
. . .

...
...

b
(q)
q b

(q)
q--1

...

b
(q)
q

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
--q:q×--q:q

.

(4.14)
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Nonvanishing entries in the kth column are the coefficients 2b
(q)
j such that j ≡

k (mod 2). We observe b
(q)
q = b

(q)
--q = 4−q < 1 and then we have only to check

the behavior of the eigenvalues of the submatrix M with both indices ranging from
−q + 1 to q − 1 (this matrix is the one displayed in the inner box of (4.14)). The
corresponding analysis is now straightforward: the vector of all ones is an eigenvector
of MT related to the eigenvalue 1 (because of the left side in (4.14)); ‖M‖∞ = 1,
Mij � 0 and M is irreducible. Finally, the result follows from the Perron–Frobenius
theorem applied to the matrix M .

We remark that the previous result on the limit polynomial ψ∗ can be refined a
little bit. Indeed, it belongs to Rq−1 (instead of Rq) since the eigenvector a∗ of Φq

related to the dominating eigenvalue λ = 1 is of the form⎛⎝ 0
â
0

⎞⎠ ,

where â is the positive eigenvector of M associated with the dominating eigenvalue
λ = 1.

Theorem 4.9. Let f be a trigonometric polynomial, positive in (0, 2π) and van-
ishing at 0 with order 2q (also even in the τ case); let us fix integers k0,m such that
0 < m < k0, and let us define ni, i = 0, . . . ,m, as in (2.12).

For every i = 0, . . . ,m − 1, define also the following quantities: pi(x) =
√

2
[
1 +

cos(x)
]q

+di χ2πZ(x) with di as Proposition 4.4, K i
i+1 as in (2.12), P i

i+1 = K i
i+1Ani(pi)

with A ∈ {C,H, τ} as in (1.4), and Ri as in (2.2) with Ri = Ini
−Ani

/‖fi‖∞.

If we set A0 = An0
(f + c0χ2πZ) with c0 = f(w

[n0]
1 ) in the circulant and Hartley

cases and with c0 = 0 in the τ case, and we consider b ∈ C
n0 , then the V-cycle

algorithm defined in (2.1) converges to the solution of A0x = b and is optimal (in the
sense of Definition 1.1).

Proof. From Proposition 4.2 we know that

f(x) = [1 − cos(x)]
q · ψ(x)

for some positive polynomial ψ. Now, it is enough to observe that the MGM optimal
convergence stated in Theorem 2.3 is implied by the inf–min condition (4.9) which, in
turn, by (4.10), is implied by the uniform boundedness of the quantities µ∞(ψi) and
the latter has been proven in Proposition 4.8.

4.4. The case of a unique zero at x0 �= 0: Circulant and Hartley al-
gebras. We now consider matrices belonging to the circulant and Hartley algebras,
whose generating function f0 vanishes in a generic point x0. We remark that Propo-
sition 4.2 ensures f0 = [1 − cos(x− x0)]

q
ψ0(x−x0). Consequently, as in the previous

situation (x0 = 0), we obtain a similar result.
Proposition 4.10. Under the same assumptions of Proposition 2.5, let

f0(x) = [1 − cos(x− x0)]
q
ψ0(x − x0) with q positive and integer and let ψ0 be a

positive trigonometric polynomial. By defining xi+1 = 2xi (mod 2π) and pi(x) =√
2 [1 + cos(x− xi)]

q
for every i = 0, . . . ,m − 1, we deduce that the generating func-

tions fi enjoy the following relation:

fi(x) = [1 − cos(x− xi)]
qψi(x− xi).

Proof. It suffices to write fi+1(x) = 1
2 [(p2

i fi)(
x−2xi

2 ) + (p2
i fi)(π + x−2xi

2 )] and to
apply the statement contained in Proposition 4.3.
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In such a situation the functions fi will not converge, but the values µ∞(ψi)
remain unchanged and the latter is enough to prove the MGM optimal convergence
(see (4.10)).

