Metadata, citation and similar papers at core.ac.uk

Provided by Archivio istituzionale della ricerca - Universita dell'lnsubria

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 16, NO. 10, OCTOBER 2004 1263

Selective and Authentic Third-Party Distribution
of XML Documents

Elisa Bertino, Fellow, IEEE, Barbara Carminati, Elena Ferrari, Member, IEEE,
Bhavani Thuraisingham, Fellow, IEEE, and Amar Gupta, Senior Member, IEEE

Abstract—Third-party architectures for data publishing over the Internet today are receiving growing attention, due to their scalability
properties and to the ability of efficiently managing large number of subjects and great amount of data. In a third-party architecture,
there is a distinction between the Owner and the Publisher of information. The Owner is the producer of information, whereas
Publishers are responsible for managing (a portion of) the Owner information and for answering subject queries. A relevant issue in this
architecture is how the Owner can ensure a secure and selective publishing of its data, even if the data are managed by a third-party,
which can prune some of the nodes of the original document on the basis of subject queries and access control policies. An approach
can be that of requiring the Publisher to be trusted with regard to the considered security properties. However, the serious drawback of
this solution is that large Web-based systems cannot be easily verified to be secure and can be easily penetrated. For these reasons,
in this paper, we propose an alternative approach, based on the use of digital signature techniques, which does not require the
Publisher to be trusted. The security properties we consider are authenticity and completeness of a query response, where
completeness is intended with regard to the access control policies stated by the information Owner. In particular, we show that, by
embedding in the query response one digital signature generated by the Owner and some hash values, a subject is able to locally
verify the authenticity of a query response. Moreover, we present an approach that, for a wide range of queries, allows a subject to

verify the completeness of query results.

Index Terms—Secure publishing, third-party publication, XML, authentication, completeness.

1 INTRODUCTION

ML (eXtensible Markup Language) is rapidly becoming a

de facto standard for document representation and
exchange over the Web [1]. A common requirement for Web
applications is thus the need for secure publishing of XML
documents. By secure publishing, we mean that the
publishing service must ensure some security properties
to the data it manages. Third-party architectures for data
publishing over the Web are today receiving growing
attention, due to their scalability properties and to the
ability of efficiently managing a large number of subjects
and a great amount of data. In a third-party architecture,
there is a distinction between the Owner and the Publisher of
information. The Owner is the producer of the information,
whereas Publishers are responsible for managing (a portion
of) the Owner information and for answering subject
queries. A relevant issue in this architecture is how the
Owner can ensure a secure publishing of its data, even if the

e E. Bertino is with the CERIAS and CS Department, Purdue University,
Recitation Building, 656 Oval Drive, West Lafayette, IN 47907-2086.
E-mail: bertino@cerias.purdue.edu.

e B. Carminati and E. Ferrari are with the Dipartimento di Scienze della
Cultura, Politiche e dell’Informazione, Universita dell’ Insubria, Como, Via
Valleggio 11, 22100 Como, Italy.

E-mail: {barbara.carminati, elena.ferrari}@uninsubria.

o B. Thuraisingham is with MITRE-Bedford, 202 Burlington Road, Bedford,
MA 01730-1420. E-mail: thura@mitre.org.

o A. Gupta is with the Eller College of Management, University of Arizona,
McClelland Hall 417H, PO Box 210108, Tucson, AZ 85721-0108.
E-mail: gupta@eller.arizona.edu.

Manuscript received 11 Apr. 2002; revised 11 Feb. 2003; accepted 13 Oct.
2003.

For information on obtaining reprints of this article, please send e-mail to:
tkde@computer.org, and reference IEEECS Log Number 116338.

1041-4347/04/$20.00 © 2004 IEEE

data are managed by a third-party. The most intuitive
solution is that of requiring Publishers to be trusted with
regard to the considered security properties. However, this
solution could not always be feasible in the Web environ-
ment since large Web-based systems cannot be easily
verified to be secure and can be easily penetrated. For this
reason, in this paper, we propose an alternative approach
that does not require the Publisher to be trusted. In the
paper, we mainly focus on two of the most relevant security
properties: authenticity and completeness. Ensuring docu-
ment authenticity means that the subject receiving a
document is assured that the contents of the document
itself actually originated at the claimed source. We refer to
this requirement as document source authenticity. A second
requirement is to ensure the integrity of the document
received by a subject with respect to the original document,
thus avoiding, for instance, that the Publisher modifies
some document portions before returning them to a subject.
We refer to such requirements as document contents
authenticity. Ensuring the completeness of the response
means that any subject must be able to verify that he or she
has received all the document(s) (or portion(s) of docu-
ment(s)) that is entitled to access, according to the stated
access control policies.

The key point of our approach is that, even though we do
not require the Publisher to be trusted with respect to
authenticity and completeness properties, we are able to
ensure, at the same time, that a subject is able to verify such
properties on the answer returned by a Publisher. This
capability is obtained by a combination of digital signature
and hashing techniques. Let us first consider authenticity.
In the scenario, we consider that it is not enough that the

Published by the IEEE Computer Society

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on April 16,2010 at 17:47:02 UTC from IEEE Xplore. Restrictions apply.

https://core.ac.uk/display/53543493?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1264

Owner signs each document it sends to the Publisher since
the Publisher may return to a subject only selected portions
of a document, depending on the query the subject submits
and on the access control policies in place. For this reason,
we propose an alternative solution that requires that the
Owner sends the Publisher, in addition to the documents it
is entitled to manage, a summary signature for each
managed document, generated using a technique based
on Merkle hash trees [13]. The idea is that, when a subject
submits a query to a Publisher, the Publisher also sends
him/her, besides the query result, also the signatures of the
documents on which the query is performed. In this way,
the subject can locally recompute the same bottom-up hash
value signed by the Owner and, by comparing the two
values, he/she can verify whether the Publisher has altered
the content of the query answer and can be sure of its
authenticity. The problem with this approach is that, since
the subject may be returned only selected portions of a
document, he/she may not be able to recompute the
summary signature, which is based on the whole document.
For this reason, the Publisher sends the subject a set of
additional hash values, referring to the missing portions,
which make the subject able to locally perform the
computation of the summary signature.

Query answers returned by the Publisher to a subject are
filtered according to the access control policies specified by
the information Owner. Such policies are specified by
means of an expressive credential-based access control
model [4] specifically tailored to the protection of XML
documents. Thus, additional information sent by the Owner
to the Publisher is what policies apply to what portions of
the documents it manages.

Completeness verification relies on the use of the secure
structure of an XML document, which is sent by the Owner
to the Publisher and successively returned to subjects
together with the answer to a query on the associated
document. This additional document contains the hashed
tagname and attribute names and values of the original
XML document, so that the receiving subject is prevented
from accessing information he/she is not allowed to access,
being at the same time able to perform the completeness
verification. To verify completeness of the received answer,
the idea is that the subject performs the same query
submitted to the Publisher on the secure structure. Clearly,
the query is first transformed to substitute each tag and
attribute name, and each attribute value with the corre-
sponding hash value. In the paper, we show that, by
comparing the result of the two queries, the subject is able
to verify completeness for a wide range of XPath [1] queries.

Finally, to make the Publisher able to verify which access
control policies apply to a subject, we require a subject first
subscribes to the Owner. As a result of the subscription
process, the Owner returns the subject a policy configuration,
that is, a certificate containing information about the access
control policies that apply to the subject. The subject policy
configuration is signed with the private key of the Owner to
prevent the subject from altering its content. All the security
information exchanged between the parties of our archi-
tecture is encoded using XML.

