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By coupling two nonlinear one dimensional lattices, we demonstrate a thermal diode model that
works in a wide range of system parameters. We provide numerical and analytical evidence for the
underlying mechanism which allows heat flux in one direction while the system acts like an insulator
when the temperature gradient is reversed. The possible experimental realization in nanoscale systems
is briefly discussed.
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The understanding of the underlying dynamical
mechanisms which determines the macroscopic laws of
heat conduction is a long standing task of nonequilibrium
statistical mechanics [1]. Recent years have witnessed
some important progress in this direction even though a
satisfactory understanding is, so far, unavailable. For
example, it has been surmised that for a one dimensional
lattice, momentum conservation leads, in general, to
anomalous heat conduction [2], with heat conductivity
� which diverges with the system size L as L2=5 [3]. If
the transverse motion is considered, then �� L1=3 [4]. A
connection between the anomalous conductivity and
anomalous diffusion has been also established [5].
Moreover, after two decades of debates, it is now clear
that exponential local instability is not a necessary con-
dition for the validity of Fourier law [6].

A better understanding of the mechanism of heat con-
duction may also lead to potentially interesting applica-
tions based on the possibility to control the heat flow.
Indeed, recently, a model for a thermal rectifier has been
proposed [7] in which the rectifying effect is obtained by
acting on the parameters which control the nonlinearity
of the lattice. Although this model is far away from a
realistic implementation, nevertheless, it opens the pos-
sibility to propose thermal devices which may have prac-
tical relevance.

In this Letter we demonstrate, via computer simula-
tions, the possibility to build a thermal diode by coupling
two nonlinear lattices. Indeed, our model allows the heat
flow from one end to the other, but it inhibits the flow in
the opposite direction. The model works in a wide range
of system parameters, and the underlying microscopic
mechanism is different from the one in Ref. [7] even
though it is based on the same general idea. In the present
case the ratio of the heat currents in the two opposite
directions is 100 times larger than that in model [7] and it
is, therefore, sufficiently large to encourage experimental
work.
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Our system consists of two segments of nonlinear
lattices coupled together by a harmonic spring with con-
stant strength kint. Each segment is described by the
Hamiltonian

H �
X p2

i

2m
�

1

2
k�xi � xi�1 � a�2 �

V

�2��2
cos2�xi: (1)

In fact, Eq. (1) is the Hamiltonian of the Frenkel-
Kontorova (FK) model which is known to have normal
heat conduction [8].

For simplicity we set the mass of the particles and the
lattice constant m � a � 1. Thus the adjustable parame-
ters are kL; kint; kR; VL; VR; TL; and TR, where the let-
ters L and R indicate the left and right segment and TL;R

is the temperature of the left-right heat bath. In order to
reduce the number of adjustable parameters, we set VR �
�VL, kR � �kL, TL � T0�1���, TR � T0�1� ��, and,
unless otherwise stated, we fix VL � 5, kL � 1 so that the
adjustable parameters are reduced to four ��; �; kint; T0�.
Notice that when �> 0, the left bath is at higher tem-
perature and vice versa when �< 0.

In our numerical simulations we use fixed boundary
conditions and the N particle chain is coupled, at the two
ends, with heat baths at temperatures TL and TR respec-
tively. We use Langevin heat baths and we have checked
that our results do not depend on the particular heat bath
realization (e.g., Nosé-Hoover heat baths). We then inte-
grate the differential equations of motion by using the
fifth-order Runge-Kutta algorithm as described in [9]. We
compute the temperature profile inside the system, i.e., the
local temperature at site n defined as Tn � mh _xn

2i, where
h i stands for temporal average, and the local heat flux
Jn � kh _xn�xn � xn�1�i [1]. The simulations are performed
long enough to allow the system to reach a nonequilib-
rium steady state where the local heat flux is constant
along the chain.
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FIG. 2 (color online). (a) Heat current jJ�j versus the inter-
face elastic constant kint for N � 100, � � 0:2, T� � 0:105,
T� � 0:035. The solid circles are the current J� while empty
circles are the current J�. Inset in (a) is jJ�j versus kint for a
system of eight particles. The solid lines in the figure and in the
inset have slope equal two. (b) The temperature profile for
kint � 0:01, 0.05, 0.2 for the same parameters of (a).