4.5. The case of a unique zero at x0 �= 0: the τ algebra. Since the
generating function f0 must be also even, it follows that the unicity of the zero x0 �= 0
implies that f0 has to vanish at x0 = π. In addition, it is worth mentioning that
when the coefficient matrix is A = τn0

(f0) and f0(π) = 0 and is positive elsewhere
in (0, 2π), from relation (2.13), it follows that the function f1 has a unique zero at 0.
Since the MGM optimality, for functions having a unique zero at the origin, has been
proven (see Theorem 4.9), it easily follows that the MGM optimal convergence stands
for the case of a unique zero at π. Indeed, looking at the MGM applied to τn1

(f1), it
holds that (2.9) is satisfied with

δ̄ independent of n1 =
n0 − 1

2
∀i = 1, . . .m− 1.

Therefore, Theorem 2.3 holds with δ = min{δ0, δ̄}, which is constant and independent
of n0, i.e., the MGM is optimal.

We point out that the case of generating function that vanishes at π with respect
to each variable is particularly important in applications. In fact, certain integral
equations when discretized lead to matrices belonging to this class. For instance,
the signal restoration leads to the case of f(π) = 0, while for the super-resolution
problem and image restoration we have f(π, π) = 0 [8]. Therefore, it is interesting
to stress that the application of the V-cycle algorithm is such that a discretized
integral problem is projected, at the lower level, into another which is spectrally and
structurally equivalent to a discretized differential problem.

Finally, we observe that the case of two zeros x0 and 2π − x0 for x0 /∈ {0, π}
is not different from the case of a unique zero since Proposition 4.2 holds with
[cos(x0) − cos(x)]

2q
in place of [1 − cos(x− x0)]

q
and (4.10) is satisfied as well.

5. The multilevel case. We briefly describe our choice of projectors and smoo-
thers in the multilevel case and we indicate how to generalize the proof of MGM
optimal convergence (for the TGM the optimality has been already proven in [27, 31]).

The smoothing iteration is formally defined as in the unilevel case. The projectors
are constructed as U i

i+1Ani(pi), where ni = ((ni)1, . . . , (ni)d), the polynomial pi is d

variate polynomial and the matrix U i
i+1 is defined as Ki,1

i+1 ⊗ · · · ⊗ Ki,d
i+1 with Ki,j

i+1

being the (ni+i)j×(ni)j unilevel cutting matrix related to A explicitly given in (2.12).
If the coefficient matrix is Ani(fi) with fi having a unique zero at x0 of order 2q, the
matrix Ani(pi) is chosen with pi such that

lim sup
x→x0

∣∣∣∣pi(x̂)

fi(x)

∣∣∣∣ < +∞, x̂ ∈ M(x), i = 0, . . . ,m− 1,(5.1)

where

0 <
∑

x̂∈M(x)∪{x}
p2
i (x̂), i = 0, . . . ,m− 1,(5.2)

with M(x) being the set of the “mirror points” of x introduced for d = 2 in [16]. A
formal definition is the following: x̂ ∈ M(x) if and only if x̂ �= x and ∀j = 1, . . . , d
it holds x̂j ∈ {(x)j , π + (x)j}. For d = 1, it is evident that the unique mirror point
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is π + x, while in the general case the cardinality of M(x) is 2d − 1. Notice that
∀x̂ ∈ M(x) we have M(x̂) = {M(x)\{x̂}} ∪ {x}.

If fi has more than one zero in [0, 2π]d then the corresponding polynomial pi will
be the product of the basic polynomials satisfying (5.1) and (5.2) for any single zero.

Remark 5.1. In the case of more than one zero, relation (5.2) imposes some
restrictions on the zeros of f0. First, the zeros of f0 should be of finite order (by
(5.1)) and this is true in the case of a unique zero, too. Second, if x0 is a zero of
f0 then f(x̂) > 0 for any x̂ ∈ M(x0); otherwise relationship (5.2) cannot be satisfied
with any polynomial p0. As in the unidimensional case the second restriction can be
removed by changing the “form” of the projection that is its smaller dimension.

Proposition 5.2. Let Ai = Ani
(fi), P i

i+1 = U i
i+1Ani(pi), with fi being a

nonnegative polynomial (also even in the τ case) and pi satisfying conditions (5.1)
and (5.2) (also even in the τ case).