In the paper, besides providing a formal foundation for
the proposed infrastructure, we formally prove its sound-
ness. To the best of our knowledge, the work presented in
this paper is the first one that provides such a comprehensive
infrastructure for the selective, authentic, and complete
third-party publication of XML documents.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 16, NO. 10, OCTOBER 2004

The remainder of this paper is organized as follows: The
next section briefly introduces XML, Merkle hash trees, and
the access control model we use throughout the paper.
Section 3 presents the overall architecture supporting our
approach. Sections 4, 5, and 6 describe the information
generated during the interactions among the Owner, the
Publisher, and the subjects. Section 7 deals with authenticity
and completeness verification. In Section 8, we analyze
potential attacks which could be conducted by the Publish-
ers or by the subjects, whereas in Section 9, we discuss the
overhead implied by our approach. Section 10 presents
related work. Section 11 concludes the paper and outlines
future research directions. Appendix I contains an example
of security enhanced XML document, whereas Appendix II
proposes an example of authenticity verification. Finally,
Appendix III shows the formal proofs of the theorems
presented in this paper. (Appendices can be found on the
Computer Society Digital Library at http://computer.org/
tkde/archives.htm.)

2 Basic CONCEPTS

In this section, we start by first reviewing the basic concepts
of XML [1]. We then introduce Merkle hash trees [13].
Finally, we summarize the main characteristics of the access
control model used by the Owner to specify access control
policies.

2.1 Basic Concepts of XML

Building blocks of XML documents are nested, tagged
elements. Each tagged element has zero or more subele-
ments, zero or more attributes, and may contain textual
information (data content). Elements can be nested at any
depth in the document structure. Attributes can be of
different types, allowing one to specify element identifiers
(attributes of type ID), additional information about the
element (e.g., attributes of type CDATA containing textual
information), or links to other elements of the document
(attributes of type IDREF(s)/URL(s)).

To develop, on a formal basis, our approach for secure
publishing of XML documents, we introduce a formal
model of XML documents that we use throughout the
paper. In the following, we denote with Label a set of
element tags and attribute names, and with Value a set of
attribute/element values.

Definition 1 (XML document). An XML document is a tuple
d= (‘/da Ud, Ed7 ¢E,1), where:

o Vy=V;UV} is a set of nodes representing elements
and attributes, respectively. Each v € V)] has an
associated value val € Value; each v € Vi may have
an associated data content.

e U, is a node representing the document element (called
document root).

o FE;=FE5UFESCV;x Vyis the set of edges, where e €
ES is an edge representing an element-subelement
relationship or a link between elements due to
IDREF(s)/URI(s) attributes (called link edge), and
e € EY is an edge representing an element-attribute
relationship.

e ¢p, : By — Label is the edge labeling function.

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on April 16,2010 at 17:47:02 UTC from IEEE Xplore. Restrictions apply.

BERTINO ET AL.: SELECTIVE AND AUTHENTIC THIRD-PARTY DISTRIBUTION OF XML DOCUMENTS

1265

|
Annual-report

Fundi “ Fumi Furding”
Date yth i Date ype/ Amouynt Date E Typ

09/15/2002 CNR - 1/20/2002 CNR - 06/01/2002 MURST

05122002 14-Pa

Fig. 1. Graph representation of an XML document.

Based on the above definition, an XML document can be
represented as a graph. In the graph representation
adopted, white nodes represent elements, whereas black
nodes represent attributes. The graph representation con-
tains edges representing the element-attribute and the
element-subelement relationships, and link edges, represent-
ing links between elements. Solid lines represent edges,
whereas dashed lines represent link edges. An example of
XML document modeling a university annual report is
presented in Fig. 1." Further, XML can define application
specific document types using document type definitions
(DTDs) or XML Schemas.

For the scope of this paper, given the graph representa-
tion of an XML document, we assume the existence of an
order among the children of an element. The existence of
this order is fundamental when a subject has to verify the
authenticity of a query result (see Section 7.1). To define this
order, we make the assumption that, given an element e, its
attributes precede in the order the subelements of e.
Moreover, we assume the existence of a function, denoted
as child, that, given an XML document d = (V, 04, Eq, ¢5,),
an element v € V¥, and an integer i € {1, ..., N¢,}, returns
the ith child of v with regard to the defined order, where
Ne¢, denotes the number of children of node v.

2.2 Merkle Hash Trees for XML Documents

Authenticity is ensured by using the Merkle tree authenti-
cation mechanism proposed in [13] and adapting it to XML.
The method we propose allows a subject to prove source
authenticity as well as the authenticity of both the schema
and the content of a document. To accomplish this goal, the
idea is to associate an hash value with each node in the
graph representation of an XML document. More precisely,
the hash value associated with an attribute is obtained by
applying a hash function over the concatenation of the
attribute value and the attribute name. By contrast, the hash
value associated with an element is the result of the same

1. Note that no dashed lines are contained in the graph in Fig. 1 because
the corresponding document does not contain any IDREF/URI attribute.

hash function computed over the concatenation of the
element content, the element tag name, and the hash values
associated with its children nodes, both attributes and
elements. Hash values associated with the nodes of an XML
document are computed by the Merkle hash function, defined
in what follows.

Definition 2 (Merkle hash function). Let d = (Vy,v4, Ey,
¢r,) be an XML document. Let h() be a collision-resistant
hash function, and HS be the codomain of h(). The Merkle
hash function associated with d, denoted as MhX,, is a
function: V; — HS such that, for each v € V;:*

MhXy(v) =
h(h(v.wval)||h(v.name)) ifveVy
h(h(v.content)||h(v.tagname)||
MhXy(child(1,v))]| ... ||MhXq(child(Ne,,v))), ifveVy,

7

where “||” denotes the concatenation operator, and child() is
the function defined in Section 2.1.

Throughout the paper, we use the expression Merkle hash
value of v to denote the value returned by the Merkle hash
function associated with a document d when its input is one
of its nodes v, that is, MhX,;(v). The key point is that, if a
subject knows the correct Merkle hash value of a node, the
Publisher cannot forge the value of the descendant children.
Thus, to make a subject able to verify the authenticity of a
query result on a document d, the subject must possess the
Merkle hash value of the root of d. The Publisher returns
such Merkle hash value to a subject together with the query
result. The Publisher in turn receives this value from the
Owner. Since the Merkle hash value of the root of a
document is fundamental for the subject verification

2. Given an element ¢, we use the notation e.content and e.tagname to
denote the data content and the tagname of e, respectively. Note that,
according to the XML specification [1], the data content of an XML element
can consist of textual data mixed with subelements. In this case, with the
term e.content, we mean the concatenation of the different portions of
textual data contained in e. Finally, given an attribute a, the notation a.val
and a.name is used to denote the value and the name of attribute a,
respectively.

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on April 16,2010 at 17:47:02 UTC from IEEE Xplore. Restrictions apply.