FIG. 1 (color online). Heat current J versus the dimensionless
temperature difference � for different values of T0. Here the
total number of particles N � 100, kint � 0:05, � � 0:2. The
lines are drawn to guide the eye.
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In Fig. 1 we plot the heat current J versus � for differ-
ent temperatures T0. It is clearly seen that when �> 0 the
heat current increases with �, while in the region �< 0
the heat current is almost zero, i.e., the system behaves as
a thermal insulator. The results in Fig. 1 show that our
model has the rectifying effect in a wide range of tem-
peratures. The rectifying efficiency depends on tempera-
ture as well as on other parameters as described below:

kint effect. The interface elastic constant kint is a very
important parameter as it plays the role of coupling left
and right lattices. By adjusting this parameter one can
control the heat flow. Indeed, once the parameters of the
two lattices are fixed, then the smaller the coupling, the
smaller is the heat current through the system.

In order to describe quantitatively the rectifier effi-
ciency we introduce the ratio jJ�=J�j where J� is the
heat current (from left to right) when the bath at higher
temperature T� is at the left end of the chain and J� is the
heat current (from right to left) when the left end of the
chain is in contact with the bath at lower temperature T�.

Figure 2(a) shows that, by varying kint, the rectifier
efficiency jJ�=J�j changes from about 2 times at kint �
0:5 to more than 100 times for kint 
 0:01. More impor-
tantly, this figure shows that the rectifying effect is very
significant in a wide range of kint. In the inset of this
figure we show jJ�j versus kint for a system of eight
particles. It is seen that, for small kint, numerical data
follow the dependence J� / k2int over almost 2 orders of
magnitude. Therefore the ratio jJ�j / jJ�j is a constant
independent of kint.

Figure 2(b) shows the temperature profile for different
kint. There exists a large temperature jump at the interface
and this jump is much larger when the high temperature
bath is at the right end. In this case there is very small
temperature gradient inside each lattice and, as a conse-
quence, the heat current is almost vanishing.
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Effect of the lattice parameter �: As it is known [8],
in the FK model the elastic constant and the strength of
the on-site potential can be scaled to a single parameter.
Therefore, it is sufficient to study the properties of the
system (1) as a function of the single parameter �.

In Fig. 3, we show the current J� versus � for two
different interface constants: kint � 0:05 and kint � 0:2.
This figure clearly show that in a wide range of parame-
ters our model has a quite good rectifying efficiency, i.e.,
jJ�=J�j � 100.

Rectifying mechanism. To understand the underlying
rectifying mechanism, let us start from the energy
spectrum of the interface particles. Figure 4 shows the
phonon spectra of the left and right interface particles at
different temperature when the two lattices are decoupled
(kint � 0).

The match/mismatch of the energy spectra of the two
interface particles controls the heat current. It is clearly
seen from Fig. 4 that, if the left end is in contact with the
high temperature bath TL, and the right end with the low
temperature bath TR ( < TL), then the phonon spectra of
the two particles at interface overlap in a large range of
frequencies, thus the heat current can easily go through
the system from the left end to the right end. However, if
184301-2



FIG. 4 (color online). Spectra of the two particles at the
interface for different temperatures at kint � 0. (a) Particle at
the left side of the interface. (b) Particle at the right side of the
interface. Here � � 0:2, N � 100.

FIG. 3 (color online). Heat current versus � for kint � 0:2
(circles), and kint � 0:05 (triangles). The solid symbols refer
to TL � T�, TR � T�, while empty symbols refer to TL � T�,
TR � T�. Here T� � 0:105, T� � 0:035 and N � 100.
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the left end is at lower temperature TL and the right end is
at higher temperature TR ( > TL), then the phonon spec-
trum of the right interface particle is mainly in the low
frequency part, while the left interface particle is in the
high frequency part. Then there is almost no overlap in
phonon frequency; the heat current can hardly go through
from right to left, and the system behaves as an insulator.
Why the left and right particles at the interface have so
different phonon spectra? This can be understood from
the following analysis in different temperature regimes.

(1) Low temperature limit. At low temperature, the
particle is confined in the valley of the on-site potential.
By linearizing the equation of motion one can easily
obtain the frequency band [7]:

����
V

p
<!<

���������������
V � 4k

p
: (2)

For the case of Fig. 4 with T � 0:01 (left) and T � 0:002
(right), this corresponds to 0:36<!=2�< 0:48 for the
left particle and to 0:16<!=2�< 0:21 for the right
particle.

As the temperature is increased, the interparticle po-
tential kx2=2 becomes more and more important until a
critical value Tcr � V=�2��2 is reached (we take the
Boltzman constant equal unity), when the kinetic energy
is large enough to overcome the on-site potential barrier.
At this point low frequency appears and this happens at
the critical temperatures Tcr � 0:13 for V � 5 (left), and
Tcr � 0:025 for V � 1 (right). This is in quite good agree-
ment with the data of Fig. 4.