1. The projected matrix Ai+1 coincides with Ani+1
(fi+1), where

2df̂i+1(x) =
∑

x̂∈M(x/2)∪{x/2}
fi(x̂)p2

i (x̂)

for x = (x1, . . . , xd) ∈ [−π, π]d.
2. If x0 ∈ [−π, π]d is a zero of fi(x), then fi+1 has a corresponding zero y0 ∈

[−π, π]d where y0
j = 2x0

j with j = 1, . . . , d.

3. fi and fi+1 have the same number of zeros, i.e., for any y0 ∈ [−π, π]d zero of
fi+1 there exists a unique zero of fi such that the relations in the preceding
item holds true.

4. The order of the zero y0 of fi+1 is exactly the same as the one of the zero x0

of fi so that at the lower level the new projector is easily defined in the same
way.

The preceding proposition gives us the necessary tools for talking about the MGM
optimal convergence. Indeed it is easy to verify that the proofs of Propositions 4.1
and 4.6 are directly generalized to the multilevel setting. The difficult part concerns
relation (4.10), which is strongly based on the factorization result of Proposition 4.2.
In actuality, we notice that relation (4.4) is inherently one-dimensional so that the
complete multilevel proof could require a different tool at this point of the reasoning:
in this respect, very recently, a substantial step has been made by the first two authors
by considering an additive representation of the symbols (for more details see [2]).

6. MGM techniques for multilevel Toeplitz matrices. We first observe
that the discretization of elliptic boundary value problems with constant coefficients
and many image restoration problems lead to Toeplitz structures in which the symbol
f = f0 is polynomial, nonnegative with isolated zeros, and even (with respect to every
direction if f0 is multivariate). The latter property suggests that the right starting
point for generalizing the V-cycle algorithm to Toeplitz structures should be the MGM
for τ matrices (see also the beginning of Hackbush’s book [17]).

In the following, we generalize the V-cycle techniques previously defined for the
(multilevel) τ algebra to the (multilevel) Toeplitz class using the relation (1.2) which
characterizes any Toeplitz matrix as its natural τ preconditioner plus a Hankel cor-
rection. In [27] the author presents three different choices of P i

i+1 when the coefficient
matrix An0(f0) is Toeplitz:

(A) P i
i+1 = K i

i+1Tni(pi),
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(B) P i
i+1 = K i

i+1τni
(pi),

(C) P i
i+1 = K i

i+1[ti]Tni
(pi), i = 0, . . . ,m− 1.

Here pi is the projection trigonometric polynomial defined via the same conditions
as in the τ algebra case for every level i = 0, . . . ,m− 1. For the TGM we have only
i = 0 and p0 is such that the conditions (2.15) are satisfied. On the other hand, for
the multigrid algorithm (see section 4), the polynomials pi are chosen in such a way
that the stronger conditions (4.2) are satisfied. The choice (A) is the most natural,
but unfortunately the lower level matrix Ani+1 = P i

i+1Ani(P
i
i+1)

H is not Toeplitz
unless the degree of pi does not exceed 1. With the choice (B), the optimality of the
TGM with An0 = Tn0(f0) has been proven in [27]. With the choice (C), for every
t � 0, the cutting matrix K i

i+1[t] coincides with the submatrix of K i
i+1 obtained by

deleting its first and last t rows with t = b−1, where b is the degree of pi that is equal
to the degree of p0 for i = 0, . . . ,m − 1 (according to Propositions 4.5 and 5.2, at
each level the order of the zeros of fi is preserved, and therefore the degree of pi can
be maintained constant). This projector is employed in order to preserve the exact
Toeplitz structure at each subsequent level of projection.

It is possible to preserve the exact Toeplitz structure at each level, cutting less
information. In this paper we propose a different choice, i.e.,

(D) P i
i+1 = K i

i+1{t}Tni
(pi),

where t is defined again as the degree of p0 minus 1 (we remind the reader that the
degree of pi is constant with respect to i), while

K i
i+1{t} =

[
0 t
ni+1−t | Kni−2t

ni+1−t | 0 t
ni+1−t

]
∈ R(ni+1−t)×ni .