1266

<Professor credID="9" sbjID="16" Clssuer="2" >
<name> Alice Brown </name>
<university> University of Milan </university>
<department> DICO </department>
<research-group> DB </research-group>
</Professor>

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 16, NO. 10,

OCTOBER 2004

<secretary credID="12" sbjID="4" issuerID="2">
<name> Tom Moore </name>
<university> University of Milan </university>
<department> DICO </department>
<level> senior </level>

</secretary>

Fig. 2. Examples of X-Sec subject credentials.

process, there is the need of ensuring that a Publisher
cannot alter it. For this reason, we impose that the Owner
must sign it, and we refer to this signature as the Merkle
Signature of a document. Usually, two approaches can be
used to generate a digital signature [15]. The first implies
the computation of the digest of the data being signed,
which is then encrypted with a secret key. In this case, to
make the receiver able to verify the authenticity of the
received data, it is required that the Owner and the receiver
share the secret key. Since the management of shared keys
in a highly dynamic scenario like the Web is very costly, we
adopt the second approach, which is based on asymmetric
encryption. Asymmetric encryption relies on the definition
of a pair keys, a public and a private key. These keys are
defined in such a way that a message encrypted with the
public key can be only decrypted using the private key, and
vice versa. According to this schema, a subject receiving the
digest encrypted with the private key of the Owner is able
to verify the authenticity, without the need of costly
management of shared secret keys. All he/she has to do
is to decrypt it with the Owner public key. Note also that,
since the data to be signed are already digested (see
Definition 2), we can directly encrypt the Merkle hash value
of the root of the document with the Owner’s private key.
Thus, with the term Merkle Signature of document d, we
simply mean the encryption with the Owner’s private key
of the Merkle hash value of the root of document d. The
correctness of a digital signature is based on the require-
ment that the signing and verification process are per-
formed on exactly the same bits. Thus, even if a single bit of
the data being signed is modified, for instance, the order of
the attributes is inverted, the digital signature cannot be
verified. To avoid this problem, we impose that the Merkle
hash function is applied on a canonical form [1] of the
corresponding XML document.

2.3 An Access Control Model for XML Documents

Access control policies are specified by the Owner accord-
ing to the access control model presented in [4], whose main
characteristics are summarized in what follows. In this
model, subjects are qualified by means of credentials. A
credential is a set of properties concerning a subject that are
relevant for security purposes (for example, age, position
within an organization). Credentials are encoded using an
XML-based language, called AX-Sec [3], as illustrated in
Fig. 2. Access control policies specify conditions on the
credentials and properties of the credentials, using an
XPath-compliant language.

The access control model provides varying access
granularity levels, and can express policies that apply to:
1) all the instances of a DTD/XML Schema, 2) collections of
documents not necessarily instances of the same DTD /XML
Schema, and 3) selected portions within a document(s), or a
link (or a set of links). This set of granularity levels is
complemented with the possibility of specifying access
control policies based on the document content, in addition
to the document structure.

Like credentials, access control policies are also encoded
using the X-Sec language. We use the term Policy Base (PB)
to denote the XML file encoding the access control policies
of the Owner.

Example 1. Fig. 3 shows a PB for the XML document in
Fig. 1. The first two access control policies authorize
DICO professors to access all the patents of their
department, whereas they are entitled to see only the
authors and the short description of patents of EED. By
contrast, the third and fourth policies state that EED
professors are entitled to access all the patents of their
department, whereas they are entitled to see only the
authors and the short description of patents of DICO.
The fifth access control policy authorizes DICO junior

«ml version="1.0" encoding="UTF-8" 7>
_bhase=

[@Dept

DICO']//node()" priv="VIEW" />

path="//Asset[@Dept="EDD']/node{)" priv="VIEW" /=
</policy_basex

licy_spec Id="P1" cred_expr="/ /Professor[department="DICO']" target="annual_report.xml" path="//Patent

<policy_spec 1d="P2" |:~red_e:x:pr="//Prufesslor[department='DICO']" target="annual_report.xml" path="//Patent

[@Dept="EED']/Short-descr/node() and //Patent[@Dept="EED']/authors" priv="VYIEW" />

<policy_spec 1d="P3" cred_expr="/ /Professor[department="EED']" target="annual_report.xml" path="/ /Patent
[@Dept="EED']//node()" priv="VIEW" />

<policy_spec 1d="P4" cred_expr="/ /Professor[department="EED']" target="annual_report.xml" path="//Patent

[@Dept="DICO']/Short-descr/node{) and //Patent[@Dept='DICO']/authors" priv="VIEW" />

y_spec Id="P8" cred_expr="//secretary[department="DICO"' and level="junior']"

annual_report.xml" path="//Asset[@Dept="DICO"']/node()" priv="VIEW" /=

spec Id="P6" cred_expr="/ /secretary[department="DICO' and level="senior']"
target="annual_report.xml" path="//Asset[@Dept="EED']/Funds/@Type and //Asset
[@Dept="EED']/Funds /@Funding-Date" priv="VIEW" /-

zpolicy_spec 1d="P?" cred_expr="//secretary[department="EED' and level="junior']" target="annual_report.xml"

Fig. 3. An example of Policy Base.

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on April 16,2010 at 17:47:02 UTC from IEEE Xplore. Restrictions apply.

BERTINO ET AL.: SELECTIVE AND AUTHENTIC THIRD-PARTY DISTRIBUTION OF XML DOCUMENTS

OWNER
Pl - \E/g T ~_Security Enhanced
Subscription “—_ XML document
/ 7 X
Request / / . . Secure N\
/Subject Policy Structure \
/' / configuration O\
[v \ \
[l
o [B
“‘ — % Subject Policy Configuration E E
T Query o
CLIENT = Reply Document PUBLISHER

<
Secure Structure

Fig. 4. System architecture.

secretaries to access the department assets. Similarly, the
last policy states that EED junior secretaries can access
the assets of EED. By contrast, the sixth access control
policy makes the DICO senior secretaries able to access
assets of EED.

3 OVERALL ARCHITECTURE

The architecture we propose for secure publishing of XML
documents, shown in Fig. 4, relies on the distinction
between the Owner of the information and one or more
Publishers, that are entitled to publish the information (or
portions of it) of the Owner and to answer subjects queries.

The Owner specifies access control policies according to
the model summarized in Section 2, and sends the Publisher
the documents it is entitled to manage. For each document,
the Owner sends the Publisher also information on which
subjects can access which portions of the document,
according to the access control policies it has specified.
Additionally, the Owner sends the Publisher the Merkle
Signature of each document it is entitled to manage. All this
additional information is encoded in XML and attached to
the original document, forming the so-called security
enhanced XML document. The information contained into
the security enhanced XML document allows a subject to
verify the authenticity of the information returned by the
Publisher, but it is not sufficient to make a subject able to
verify the completeness of a query result. For this reason,
the Owner supplies the Publisher with some additional
information about the structure of the original XML
document. This information is encoded into an XML
document, called secure structure, which contains the
structure of the XML document, transformed through the
use of an hash function. Moreover, the secure structure is
complemented with its Merkle Signature, to prevent
alterations by the Publisher.

Subjects are required to register with the Owner, during
a mandatory subscription phase. During this phase, a subject
is assigned by the Owner one or more credentials, which are
stored at the Owner site.®> As a result of the subscription
process, the Owner returns the subject the subject policy
configuration, which stores information on the access control
policies that apply to the subject. The subject policy
configuration is signed with the private key of the Owner
to prevent the subject from altering its content.

After the subscription phase has been completed, the
subject can submit queries to a Publisher. When a subject

3. Alternatively, subject credentials can be issued by a trusted third-party
Credential Authority, and presented to the Owner during the subscription
phase.

1267

submits a query, it also sends the Publisher its policy
configuration, to enable the Publisher to determine which
access control policies apply to the subject. On the basis of
the policy configuration and the submitted query, the
Publisher computes a view of the requested document(s),
which contains all and only those portions of the requested
document(s) for which the subject has an authorization
according to the access control policies in place at the
Owner site. In order to verify the authenticity of the answer,
the subject must be able to locally recompute the same
bottom-up hash value signed by the Owner (i.e., the Merkle
Signature), and to compare it with the Merkle Signature
generated by the Owner and inserted by the Publisher in
the answer. Since the view computed by the Publisher may
not contain all the nodes of the requested documents, the
subject may not be able to compute the bottom-up hash
value over the whole document by considering only the
nodes in the view. Thus, the Publisher complements the
view with additional information (e.g., hash values com-
puted over the parts of documents not contained in the
view). The Publisher locally computes both the view and
the additional information by considering only the security
enhanced version(s) of the requested document(s). The
result is an XML document, called reply document. Upon
receiving the reply document, the subject can verify, by
using only the information in the reply document itself, the
authenticity of the answer. Additionally, the subject can
make some verification on the completeness of the query
result by using the information contained in the secure
structure associated with the document on which the query
applies.

