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We study energy transport in a one-dimensional model of elastically colliding particles with
alternate masses m and M. In order to prevent total momentum conservation, we confine particles
with mass M inside a cell of finite size. We provide convincing numerical evidence for the validity of
Fourier law of heat conduction in spite of the lack of exponential dynamical instability. Comparison
with previous results on similar models shows the relevance of the role played by total momentum
conservation.
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FIG. 1 (color online). The geometry of the model. The ele-
mentary cell (indicated by two dotted lines) has unit length
l � 1. The bars have mass M � 1, and the particles have mass
m � �

���
5

p
� 1�=2. The two heat baths at temperatures TL and TR
ity diverges with the system size. The difference between are indicated.
After several decades of intensive investigations [1–9],
the precise conditions that a dynamical system of inter-
acting particles in 1D must satisfy in order to obey the
Fourier law of heat conduction are still not known.

For noninteracting particles in external potential, it has
been shown [3] that exponential local instability leads to
Fourier law. Actually, even linear mixing without expo-
nential instability, such as that found in generic polygonal
billiards [10], has been shown to be sufficient for a dif-
fusive heat transport [4]. In addition, several interacting
nonintegrable many-particle systems which clearly obey
the Fourier law have been proposed and investigated [1].
However, it should be noted that in the above models, the
total momentum is not conserved. In several recent pa-
pers [5,6,8] it has been suggested that total momentum
conservation does not allow Fourier law. Moreover, using
renormalization group [8], it is argued that a generic
momentum conserving particle chain should, in a macro-
scopic limit, be equivalent to 1D hydrodynamics with
thermal noise where the coefficient of thermal conductiv-
ity should diverge with the system size L as ��L� / L1=3.
However, most existing numerical data do not support
this universal constant. Instead, it has been proposed that
��L� / L2�2=� [9], where � is the exponent of the diffu-
sion (h�x2i � 2Dt�), 0<� � 2.

We remark that there exists a model [11] [a particle
chain with interparticle potential V�x� � 1� cos�x�] in
which, in spite of momentum conservation, the heat con-
duction seems to obey the Fourier law. The reason for
such behavior is not clear and the precise role of the total
momentum conservation needs to be clarified.

In previous papers two models have been considered;
both are mixing and without exponential instability:
(i) the triangular billiard channel [4], which exhibits
Fourier law, and (ii) the alternate mass hard-point gas
model [7], in which the coefficient of thermal conductiv-
0031-9007=04=92(25)=254301(4)$22.50 
the two models is that in case (ii) the total momentum is
conserved, while in case (i) it is not.

On the other hand, model (i) has been criticized since,
in spite of the fact that one can perfectly well define an
internal local temperature, there is no mechanism to
provide local thermal equilibrium due to lack of inter-
particle interaction, and this may look somehow unsat-
isfactory. In this Letter, we consider a model which is
identical to the alternate mass hard-point gas [7]; namely,
it consists of a one-dimensional chain of elastically col-
liding particles with alternate masses m and M. Here,
however, in order to prevent total momentum conserva-
tion, we confine the motion of particles of mass M (bars)
inside unit cells of size l. Schematically, the model is
shown in Fig. 1 in which particles with mass m move
horizontally and collide with bars of mass M which,
besides suffering collisions with the particles, are elasti-
cally reflected back at the edges of their cells. In between
collisions, particles and bars move freely. Our numerical
results clearly indicate that our model, contrary to the
translationally invariant model [7], obeys the Fourier law.
The only difference between the two models is total
momentum conservation.

The total length of the system is L � Nl, where N is
the number of fundamental cells. In all the calculations
presented in this Letter, we fix l � 1 so that L � N. We
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also take M � 1, m � �
���
5

p
� 1�=2 and we verify that the

numerical value of the mass ratio is not relevant.
A direct way to test whether the system obeys the

Fourier law is to put two heat baths with small tempera-
ture difference into contact with the two ends of the
system and check the dependence of the thermal current
on the system size. Here statistical thermal baths are used;
that is, when the first (last) bar collides with the left
(right) side of the first (last) cell, it is injected back
with a new speed generated from the distribution

PL;R�v� �
Mjvj
TL;R

exp

�
�

Mv2

2TL;R

�
: (1)

This assures, for small temperature gradients, that the
edge particles have canonical (Maxwellian) velocity
distribution. In our simulations we fixed TL � 1:1 and
TR � 0:9.

For any given initial condition, after a long enough
transient time, the system reaches a stationary state. Then
one may compute the local temperature, defined as

T�x� � hMv2
i i for x � xbari � �i� 0:5�;

i � 1; . . .N; T�x� � hmu2j i for x � xpartj � j;

j � 1; . . .N � 1: (2)

Here xbari and xpartj can be regarded roughly as the time-
averaged positions of the ith bar and the jth particle.

In Fig. 2 we plot the temperature profile versus the
scaled length x=N for different values of N. Notice
the good linear scaling behavior. In both Figs. 2 and 3,
the average time measured by the total collisions number
is larger than 5� 1010 for N � 512, which is the largest
system size we have considered.
FIG. 2 (color online). Internal local temperature as a function
of the rescaled position x=N. The total number N of cells is
N � 64 (dotted line), N � 128 (solid line), and N � 256
(dashed line). Notice the good scaling behavior of the tem-
perature field. The inset shows kurtosis of the local velocity
distribution.
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We should emphasize that in previous models [3,4,7]
the local thermal equilibrium cannot be established,
whereas in the model considered here, the local thermal
equilibrium is well established independently of the ther-
mal baths used. We have checked that the velocity distri-
bution function for each bar and particle is a Gaussian
function whose width gives the local temperature, where-
as the kurtosis, defined by K�xbari � � �hv4

i i=3hv
2
i i

2� � 1,
for bars, and K�xpartj � � �hu4j i=3hu

2
j i

2� � 1, for particles,
are close to zero. The kurtosis versus the bar/particle site
is plotted in the inset in Fig. 2.