Where 0βα ∈ R
α×β is the null matrix and Kni−2t

ni+1−t ∈ R
(ni+1−t)×(ni−2t) is the usual

cutting matrix where we put in evidence the dimensions instead of the recursion
levels. We remark that, to apply the MGM recursively, we must start from dimension
n0 = 2k0−1−2t; hence the dimension of problem at each sublevel is ni = 2k0−i−1−2t.
The matrix K i

i+1{t} is the cutting matrix that preserves the Toeplitzness at each
level cutting the lowest possible level of information. Furthermore, we observe that
K i

i+1[t] = K i
i+1{2t} for t � 1, and in addition, as can be experimentally verified, the

number of iterations required by the MGM to reach a fixed precision is bounded from
above by a constant independent of n (optimality). However, the involved constant
bound is much higher with the choice (C) than with the choice (D) and this is due to
the quantity of information that we lose in the involved choices.

Analogously, in the multilevel case, pi is a suitable multivariate nonnegative poly-
nomial of partial degrees ti + 1, with i = 1, . . . , d. Let U i

i+1{t} = Ki
i+1{t1} ⊗ · · · ⊗

Ki
i+1{td}, we define P i

i+1 = U i
i+1{t}Tni(pi), where ni = ((ni)1, . . . , (ni)d). There-

fore, the d-level Toeplitz matrix at MGM recursion level i + 1 is Tni+1(fi+1) =

P i
i+1Tni(fi)(P

i
i+1)

H ∈ R
N(ni+1)×N(ni+1) for i = 0, . . . ,m − 1, where each component

of ni+1 is defined as in the unilevel case.
The definition of the smoothing operators follows the same lines as in section 4.1.

In [27] the TGM smoothing property is proved in the Toeplitz case and, by Remark
2.4, we can extend the same property to MGM.

7. Numerical experiments. In this section we present a wide numerical exper-
imentation both in monodimensional and bidimensional cases. We stress that in both
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Table 7.1

Post-smoother strategies: (a, b, c), where a = iterations of Richardson with ωi = 1/max(fi), b
= iterations of Richardson with ωi = 2/max(fi), c = iterations of CG; i = 0, . . . ,m− 1.

(1, 0, 0) (2, 0, 0) (4, 0, 0) (1, 1, 0) (1, 0, 1)

ρ(MGM0) 0.75 0.5625 0.3164 0.375 nonstationary
# iterations 83 42 21 25 17

situations we obtain similar results (iteration number independent of problem dimen-
sion), so our algorithm performances are not worse for multidimensional problems. In
particular, this property is preserved also for the generalization of our algorithm to
multilevel Toeplitz systems proposed in section 6.

In what follows, the initial guess is x(0) = 0, the vector b is calculated from
the exact solution xi = i/n, i = 1, . . . , n. The operations are executed in double

precision and the termination condition is ‖r(k)
0 ‖2 � ε‖b‖2, where ε = 10−11 in

the monodimensional case and ε = 10−7 in the bidimensional case, since the high
condition number does not allow a more accurate solution even in double precision.
Concerning bidimensional problems, for simplicity, we consider the same dimensions
in both directions. In the monodimensional V-cycle algorithm, the system at the
coarsest level has dimension (23 − 1)× (23 − 1), while in the twodimensional case the
size is (23 − 1)2 × (23 − 1)2.