In the next sections, we describe in more details the
interactions among subjects, Publishers, and the Owner.

4 SuBJECT-OWNER INTERACTION

When a subject subscribes to the Owner, it receives back an
object called subject policy configuration (cfr. Fig. 4), provid-
ing information on the access control policies that the
subject satisfies.

Definition 3 (Subject policy configuration). Let Policies be
the set of identifiers of the access control policies* specified by
the Owner. Let s be a subject subscribing to the Owner, and let
PC(s) be the subset of Policies which contains all and only
the identifiers of policies that apply to s. The policy
configuration of s is the signature of PC(s) with the
Owner’s private key.

As all the other security information, also the subject
policy configuration is encoded using XML.

Example 2. According to the subject credentials illustrated in
Fig. 2, the access control policies which apply to Alice
Brown are P, and P». By contrast, the credential of Tom
Moore satisfies only policy P;. Thus, the policy configura-
tion of Alice Brown and Tom Moore are, respectively, the
signatures of the identifiers 1, 2, and 7 with the Owner’s
private key.

4. We assume that each access control policy is uniquely identified by an
identifier generated by the system when the policy is specified.

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on April 16,2010 at 17:47:02 UTC from IEEE Xplore. Restrictions apply.

1268

5 OWNER-PUBLISHER INTERACTION

For each document the Publisher is entitled to manage,
the Owner sends the corresponding security enhanced
document and the corresponding secure structure, which
are described in the following sections.

5.1 Security Enhanced XML Document

The first information the security enhanced document
contains is which access control policies apply to the
corresponding document. Policy information is specified
at the element level since different access control policies
can apply to different elements and/or attributes of the
same document. The idea is to encode information about
the set of policies that apply to a specific element into a
string of hexadecimal values, called policy configuration, and
to store this string as an additional attribute of the
corresponding element within the security enhanced ver-
sion of the document (this attribute is called PC). In the
following, given an XML document d, we denote with
Policies(d) = {P,...,P,} the identifiers of the access
control policies that apply to d. With each element e in d,
we associate a binary string of length equal to the
cardinality of Policies(d), denoted ps(e), where, starting
from the left side, the value of the ith bit is: 1, if the ¢th
policy in Policies(d)® applies to e; 0, otherwise. Moreover, in
order to encode this string into an hexadecimal value, we
split ps(e) into m blocks of four bits® and translate each
block into the corresponding hexadecimal representation.
Thus, the policy configuration of e, denoted as PC(e), is a
string a; ... a,,, such that a; is the hexadecimal representa-
tion of b, i =1...m. To store information about policies
that apply to ¢€’s attributes, we propose a slightly different
approach. The idea is to store into a unique attribute, added
to e and called PC,yy, the concatenation of the policy
configurations of all the attributes of e.

Finally, to make policy configurations meaningful to
Publishers, it is necessary to insert an additional element
into the security enhanced version of a document d. This
element, called Policy, contains the identifiers of the
policies in Policies(d). These identifiers are ordered accord-
ing to their values.

Example 3. Let d be the XML document in Fig. 1, and let
Policies(d) = { Py, Py, P3, Py, P5, Ps, P;} be the access con-
trol policies applying to d. The Policy element that will
be inserted into the security enhanced version of d is:
< Policy >1,2,3,4,5,6,7 < /Policy > . Thus, consider
the element Short-descr of the DICO patent, whose
corresponding policy configuration has value “90.” The
binary value corresponding to “9” is 1,001, this means
that the policies that apply to this node are those whose
identifiers are in the first and the fourth position in the
Policy element, that is, P, and Pj.

We are now ready to formally define the security
enhanced XML document.

Definition 4 (Security enhanced XML document). Let d =
(Va, U4, B, ¢g,) be an XML document, the security enhanced
(shortly SE-XML) version of d is an XML document
d=(é,z‘;ﬁi,E(’l,qﬁ’E(,l), such that:

5. The order is given by the policy identifier values.
6. If ps(e) is not a half-byte-multiple, its last block is padded with 0s.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 16, NO. 10, OCTOBER 2004

1. V;=VrEUVy, where:

e

o Vi =V7Jvpe, where vy is a node representing a
Policy element. v, is a direct child of ,; and
Vie=veiJve, UV®sig, where:

n

- Ve

new

contains Vv € Vj:

* PC(v), the policy configuration of v if:
1) there exists at least an access control
policy in PB that applies to v, and
2) wv.content is not empty; PCpy,(v),
the policy configuration of v's attributes,
if element v contains at least an attribute
to which an access control policy in PB
applies.
- Sign 15 an attribute containing the Merkle
Signature of d, that is, the signature of
MhX(va) with the Owner private key. Vs,
is a direct child of v),.
2. 17& = Uq.
3. E,=E;JE UL, where:

e FE' contains the edge connecting v, to vy,
whereas E' contains the edges connecting each
node v e V§ to the nodes storing PC(v), and
PCau(v). E' also contains the edge connecting
¥, to the node storing the Merkle Signature of d.

4. ¢p, : Eq — Label” is the edge labeling function, where

Label* = Label(d) |J {Policy, PC, PCayy, Sign},

and Label(d) is the set of element tags and attribute

names of document d.

It is important to note that, in our approach, the Owner
sends the Merkle Signature to the Publisher by inserting it
inside the SE-XML version of the corresponding document
(i.e, attribute Sign). Then, the Publisher returns it to
subjects in the reply documents. An alternative solution for
the distribution of the Merkle signatures is to release them
directly to subjects during the subscription phase. This
solution implies to send each subject the Merkle signatures
of all the XML documents at the Owner source that the
subject can access. This implies that a modification of the
Owner source requires the recomputation and distribution
of the Merkle signatures of all the documents affected by
the modification to all the subjects entitled to access these
documents. By contrast, the insertion of the Merkle
Signature of a document into its SE-XML version drastically
reduces the overhead necessary to manage the modification
of the Owner source. Indeed, in this case, the Owner sends
the Merkle signatures only to the Publishers entitled to
manage the modified documents, along with the update
versions of the corresponding SE-XML documents. Appen-
dix I (which can be found on the Computer Society Digital
Library at http://computer.org/tkde/archives.htm) re-
ports the SE-XML version of the document presented in
Fig. 1, with respect to the access control policies in Fig. 3.

5.2 Secure Structure

To prove completeness of XML queries, a subject receives
from the Publisher the secure structure of the XML
documents on which the query is performed. In this section,
we show how the secure structure is generated. The basic

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on April 16,2010 at 17:47:02 UTC from IEEE Xplore. Restrictions apply.

BERTINO ET AL.: SELECTIVE AND AUTHENTIC THIRD-PARTY DISTRIBUTION OF XML DOCUMENTS

1269

wml version="1.0" encoding="UTF-8" 7>
53 %-463947 4—“rVRSDQ"

=Ml F‘l _ATTR=

B813="fENhtL"

=" PC_ATTR=

3="gPd39" :
"04GpM" x

f44 PC= "20“ :
="60">....