(2) High temperature limit. In the high temperature
limit the on-site potential can be neglected, the system is
close to 2 coupled harmonic chains, and the phonon band
is [10]
184301-3
0<!< 2
���
k

p
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which gives 0<!=2�< 0:32 for the left particle and
0<!=2�< 0:14 for the right particle, again in good
agreement with Fig. 4.

In fact, in order to optimize the rectifying effect, one
should avoid the overlapping of the phonon bands in the
low temperature limit [Eq. (2)] and that in the high
temperature limit [Eq. (3)] for each segment of the sys-
tem. According to the above estimates, one should have
V > 4k, which is satisfied for the case of Fig. 4.

The analysis presented here allows also to understand
why in Fig. 1 there is a region of negative conductivity for
T0 � 0:09 and �0:5< �<�0:2. Indeed in this interval
it is seen that by increasing the temperature difference
between the two heat baths, the current decreases! As
explained above, the reason for such unusual behavior is
due to the fact that by decreasing the temperature of the
left bath, the phonon spectra of the two interface particles
separate one from the other.

It is worth pointing out that it is the temperature
dependence of the phonon band that makes the rectifying
effect possible. This dependence is due to the nonlinearity
of the potential and, therefore, it should be possible to
184301-3



FIG. 5 (color online). The finite size effect of the rectifying
efficiency. Here we plot jJ�j (solid circles) and jJ�j (empty
circles) versus N. Parameters are � � 0:2, kint � 0:05, T� �
0:105, and T� � 0:035.
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observe the rectifying effect in any nonlinear lattice. The
difference between different choices of the on-site poten-
tial is quantitative rather than qualitative. For example,
we have observed the rectifying effect in the �4 model
wherein the on-site potential is kx2=2� �x4=4, but the
rectifying efficiency is not as significant as it is in the FK
model. The main reason for the very large rectifying
efficiency in the FK model is the finite height of the on-
site potential.

Finite size effect. The results shown above are for a
system with total number of particles N � 100. Since the
rectifying mechanism in our model is due to the coupling
between two dissimilar lattices it is reasonable to expect
that the number of nonlinear oscillators will definitely
affect the rectifying efficiency. This is shown in Fig. 5
where we plot jJ�j and jJ�j versus the system size N with
T� � 0:105, and T� � 0:035.

The decrease of the rectifying efficiency by increasing
N (Fig. 5) and kint (Fig. 2) can be understood in the
following way: If we denote by R the sum of thermal
resistances of the two segments, then the total resistance
of the system is R� � R� R�

int, where R�
int is interface

resistance when �> 0 and �< 0, respectively. As J� �
�TL � TR�=R�, the rectifying efficiency is jJ�=J�j �
�R� R�

int�=�R� R�
int�. Notice that R increases with N

while R�
int are N independent, they decrease with increas-

ing kint, and R�
int is much smaller than R�

int. It is therefore
clear that the efficiency decreases with increasing kint
(Fig. 2) at fixed N and by increasing N at fixed kint (Fig. 5).

For the data of Fig. 5 we have R�
int � R and, therefore,

J� is a small constant that is almost independent of N,
while J� � 1=N. As N is increased over a critical value
Nc where jJ�j � jJ�j, the rectifying effect vanishes. For
the case of Fig. 5 this happens at Nc � 105. However, we
should point out that the value of Nc depends on kint and
by decreasing kint we may increase Nc.
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Finally, we would like to discuss the possibility of an
experimental realization of our diode model. In our cal-
culations, we take dimensionless units. For a typical
atom, the dimensionless temperature T0 used in this paper
is related to the real temperature Tr by Tr � 102 � 103T0

[8]. Therefore, T0 � 1� is of the order of room tempera-
ture. If we consider the lattice distance of 1 �A, then a
lattice of 100 particles is about 10 nanometers long,
which is of a size scale that can be fabricated in today’s
laboratory. Another problem for real experiments is that
the on-site potential is due to the interaction with a
substrate. In our numerical simulations, we neglect the
heat current in the substrate. This may affect the rectify-
ing efficiency of the diode. Therefore, one needs to choose
a substrate with substantially low thermal conductivity.

In summary, we have devised a thermal diode by using
two coupled nonlinear lattices. Our model exhibits a very
significant rectifying effect in a very wide range of
system parameters. The underlying mechanism has been
discussed as well as a possible realization of the model in
a nanoscale system.
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