7.1. On the smoother choice. Our theoretical analysis of convergence and
optimality is done for only one iteration of a Richardson post-smoother with best
parameter ωi = 1/max(fi) for i = 0, . . . ,m− 1. Obviously, by increasing the number
of iterations of the post-smoother or by adding a pre-smoother, the MGM converges
more rapidly. In Table 7.1 we report the MGM spectral radius and the number of
iterations when varying the post-smoother strategy. The problem dimension is not
reported since by the MGM optimality the spectral radius and the number of iterations
does not change for different dimensions. From this table we can see as the MGM
spectral radius decreases, the number of iterations required by the method about
halves when we double the number of iterations of the smoother. The latter behavior
stresses the strength of our MGM, since, by doubling the number of smoothing steps,
the overall cost of a single V-cycle iteration is slightly less than doubled. Furthermore,
from Table 7.1 we observe that the use of a multi-iterative strategy (see [28]) allows
one to increase the MGM convergence speed: here for multi-iterative strategy we mean
a fast iterative solver obtained by the combination of possibly slow basic iterations
but with spectral complementary behavior. Indeed, one step of post-smoother with
Richardson and ωi = 1/max(fi) and one with ωi = 2/max(fi), i = 0, . . . ,m − 1,
lead to a V-cycle iteration which is of the same cost as the one with two iterations of
post-smoother with Richardson and ωi = 1/max(fi) for i = 0, . . . ,m−1: however the
number of iterations for reaching a given accuracy is roughly halved. According to this
strategy, using the CG (not a stationary method!), the number of iterations is further
reduced as reported in the last column of Table 7.1. We notice that the application
of a constant number of CG steps is a nonstationary iteration which reduces to a
specific Richardson method with varying parameter when we have only one CG step.
The important observation is that both Richardson with ωi = 2/max(fi) and one
step (or a few steps) of the CG method are not smoothers but, according to the
terminology of the multi-iterative methods, re intermediate (or residual) iterations. In
actuality, in a V-cycle, the smoother “well approximates” the solution in the subspace
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where the coefficient matrix is well conditioned, the coarse grid correction (CGC)
“well approximates” the solution in the ill-conditioned subspace (if the projector is
properly chosen) and the intermediate or residual iteration takes care of the possible
subspace where both the smoother and the CGC iterations failed to be effective: it
is the spectral complementarity of these basic iterations that makes the whole multi-
iterative procedure fast (see [28]). In the specific case of a V-cycle, we observe that the
action of the smoother and CGC is enough for obtaining an asymptotically optimal
method and therefore the role of the intermediate iteration amounts to accelerating
the global convergence speed (see also [31]).

According to the previous reasoning, in the following, when not differently speci-
fied, we have used one iteration of relaxed Richardson method with weight ‖fi‖−1

∞ as
pre-smoother (a real smoother!) and one CG iteration as post-smoother (a residual
iteration). Notice that the latter V-cycle has the same convergence features (see [31])
of a V-cycle with two steps of post-smoothing (one step of Richardson with weight
‖fi‖−1

∞ and one step of CG): we stress that the combination of the former two basic
iterations is a smoother, i.e., it satisfies the smoothing property in accordance with
Proposition 4.1.

7.2. Elliptic PDEs. Let us consider a d-dimensional problem on the rectangular
domain Ω = [0, 1]d:⎧⎪⎨⎪⎩ (−1)q

d∑
i=1

∂q

∂xq
i

(
a(x)

∂q

∂xq
i

u(x)

)
= g(x), x ∈ Ω, q ≥ 1,

homogeneous B.C. on ∂Ω

(7.1)

where x = (x1, . . . , xd), when discretized on a uniform grid of n = (n1, . . . , nd)
subintervals using centered finite difference of minimal precision order 2, it leads to
a multilevel band N(n) ×N(n) linear system Any = b, that does not belong to the
multilevel Toeplitz class unless a(x) is a constant function. In that case An = Tn(f (q)),
where

f (q)(x) =

d∑
i=1

[
2 − 2 cos(xi)

]q
,(7.2)

from the condition (4.6) and its generalization to the multidimensional case, we can
choose pi = p(q)(x) with

p(q)(x) =

d∏
j=1

[
2 + 2 cos(xj)

]q
which allows us to obtain the optimality of our MGM when applied to a linear system
τn(f (q))y = b.

For the τ algebra, Table 7.2 shows the number of iterations of our MGM when
increasing the dimension n both in the monodimensional and bidimensional case (n =
(n1, n2)). Concerning the circulant algebra, as already stressed, Cn(f (q)) is singular

because f (q) vanishes at the origin. Therefore, we solve the system C̃n(f (q))y = b,

where C̃n(f (q)) is the stabilized version of Cn(f (q)) defined in (1.5). Table 7.3 shows
the number of iterations of our MGM applied to these systems in the τ algebra case.