-0260379="hgKID" x

0=",..." x-96869452="pKGEs" PC_

#-67303774="QTQXS" Sign="0D2mcY9%aV¥¥ /tP4g3TG+ 1kr4sFhdio=">

08" /-

-93640287="..." PC_ATTR="080808" /:

g2" ,.""}'

1="hgKID" %-¢ . PC_ATTR="060602" /=
79="yr0QjJ" -9 . PC_ATTR="060602" />
..." »-96860452="PlcZU0" PC_ATTR="808080">

ATTR="202020"=

Fig. 5. The secure structure of the XML document in Fig. 1.

idea is to supply the subject with the structure of the XML
document on which the query is submitted where, with the
term structure, we mean the XML document without data
contents, that is, containing only the names of the tags and
attributes of the XML document. The subject is then able to
locally perform on the structure all queries whose condi-
tions are against the document structure of the original
document. Thus, the subject can match the result with the
answer sent by the Publisher. Obviously, in such a basic
approach, the subject is able to view the tag and attribute
names of the whole document and thus also those referring
to portions he/she may not be authorized to access. To
overcome this drawback, the secure structure of the XML
document is generated by hashing with a standard hash
function each tag and attribute name. Since the value
returned by the hash function may contain characters not
allowed in an XML well-formed document” (e.g., “< """,
during the generation of the secure structure the resulting
hash values are encoded into an integer-based representa-
tion. Moreover, to be compliant with the XML syntax, we
insert symbol “x” as a prefix of the integer before storing it
as a tagname. Additionally, to extend the set of queries for
which it is possible to prove completeness, we also insert
the hashed attribute values of the XML document in the
secure structure. The node-set returned by evaluating a
query on the secure structure could be a superset of the
nodes the subject is entitled to see according to the Owner
access control policies. Thus, in order to verify the

7. A well-formed XML document is a document that follows the
grammar rules of XML.

completeness, the subject must also consider the access
control policies specified on the document. For this reason,
the secure structure contains also the Policy, PC, and
PCarrr elements, whose tagname and content are not
hashed. Additionally, in order to prevent alterations by the
Publisher, the Owner computes the Merkle Signature of the
secure structure. This signature is sent to Publishers
together with the corresponding secure structure. Fig. 5
shows the secure structure of the XML document in Fig. 1.

6 SUBJECT-PUBLISHER INTERACTION

When a subject s submits a query to a Publisher, the
Publisher first determines the set of nodes that need to be
returned to s. Such nodes are determined by evaluating the
query on the SE-XML version of the requested document(s)
and by pruning from the set of nodes returned by the
evaluation, those nodes corresponding to portions for
which s does not possess appropriate authorizations.
Information on access control policies that apply to s are
transmitted by s to the Publisher when submitting the
access request. More precisely, the subject sends the
Publisher his/her policy configuration together with the
submitted query. Then, the set of nodes to be returned to s
is complemented with additional information, that are used
by s to authenticate the answer and to verify its complete-
ness. In particular, all the additional information needed to
verify the authenticity, as well as the nodes of the requested
document(s) to be returned to the subject, are organized
into an XML document, called reply document, described in
the following section.

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on April 16,2010 at 17:47:02 UTC from IEEE Xplore. Restrictions apply.

1270

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING,

VOL. 16, NO. 10, OCTOBER 2004

Arral-gport

Fatera. .
2003 .W"

Uiwersity of Mo

Aecete
Asset Ass et Ditart.
Digt {7 Do) 9
Dite
DIco EED oz oo
e D
Epmg a Expensy

b pico | T
O ® () 9

Toy

Tot ‘
mding Mg
Do pef Antymt Drate P
150972002 CHE ... 1/2002002 CHE ... GOVAD02MURST .

Fig. 6. An example of XML document returned by function View().

6.1 Reply Document

For the sake of simplicity, in the following, we consider only
queries on a single document. The methods we present,
however, can be easily extended to queries referring to
multiple documents. In general, an answer to a query may
contain only selected portions of a given XML document.
For instance, consider the XML document in Fig. 1, and
suppose that an EED professor submits a query ¢ asking for
all DICO patents. According to the access control policies in
Fig. 3, the nodes answering ¢ and for which an EED
professor has the necessary authorizations are the Short-
descr and Authors elements. We assume the existence of
a function, called View(), which takes as input a query g
and the policy configuration of a subject s, and turns the set
of nodes answer to ¢ and for which s has the necessary
authorizations into a well-formed XML document. The
output of function View() for the example above is
presented in the right part of Fig. 6. In this document, the
Short-descr and Authors elements are inserted as
direct children of the node Patent from which all the
other attributes/elements are pruned. Since all the other
nodes are removed from the document, the subject is not
able starting from the document returned by View() to
recompute the Merkle hash value of the root, and then
compare it with the received Merkle Signature. It is thus
necessary to return the subject some additional information
together with the view that makes the subject able to
perform the comparison.

This information is represented by the relative Merkle hash
path defined in the following. In the definition, given a node
w, we denote with Path(w) the set of nodes connecting w to
the root of the corresponding document. Moreover, given a
node v € Path(w), we denote with Path(w,v) the subset of
nodes in Path(w) connecting w to v.

Definition 5 (Relative Merkle hash path). Let g = (V,, 7y,
Ey, ¢p,) be an SE-XML document. Let v € V7 and w €V
such that v € path(w). The relative Merkle hash path of w
with regard to v, denoted as MhPath(w,v), is a list of hash
values containing all the elements in the set

{h(f.content), h(f.tagname)|f € Path(w,v)\w} U
{MhX(e)le € sib(f), f € Path(w,v)\v},

Paterd.
pone o
Pitemt
e
05120002 BP
Dby o e ;
o Teh-deta

12

amd . e FioTe
"e O
At Dat sy e Ao

where stb() is a function that, given a node f € V,, returns f’s
siblings. The elements in the list are ordered with regard to the
order defined in Section 2.1.

Intuitively, given two nodes v, w such that v € Path(w),
MhPath(w,v) is the set of Merkle hash values necessary to
compute the Merkle hash value of v having the Merkle hash
value of w. We now introduce the formal definition of reply
document.

Definition 6 (Reply document). Let g = (V,, vy, E,, ér,) be
the SE-XML version of an XML document d, let s be a subject,
and q be a query on d submitted by s to a Publisher. Let
View(q, s) = (Vy, 0y, Ey, #5,) be the XML document answer
to q, according to the policy configuration of s. The reply
document of query ¢ with respect to s is an XML
document r = (V,, 0y, E,, ¢p,) such that:

. Vo= V;f U VS, where V. contains a node, called
AttributeElement, for each attribute a € V.
This node represents an element whose data content is
the value of a. The name of a is stored into an
additional attribute of AttributeElement, called
AttrName. The node is a direct child of the node in
V¢ corresponding to the element in View(q) to which
a belongs to.

2. ‘/7(1 = VaSi!}" U ‘/Jﬁfhputh’ where:

o V% is an attribute which contains the value of
attribute Sign in g.

o Vi pau, COntains an attribute, called MhPath, for
each e € V;’, with value:

- {MhXy(child(j,w")) | j =1,...,New}U
MhPath(w?,v9), if e is a terminal node in
Vi MhPath(w?,v?), otherwise, with v9,w?
€ V,, such that w9 is the node corresponding
to e in document g and:

* if e = vy, then v9 is the root of document
d; otherwise, let f € qu be the father of e
in document View(q), then v9 is the
node corresponding to f in document g.

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on April 16,2010 at 17:47:02 UTC from IEEE Xplore. Restrictions apply.

BERTINO ET AL.: SELECTIVE AND AUTHENTIC THIRD-PARTY DISTRIBUTION OF XML DOCUMENTS

(a) (b)

MbPath - ={ h(2.content),i 2.tagname), h(l.content), h(|.tagname), MhX ((3)}
MbPath -2={ MbX4(6), MhX 4(7), h(3.content),h(3.tagname),h(I.content),h(|.tagname),MhX 4(4), MbX 4(2)}

Fig. 7. An example of reply document.