In Fig. 3 we show the stationary time-averaged heat
flux hji as a function of the system size N. The best fit of
numerical data gives hji � 0:24N�� with � � 0:99�
0:01. The coefficient of thermal conductivity appears
therefore to be independent of N, which means that the
Fourier law is obeyed. Its numerical value reads as � �
��hji=rT� � 1:20� 0:05.

To investigate how the energy diffuses along the sys-
tem, we set TL � TR � 1. Then, after the equilibrium
state is reached, the middle particle [i.e., the 100th one for
N � 200 in Fig. 4(a)] is given a speed u � 2=

����
m

p
, so that

its energy is 4 times bigger than the equilibrium average.
The evolution of the energy profile along the chain is then
recorded afterwards. To suppress statistical fluctuations,
106 realizations are taken into account for the average.
The width of the energy profile can be measured by its
second moment

�2�t� �

R
�E�x; t� � E0��x� x0�2dxR

�E�x; t� � E0�dx
; (3)

where E�x; t� �
P

j�mu2j=2���x� xpartj � �
P

i�Mv2
i =2� �

��x� xbari �. In our calculations for Fig. 4, E0 � 0:5 and
x0 � 100. The energy profile spreads as �2�t� � 2Dt with
D � 1:20� 0:01 [Fig. 4(b)], which agrees with the ther-
mal conductivity � � 1:20� 0:05 very well.

If the system obeys the Fourier law, its thermal con-
ductivity can also be obtained via the Green-Kubo for-
mula
FIG. 3 (color online). Scaling behavior of the stationary
time-averaged heat flux hji as a function of the system size
N. The least squares fit gives a slope �0:99� 0:01.
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FIG. 5 (color online). The Green-Kubo integral versus t for
N � 24 and T � 1. To get hJ���J�0�i used in (6), a single orbit
is followed up to time tl � 4:8� 106; the error, �hJ���J�0�i, is
estimated in the same way as in Fig. 6. Dotted lines (almost
indistinguishable) indicate the error boundaries of ��t�,
obtained by replacing the integrand in (6) by hJ���J�0�i �
�hJ���J�0�i, respectively. The errors are very small and
negligible.

FIG. 6 (color online). Absolute heat current correlation func-
tion for N � 2 and T � 1. The time average is taken over a
single orbit up to time tl � 5� 107. The dotted line shows the
standard deviation of hJ���J�0�i estimated over �tl � ��=��0
values of J��� �0�J��0� obtained by changing �0 with a step
��0 � 0:05 along the orbit. The dashed line indicates an
exponential decay exp��0:38��.

FIG. 4 (color online). Diffusive property of our model.
Initially, the system is at equilibrium with temperature
T � 1; then an impulse is given to the particle in the middle
of the chain. (a) Energy distribution along the channel at
different times. (b) The second moment of the energy distri-
bution versus time.

P H Y S I C A L R E V I E W L E T T E R S week ending
25 JUNE 2004VOLUME 92, NUMBER 25
� � lim
t!1

lim
N!1

1

NT2

Z t

0
hJ���J�0�id�; (4)

where the heat current can be written as [12]

J �
XN
i�1

1

2
�Mv3

i �mu3i �: (5)

In applying Green-Kubo theory, a periodic boundary
condition is imposed on the system.

In Fig. 5 we plot the quantity

��t� �
1

NT2

Z t

0
hJ���J�0�id�; (6)

as a function of time t for N � 24. Since hJ���J�0�i
decays in time very fast (see Fig. 6), one has that ��t�
tends to � very fast as well. The numerical result
gives � � 1:22, in excellent agreement with the heat
conductivity obtained via simulations with thermal baths
(� � 1:20).

In Fig. 6 we plot the absolute value of current-current
time correlation function C��� � hJ���J�0�i versus � for
254301-3
N � 2. It is interesting to remark that numerical results
seem to indicate a clear exponential decay of correlation
C���, which seems in contradiction with the linear, mar-
ginally unstable, dynamics. Indeed, as shown in [10], the
existence of periodic orbits in a marginally unstable
system necessarily implies an asymptotic power-law de-
cay of correlation. The asymptotic power-law tail may be,
however, very difficult or impossible to observe numeri-
cally. In fact, what we see is a transient exponential decay
over several orders of magnitude which is very robust
against changing system parameters, such as m=M or N.

Finally, we study the behavior of the thermal con-
ductivity � versus the mass ratio m=M (Fig. 7). It is
254301-3



FIG. 7 (color online). The thermal conductivity � (bullet)
versus the mass m for N � 24 and T � 1. M � 1. The solid
curve is drawn to guide the eyes.
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interesting to note that even at m � M � 1 one finds a
finite conductivity �, which is close to the maximum of
the curve in Fig. 7, in spite of the fact that in this case
(m � M) the dynamics is pseudo-integrable since, for the
isolated system, the set of magnitudes of the velocities of
initial particles is conserved. However, the system
m � M is not strictly integrable since the topology of
invariant surfaces is more complex than the one of the
tori. Notice also that local thermal equilibrium is absent
for m � M.

In the present Letter we have demonstrated diffusive
energy transport and Fourier law for a marginally stable
(nonchaotic) interacting many-particle system. We have
thus clearly demonstrated that exponential instability
(Lyapunov chaos) is not necessary for the establishment
of the Fourier law. Furthermore, we have shown that
breaking the total momentum conservation is crucial
for the validity of Fourier law while, somehow surpris-
ingly, a less important role seems to be played by the
degree of dynamical chaos.
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