We remark that our MGM shows an optimal behavior also in the multilevel case,
and indeed a theoretic extension of the result reported in section 4 to the multidi-
mensional context is reported in [2].
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Table 7.2

Tau case: Number of iterations for increasing dimensions N(n) both in the monodimensional
case (N(n) = n) and in the bidimensional case (N(n) = n1n2, n1 = n2).

1D (monodimensional) 2D (bidimensional)
# iterations # iterations

n
f (1) f (2) f (3) n1 · n2 f (1) f (2) f (3)

27 − 1 14 17 33 (26 − 1)2 11 20 37
28 − 1 14 17 33 (27 − 1)2 11 20 37
29 − 1 14 17 33 (28 − 1)2 10 20 37
210 − 1 15 17 33 (29 − 1)2 10 20 36

Table 7.3

Circulant case with stabilization: Number of iterations for increasing dimensions N(n) both in
the monodimensional case (N(n) = n) and in the bidimensional case (N(n) = n1n2, n1 = n2).

1D (monodimensional) 2D (bidimensional)
# iterations # iterations

n
f (1) f (2) f (3) n1 · n2 f (1) f (2) f (3)

27 13 17 31 (26)2 10 19 34
28 14 17 31 (27)2 10 19 34
29 14 17 31 (28)2 10 19 34
210 14 17 31 (29)2 10 19 34

Through the procedure described in section 6 we can also directly solve the system
Tn(f (q))x = b: we must only take care to define the correct dimension to allow the
MGM recursive application. In Table 7.4 the degree of pi is �(q + 1)/2	 instead of
q (refer to section 8), since the columns number (i.e., information) deleted from our
algorithm is proportional to the degree of pi. Furthermore, to recover a practically
optimal behavior we perform νi = 2 + i iterations of pre-smoother and νi = 2 + i
iterations of post-smoother at level i (as proposed in [31]). According to the definition
of the cutting matrix K i

i+1{t}, to apply recursively the MGM, the dimension of the
ith projected system is 2r − ξ, where r ∈ N and ξ = 2 �(q + 1)/2	 − 1. From Table
7.4 we observe that our MGM shows again a practically optimal behavior both in
monodimensional and bidimensional Toeplitz cases and, moreover, we stress that the
cost of every MGM iteration with νi = 2 + i is still linear as the size N(n) of the
coefficient matrix (see the analysis of the computational cost in [31]).

7.3. Independency from the spectral decomposition of the solution. For
our experimentation so far, we obtained the data vector b from the exact solution
xi = i/n, i = 1, . . . , n (initial solution x(0) = 0 ∈ R

n). Here we emphasize that the
behavior of our algorithm does not depend on the particular spectral decomposition
of the exact solution x. We take four different types of solution where the coefficient
matrix of the system is τn(f (2)) and in Table 7.5 we report the iteration number
required by the MGM to converge. From this table we observe a similar behavior for
every different type of solution stressing the robustness of our algorithm.

7.4. Zero not in the origin. We present an example where the generating
function f0 does not vanish at the origin. More explicitly, the symbol

f0(x) = (1 − cos(x− 1))(1 − cos(x + 1)) = (cos(1) − cos(x))2



210 A. ARICÒ, M. DONATELLI, AND S. SERRA-CAPIZZANO

Table 7.4

Toeplitz case: Number of iterations for increasing dimensions N(n) both in the monodi-
mensional case (N(n) = n) and in the bidimensional case (N(n) = n1n2, n1 = n2) with
ξ = 2 �(q + 1)/2� − 1, q = 1, 2, 3.

1D (monodimensional) 2D (bidimensional)
# iterations # iterations

n
f (1) f (2) f (3) n1 · n2 f (1) f (2) f (3)

27 − ξ 9 41 53 (26 − ξ)2 6 24 33
28 − ξ 9 44 54 (27 − ξ)2 6 26 33
29 − ξ 10 47 54 (28 − ξ)2 6 27 33
210 − ξ 9 48 55 (29 − ξ)2 6 29 33

Table 7.5

Different type of solution: Number of iterations for increasing dimension n for τn(f (2)).