4. Er = E; U EAttributeElement U EMhPath U ESign/ where
EsttributeElement 1S the set of edges connecting Attri-
buteElement elements with their parent, Exppath 15
the set of edges connecting MhPath attributes with the
nodes in which they are contained, and Es;,, is the
edge connecting attribute Sign with v,.

5. ¢g, : E. — Label is the edge labeling function, where

Label =
Label(g) LJ{Attribu‘ceElement7 MhPath, Sign}.

Note that a node belonging to the view returned by
function View(g) may not have as father the same node as in
the original document because such node could be not
answering the query ¢. In such a case, the reply document
contains also the information regarding the pruned nodes,
that is, the hash values belonging to the relative Merkle
hash path of the considered node with respect to its father
in the view. For instance, with reference to Fig. 6, consider
the element representing the short description. The father of
this node is the Patent element. Thus, the MhPath
attribute associated with Short-descr contains all the
hash values needed to compute the Merkle hash value of
Patent starting from Short-descr. Since Short-descr
element does not have children, by Definition 5, the
MhPath attribute contains the Merkle hash values of its
siblings, that is, the Merkle hash values of elements: Tech-
details, Authors, and of attributes: Date, Id-Pat, and
Dept. By Definition 2, with these values and with the
Short-descr element, it is possible to compute the Merkle
hash value of Patent. Moreover, if e is the root of the reply
document, the related MhPath attribute contains the Merkle
hash values necessary to compute the Merkle hash value of
the root of document d starting from node e. Thus, referring
to the above example, the MhPath attributes associated
with Patent contain all the Merkle hash values necessary
to compute the Merkle hash value of the root element (i.e.,
Annual-report element).

Since we support access control policies at the attribute
level, all attributes in View(q) are replaced in the reply
document by particular elements, called AttributeEle-
ment, whose data content is the value of the attribute itself
and whose AttrName attribute contains the name of the
attribute. This operation allows one to associate also with
the attributes in a query response the additional informa-
tion needed for subject verification (i.e., MhPath attributes).
Indeed, when different access control policies are applied to
an element and to its attributes, a query may return an
attribute, but not the element in which it is contained. As an
example, consider the XML document presented in Fig. 7a,

1271

and suppose to submit a query returning attribute a; and
elements 1 and 5. The corresponding reply document is
presented in Fig. 7b. It is easy to verify that, by using the
hash values contained into the MhPath attribute of the
AttributeElement node corresponding to a;, it is
possible to compute the Merkle hash value of element 1
(i.e., MhX;(1)). If access control policies are specified at the
element-level only, there is no need to replace attributes in
View(q) by AttributeElement elements since, in such a
case, each time a query is performed asking for an attribute,
also the element in which the attribute is contained is
returned.

6.2 Reply Document Generation
An algorithm for generating the reply document is
presented in Fig. 8. The algorithm is executed by the
Publisher and takes as input the query ¢ submitted by a
subject s, the SE-XML version of the document d on which
the query is submitted, and the policy configuration of s.
The algorithm consists of three main steps, during which it
uses two functions, called FEwvaluate() and ReBuild().
Function Evaluate() takes as input a query ¢ submitted on
document d, and returns a well-formed XML document r
containing all and only the nodes satisfying ¢. Step 3
determines which access control policies apply to each node
satisfying the query ¢. Then, it removes from the node-set
satisfying query ¢ the nodes that s is not authorized to
access, on the basis of the information in the SE-XML
version of d. Then, all the attributes in the resulting
document are replaced with an AttributeElement
element (Step 4). Moreover, an additional attribute, called
MhPath, is inserted in each node to be returned to s (Step 5).
The value of this attribute is set according to Definition 6.
The last information needed by s to verify authenticity and
completeness of query result is the Merkle Signature of
document d. This value is inserted in Step 6. Finally, in
Step 7, function ReBuild() takes as input the obtained set of
nodes and transforms them into a well-formed XML
document.

Fig. 9 shows the reply document returned by a Publisher
to an EED professor, who requests all the patents of DICO.

It is important to note that for queries returning a
complete subtree, the Publisher can generate a simplified
version of the reply document (with regard to the one
generated by Algorithm 1). Indeed, by Definition 2, the
Merkle hash value of a node depends on all and only its
descendants. Thus, by having all the nodes belonging to a
subtree, it is possible to compute the Merkle hash value of
the root of the subtree. For this reason, in this simplified
version, all MhPath attributes are omitted, with the
exception of the one in the root v, of the subtree returned
by the query.

7 SUBJECT VERIFICATION

In this section, we illustrate how a subject, upon receiving a
reply document and a secure structure, can verify the
authenticity and the completeness of the corresponding
query answer.

7.1 Authenticity Verification

Before presenting an algorithm that allows a subject to
authenticate the answer to a query, we need to introduce
the concept of authenticable element.

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on April 16,2010 at 17:47:02 UTC from IEEE Xplore. Restrictions apply.

1272

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 16, NO. 10,

Algorithm 1: The Reply Generator Algorithm

INPUT: 1. The SE-XML version g = (Vy, 0y, Eg, ¢5,) of an XML document d;
2. A query q on d submitted by s; 3. PC(s) the policy configuration of s
OUTPUT: The reply document r

1. PolConf is initialized to be empty
2. Let r = (Vy, ¥r, Er, ¢g,) be the XML document returned by function Evaluate(q)
3. For each v € V,.:
A Let v9 € V, be the node corresponding to v in document g
B If v? € V;: For each ¢ € v.PC: PolConf := PolConf|HexToBin(c)
else:
a Let w? be the father of v9
b Let j be the relative order of v9 wrt its siblings
c Let PolString be the j-th policy string extracted from w9.PC s,
d For each ¢ € PolString: PolConf := PolConf||HexToBin(c)
endif
C Find:=0
D For n =1 to length(PolConf):
a Bit := nextBit(PolConf)
b If Bit := 1:
¢ Let y be the n-th identifier stored in Policy element
i If y appears in PC(s): Find := 1, Break
endfor
E If Find = 0: Remove v from V,
F PolConf is initialized to be empty
endfor
4. For each a € V,*:
A Create a new node e with tag AttributeElement
B e.content := a.val
C Create a new attribute in e with name AttrName
D e.AttrName.val := a.name
E Add e to V., remove a from V,
endfor
5. For each w € V,:
A Let w9 € V; be the node corresponding to w in document g
BIf w=u,:v =70,
else:
a Let v be the father of w in document r
b Let v¥ € V, be the node corresponding to v in document g
endif
C Add attribute MhPath to node w
D w.MhPath := MhPath(w?,v?)
endfor
6. Add the attribute Sign to v, and set its value equal to attribute Sign in document g
7. 7:=ReBuild(r)
8. Return(7)

Fig. 8. The Reply Generator Algorithm.

Definition 7 (Authenticable element). Let d = (V, T4, Fy,
ér,) be an XML document, let g = (V,, vy, Ey, ¢5,) be the SE-
XML wversion of d, and r = (V,, 0., E,, ¢g,) be the reply
document corresponding to a query submitted on d by a subject
s. Let Vp be the set of terminal nodes of r. For each v € V, v is
authenticable by s, iff there exists v, € Vp, with v € path(v;),
such that it is possible, through a recursive bottom-up
computation, to compute the Merkle hash value of vy using only
the values in {w.MhPath|w € path(v:)}.

s. Each node in V¢ is authenticable by s.

OCTOBER 2004

Note that authenticability is required only for the nodes
of the reply document that represent elements. Indeed,
attribute nodes in the reply document (i.e., MhPath
attributes) are inserted only to store values needed to check
the authenticity of the answer. The following theorem states
the authenticability of each element of a reply document.

Theorem 1. Let g = (V,, Ty, Iy, ¢,) be the SE-XML version of
an XML document d, and r = (V;, 0, E,, ¢5,) be the reply
document corresponding to a query submitted on d by a subject

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on April 16,2010 at 17:47:02 UTC from IEEE Xplore. Restrictions apply.