# iterations for xi =
n i

n
(−1)i cos

(
2iπ
n

)
1

27 − 1 17 15 17 17
28 − 1 17 14 17 17
29 − 1 17 14 17 17
210 − 1 17 14 17 17

is even and for x ∈ [0, 2π) vanishes at 1 and 2π − 1 with order 2. For simplicity, we
consider only the monodimensional τ algebra case, but the same considerations hold
in the Circulant and Hartley algebras as well. According to (4.3), choosing

p0(x) = (cos(1) + cos(x))2

we have an optimal MGM for τn(f0). Fixing x
(1)
0 = 1 and x

(2)
0 = 2π− 1, the position

of the new zeros x
(k)
i of fi, for i = 0, . . . ,m − 1 with k = 1, 2, moves according

to Proposition 4.5 and then the functions pi change at each level i. By applying
the MGM, since we have two zeros of order two, we strengthen the smoothers by
performing two iterations of pre-smoother and post-smoother. In Table 7.6 we report
the number of iterations required for convergence, which is practically constant with
regard to the dimension n, showing an optimal behavior in this case, too.

7.5. Image restoration problems. In the restoration of blurred images with
Dirichlet boundary conditions we solve a system with coefficient matrix Tn(f), where
f(x1, x2) is small and even indefinite when x1 and x2 approach π (see also [6, 18]).
Let S be the true image (for instance a “satellite”) and let us consider the blurred
image

S = Tn(ψ(x1, x2)[4 + 2 cos(x1) + 2 cos(x2)]
3)S,(7.3)

where the matrix Tn(ψ(x1, x2)[4 + 2 cos(x1) + 2 cos(x2)]
3) represents the compactly

supported and spatially invariant “blurring operator.” Here [4+2 cos(x1)+2 cos(x2)]
3

has a zero at (π, π) of order 6 and ψ(x1, x2) is a strictly positive polynomial with
nonnegative Fourier coefficients: in this way the Fourier coefficients of ψ(x1, x2)[4 +
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Table 7.6

Zero not in the origin: Number of iterations increasing the dimension for τn((cos(1) − cos(x))2).

dimension 27 − 1 28 − 1 29 − 1 210 − 1

# iterations 18 27 28 26

Table 7.7

“Satellite” restoration: Error behavior in ‖ · ‖2.

# iterations 1 10 20 30 42

error norm 8.271856E-01 4.522643E-03 4.490511E-04 5.478008E-05 4.781925E-06

2 cos(x1) + 2 cos(x2)]
3 are nonnegative as reported in the following mask:

0 0 0 0 0.0002 0 0 0 0
0 0 0 0.0007 0.0033 0.0007 0 0 0
0 0 0.0010 0.0098 0.0260 0.0098 0.0010 0 0
0 0.0007 0.0098 0.0508 0.1022 0.0508 0.0098 0.0007 0

0.0002 0.0033 0.0260 0.1022 0.1829 0.1022 0.0260 0.0033 0.0002
0 0.0007 0.0098 0.0508 0.1022 0.0508 0.0098 0.0007 0
0 0 0.0010 0.0098 0.0260 0.0098 0.0010 0 0
0 0 0 0.0007 0.0033 0.0007 0 0 0
0 0 0 0 0.0002 0 0 0 0

Therefore, the associated Toeplitz sequence is asymptotically very ill-conditioned (∼
[N(n)]3) and, despite this bad spectral behavior, the proposed multigrid method is
optimal as emphasized by the linear convergence reported in Table 7.7. The considered
choice is made in such a way that the resulting blur operator is a band approximation
of the classical Gaussian blur whose Fourier coefficients are positive, symmetric and
decay exponentially and whose generating function is close to zero in a neighborhood
of (π, π) and is positive elsewhere. Furthermore, the presence of the term ψ(x1, x2) > 0
leads to a larger bandwidth so that the resulting blurring effect is more realistic.

As in the monodimensional case described in section 4.5, in the multidimensional
case also, our discretized integral problem is projected at the lower level into a dis-
cretized differential problem, so that the optimal behavior holds as shown in section
7.2 and Table 7.7. We consider the blurred image without noise and we solve the
system (7.3) with the same smoother choice performed in section 7.2 for the Toeplitz
case.

We stress that the regularization is not necessary since the image and the point
spread function (PSF) are noise free and the conditioning of the blur operator is
only polynomial with the size of the matrix. In Figure 7.1 we report the sequence of
“satellite” image, the true image S, the blurred image S, and the restored image with
our MGM after 42 iterations.

Finally, we remark that in the case of noise the regularized systems (Tn(f) +
µI)S = S with µ > 0 (see [6]) have a better conditioning than in the case of µ = 0:
therefore, our multigrid procedure, which is optimal for µ = 0, will be robust since
the number of iterations will be bounded by a constant independent both of N(n)
and of µ > 0. In the first line of Table 7.8 we report the number of iterations for the
restoration of the blurred satellite affected by 2% of noise with varying µ and with our
projector. The second line of that table is obtained by using the same V-cycle with
the same smoothers and with the classical projector used in the PDEs context [17]
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True Image (dim: 253 × 253). Blurred Image. Restored Image after 42

iterations.

Fig. 7.1. Sequence of satellite images.

Table 7.8

Number of iterations for the satellite restoration with 2% of noise with varying µ.

µ 10−1 10−2 10−3 10−4

p(x) = (2 − 2 cos(x1))2(2 − 2 cos(x2))2 7 28 67 94
our projector

p(x) = (2 + 2 cos(x1))(2 + 2 cos(x2)) 7 32 216 1806
linear interpolation

and by Huckle et al. [18] and R. Chan, T. Chan, and W. Wan [6] in image restora-
tion: it is evident that our choice improves the convergence behavior substantially by
maintaining the same computational cost. However, in the numerics with Gaussian
blur in [6, 18] the authors obtained reasonably good results by applying the “wrong”
prolongation operator: the reason is that, as smoothers, they used very sophisticated
and costly solvers like PCG and FGMRES (flexible GMRES) with cosine/circulant
preconditioners. Therefore the success of the whole procedure is mainly due to these
auxiliary solvers which are reasonably effective on their own. Future work should try
to combine their approach (with sophisticated smoothers) and the “correct” prolon-
gation operators indicated in the present paper.

8. Concluding remarks, open problems, and future work. In this paper
we have proposed a proof technique (based on matrix inequalities and on the Perron–
Frobenius theorem) which has been successful for a rigorous convergence analysis of
the V-cycle procedure when applied to unilevel linear systems from algebras. We
have also presented some algorithmic proposals for multilevel and Toeplitz structures:
the numerical results (on discretized differential and integral problems) indicate an
optimal convergence rate of our V-cycle procedures, but still we have to provide a
theoretical analysis in the multilevel and Toeplitz settings.

Therefore future work should include the following directions:
• Toeplitz extension of the theory (for the TGM this has been done in [27]);
• multilevel extension of the theory (for matrix algebras see [2] while for mul-

tilevel Toeplitz structures only the TGM analysis is available [27]);
• multiple zero case (the TGM analysis and the numerical results are available

[7, 15, 16, 18, 27, 31]: the MGM theory should be easy but tedious following
the approach in the present paper).

Moreover, from an experimental viewpoint it is evident that conditions (2.15) are
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sufficient for the level independency and for the TGM optimality but they are not
enough for the MGM optimality (see section 3). We have proven conditions (4.2) to
be sufficient for the MGM optimality. However, from our numerics and from [31], we
know that conditions (4.2) can be replaced by

lim
x→x0

p2
i (π + x)

fi(x)
= 0,

p2
i (x) + p2

i (π + x) > 0 ∀x

by preserving the MGM optimal convergence rate (the latter are much weaker than
(4.2) and just a little bit stronger than (2.15)!). Future work should also try to answer
the previous question.
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