BERTINO ET AL.: SELECTIVE AND AUTHENTIC THIRD-PARTY DISTRIBUTION OF XML DOCUMENTS

Patent

Fig. 9. An example of reply document.

The following definition states that a node in a reply
document is authentic if it is authenticable by the subject
receiving the document, and the recursive bottom-up
computation returns a value matching the Merkle Signature
of the requested document.

Definition 8 (Authentic element). Let g = (V,, 7, E,, ¢,) be
the SE-XML wversion of an XML document d = (Vy, 4, Eg,
¢r,), and r = (V;, 0., E., ¢p,) be the reply document corre-
sponding to a query submitted on d by a subject s. Each node
v € V¢ is authentic iff: 1) v is authenticable by s and 2) the
computed Merkle hash value of v; is equal to the decryption of
Sign.val using the Owner public key.

An algorithm for verifying the authenticity of a query
answer is presented in Fig. 10. The algorithm takes as input
a reply document r, returned as answer to a query on
document d, and returns True if all the elements in the reply
document are authentic. It returns False, otherwise. Starting
from each terminal node in the reply document, the
algorithm recomputes the Merkle hash value of the root
of d through a bottom-up computation that uses the values
of attributes MhPath of each node belonging to the path
connecting the terminal node to the root of the reply
document. In the algorithm, there is the need of knowing
where the considered element is located with regard to its
siblings, in order to correctly compute its Merkle hash
value. Due to this reason, in the Merkle hash path, we store
this information also. To do that, we use symbol “/” to
denote a subsequent level in the hierarchy, and symbol “#”
to denote the position of the element with regard to its
siblings. Then, the obtained value is compared with the
decryption of the Merkle Signature of d, using the Owner
public key® (the Merkle Signature of d is stored into
attribute Sign): If the two values coincide, then all the
nodes belonging to the path are authentic. Otherwise, the
algorithm terminates and returns False.

To clarify how the algorithm works, consider a terminal
node v; and suppose that path(v;) = {v1,...v,}, where v;,; is
thefatherofv;,j = 1,...,n — 1. According to Definition 7.1, to
compute the Merkle hash value of nodev; (j =1,...,n—1),
the algorithm uses the MhPath attributes of the nodes
belonging to path(v:). By Definition 6, the MhPath attribute

8. In the algorithm, Dgy,,..[Sign.val] denotes the decryption of the
Merkle Signature of d with the public key of the Owner.

1273

ofanode v, ; contains MhPath(v]_,,v}), wherev] ,,v}arethe
nodes corresponding to v; vj1 and vj ’ m SE-XML document g,
respectively. Between v ; and v, there could exist some
intermediate nodes in document g, which could be removed
from the reply document r by Algorithm 1. To correctly
compute the Merkle hash value of node v, it is necessary to
also consider the Merkle hash values of these removed nodes.
We denote by level, the subset of Merkle hash values
belonging to MhPath(v_,,v%), which are necessary to
compute the Merkle hash value of node v], where
vl € path(v! ARy vf). Step 2.B.a is iterated for each node vy
belonging to path(v]_,,v%). Ateach iteration function, Extract-
next-level() extracts level, from wv;_;.MhPath, for each
v € path(v]_;,v}), startmg from the father of v}, and going
up in the tree till node v is reached. The inner while cycle
extracts each Merkle hash value from level;; (using function
Extract-Next-Merkle()) and concatenates all the extracted
values into variable Merkle. When cycle 2.5.a terminates,
variable Merkle stores the Merkle hash value of node v;. The
cycle is iterated for each node in path(v;). Thus, at the end of
cycle 2. B, variable Merkle stores the Merkle hash value of the
rootof d. Then, Step 2.C' compares the computed value against
the value generated from the decryption with the publickey of
the Owner of the Merkle signature of d, stored in the Sign
attribute in the root of the reply document. If the two values
are equal then another path is considered. Otherwise, the
algorithm returns False. If, for all the paths in the reply
document, the condition in step 3.C is not verified, then the
algorithm returns True. An example of authenticity verifica-
tion is reported in Appendix II (which can be found on the
Computer Society Digital Library at http://computer.org/
tkde/archives.htm). The following theorem states that Algo-
rithm 2 can be used to verify the authenticity of an answer
returned by a Publisher.

Theorem 2. Let s be a subject, q be a query submitted by s, and r
be the reply document received by s as answer to q. Algorithm 2
returns True iff each v € V¢ is authentic.

7.2 Completeness Verification

Completeness verification is a difficult issue and greatly
depends on the kinds of queries that are submitted to a
Publisher.” We need, thus, to point out for which kind of
queries the subject is able to verify the completeness of the
answer. In general, queries on an XML document can be
classified into two groups: queries depending on the
structure of the XML document, and queries depending on
the content. The first kind of queries, to which we refer as
structure queries, impose conditions only on the structure of
the XML document. According to the XPath syntax, structure
queries are defined by means of XPath expressions that
specify only the location path. Consider the XML document
presented in Fig. 1, an example of structure query is: “//
Patent//*”, which returns the set of all the descendent
elements of the Patent element. By contrast, in the second
type of queries, that we call content-dependent queries, besides
the structure, it is also possible to specify conditions on the
content of the elements and/or attributes in the path. Among
content-dependent queries, we are able to verify complete-
ness only for those queries that state equality conditions on

9. We assume that subjects submit queries to the Publishers by means of
XPath expressions.

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on April 16,2010 at 17:47:02 UTC from IEEE Xplore. Restrictions apply.

1274

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 16, NO. 10, OCTOBER 2004

INPUT:

2 For each vy € Vp:

B For each w € Path(v;):

b Merkle :== Merkle|MhX
endwhile
1) Merkle := h(Merkle)
endfor

endfor
3 Return(True)

A reply document r = (V;., v, By, ¢5,.)
OUTPUT: True if all the nodes in r are authentic, Flalse otherwise
1 Let Vr = {v|v € V;¥ AND each children of v belongs to V;*}

A If ve.tagname = AttributeElement: MyMerkle := h(h(v:.content)||h(ve.AttName.val))
else: MyMerkle := h(vi.content)||h(ve.tagname)

a While ((curr-level:=Extract-next-level(w.MhPath))## 0):

¢) While (MhX:=Extract-next-Merkle(curr-level))# 0):
alf MhX =%#: Mhx := MyMerkle

CIf (Merkle # Dkug.y,.,.,[Sign.val]): Return(False)

Fig. 10. The Subject Verification Algorithm.

the attribute values (hereafter, we denote this kind of queries
with the term content-dependent™ queries). If we consider again
the XML document in Fig. 1, an example of content-
dependent* query is: “//Asset [@Dept=“DICO"]//*”,
that selects a set of subtrees rooted at any descendent of the
Asset element, whose Dept attribute has value “DICO.”

Now, we can show how it is possible to use the secure
structure to prove the completeness of structure and
content-dependent* queries. Both kinds of queries specify
their conditions by using only the tag/attribute names, and
the attribute value, which are information all contained in
the secure structure as hash values. The proposed solution
for completeness verification implies the translation of the
query ¢, by substituting the tag/attribute names and
attribute values with the corresponding hash values. After-
ward, the translated query can be evaluated on the secure
structure. In such a way, under the assumption of a
collision-resistant hash function, the node-set resulting by
the evaluation of the query on the secure structure
corresponds to all and only the nodes of the requested
document, answering query g¢. This node-set can be a
superset of the nodes the subject is entitled to see according
to the Owner access control policies. For this reason, in
order to verify the completeness of the answer, the subject
must consider also the access control policies specified on
the document. The secure structure contains the Policy
element, which contains the identifiers of the access control
policies that apply to the document. Therefore, by con-
sidering the Policy element and the values of the PC and
PCarrr attributes of each node in the secure structure, and
by matching these values with his/her subject policy
configuration, the subject is able to verify which are the
document nodes for which he/she has the appropriate
authorizations. According to this approach, the subject is
able to determine the set of nodes that should be returned
by the Publisher.

Before verifying completeness of the answer with the
above-mentioned approach, a preliminary required step is
that the subject verifies the authenticity of the secure

structure itself using the received signature and the strategy
for authenticity verification we have illustrated in Section 7.1.
In this way, he/she is assured that the Publisher has not
modified the secure structure given by the Owner.

We do not report here the algorithm for completeness
verification since it is similar to the algorithm for reply
document generation presented in Section 6.2. The main
difference is that, instead of evaluating the submitted query
on the secure enhanced document, the completeness
verification algorithm evaluates the translated query on
the secure structure.

Example 4. Consider the secure structure presented in Fig. 5.
Suppose that an EED junior secretary submits a query
asking for all the Fund items contained in the annual-
report. Suppose, moreover, that an untrusted Publisher
sends her a reply document containing only the first Fund
element. The completeness verification process executed
by the secretary first verifies the authenticity and integrity
of the secure structure. Then, it considers the query. In this
example, the query is “/Asset[@Dept='EED’']/
Funds/*”, to which, according to the selected hash
function, the following translation corresponds: “//x-
785490824[@x-40276037="pKGEs’]/x-
13947931/*.” The evaluation of this query on the secure
structure presented in Fig. 5 returns two nodes with
tagname x-1037159472. Since both the nodes have no
content-element, they have associated only the policy
configuration of their attributes (contained in attribute
PCarrr), whose valueis “060602.” The only policy applied
to the junior secretary is the one with 7 as the identifier.
Thus, considering the value of the Policy element, the
nodes for which the secretary has an authorization are
those whose policy configuration has the seventh bit set
equal to 1. This implies that the binary value of the second
character of PCyrrr value must have the third bit equal to
1. The binary string corresponding to 06 is 0110. This
implies that the junior secretary should access both the

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on April 16,2010 at 17:47:02 UTC from IEEE Xplore. Restrictions apply.

BERTINO ET AL.: SELECTIVE AND AUTHENTIC THIRD-PARTY DISTRIBUTION OF XML DOCUMENTS

elements. Thus, the completeness verification returns a
node-set containing the two nodes with tagname x-
1037159472. Finally, the last step of completeness
verification is to hash the answer received by the Publish-
er, and match it with the obtained node-set. The junior
secretary verifies that, in the answer received by the
Publisher an element is omitted, more precisely, a Fund
element.

8 ATTACK ANALYSIS

In this section, we analyze the potential attacks that could
be conducted by the Publishers or by the subjects.

8.1 Subject Attacks

In our architecture, subjects interact both with the Publish-
ers and with the Owner. We need, thus, to consider the
possible attacks carried out in both interactions. In the
Owner-subject interaction, there exist two different kinds of
attacks. The first kind is an authentication attack, and it
implies the existence of a malicious subject S,,, which
eavesdrops during the subscription phase of a subject S;,
the subject policy configuration. Thus, S,, can submit
queries to the Publishers exploiting the authorizations
granted to S;. The solution for this kind of attacks relies
on the adoption of a standard authentication protocol [15]
during the subscription phase.

Another possible kind of attack carried out by a subject
implies that a malicious subject makes available his/her
subject policy configuration to other subjects. To avoid this
attack, we can impose that the submitted queries, as well as
the subject policy configurations, must be signed by the
subject submitting the query.

We need to also consider the case in which one or more
authorizations are revoked from a subject. In this case, the
Owner regenerates the subject policy configuration, which
is then sent to the subject. In such a scenario, it is necessary
to avoid that a subject continues to use the old subject policy
configuration, exploiting also the revoked authorizations.
To this purpose, we assume that the Owner inserts into the
subject policy configuration also a subject ID and the
timestamp of the (re)generation. Then, the Owner stores in a
public repository each subject ID and the timestamp of his/
her latest subject policy configuration. Moreover, when a
subject is revoked, the Owner removes the relative entry
from the public repository. In such a way, the Publisher can
verify the validity of the subject policy configuration
received by the subject.

Finally, another kind of subject attack is a passive
inference of information from the secure structure. Indeed,
during completeness verification, the subject computes the
hash values corresponding to the names of the nodes
belonging to its authorized view. Then, by using such hash
values, the subject is able to deduct the existence and the
cardinality of these nodes in the secure structure. To avoid
information inference, from the secure structure, it is
possible to apply cryptographic techniques (see Section 11).

8.2 Publisher Attacks

In this paper, we have shown that authenticity verification
relies on the comparison between the Merkle hash values
locally computed by a subject by using the information
contained in the MhPath attributes, and the Merkle
Signature contained in the Sign attribute, where all these

1275

attributes are contained into the Reply document. Thus, a
possible attack conducted by a Publisher is the replacement
of the Sign element associated with an SE-XML document.
In this case, even if the query result is authentic, the
authenticity verification will always fail.'” To prevent this
attack, we can associate with each XML document a unique
ID, by inserting it as an attribute of its root. Thus, the
Merkle hash value of the root of an XML document is
computed also on the hash value of its ID. Furthermore, the
Owner must also sign, in addition to the Merkle hash value
of the root of the XML document, the corresponding ID
value. The resulting signature is then stored in the Sign
element. The Publisher then inserts in the Reply document,
together with the Sign element, also the attribute contain-
ing the corresponding ID. In such a way, the subject can
verify at first the authenticity of the answer by using the
Merkle hash value of the root. If the authentication process
fails, he/she can verify if the ID value signed by the Owner
matches the one in the Reply document and, thus, he/she
can verify whether the above attack has occurred.

9 PERFORMANCE ISSUES

In this section, we discuss the overhead implied by our
approach.

9.1 Update Management

Since, in the proposed framework, a modification on a
document also implies an update of the security-enhanced
version and of the secure structure of the document, a key
issue is the efficient management of updates. To this
purpose, we discuss, for each kind of update that could
occur over the Owner’s XML source or the Policy Base, the
corresponding updates that the Owner has to perform on
the security-enhanced version and on the secure structure
of the involved documents. There are two main kinds of
updates that need to be considered. The first is an update of
the PB, such as, for instance, an access control policy
insertion, deletion, or update. In the case of policy insertion,
it is necessary to update the SE-XML version and the secure
structure of all the documents to which the new policy
applies. However, this update does not require too much
overhead. Indeed, for each document to which the policy
applies, it is only necessary to insert the identifier of the
new policy in the Policy element, and to update all and
only the policy configurations of those nodes to which the
new access control policy applies. Management of policy
updates is simpler since it is not necessary to update the
Policy element, but only the policy configurations of those
nodes that are influenced by the policy update. Moreover,
in case of policy deletion, it is only necessary to set equal to
zero the identifier of the deleted policy in the Policy
element of the SE-XML version and of the secure structure
of all the documents to which the revoked policy applied.
All PB updates do not require to recompute the Merkle
Signature of the involved documents since this value is
computed over the root of the original XML document, thus
it does not include the policy configuration values. Thus,
upon a modification of PB, the Owner sends the Publishers
only the Policy element of all the documents affected by
the policy updates and, only in case of policy insertion and

10. Note that the same attack can also be applied to the Merkle Signature
of the secure structure.

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on April 16,2010 at 17:47:02 UTC from IEEE Xplore. Restrictions apply.

1276

modification, a set of policy configurations, one for each
node affected by the policy update.

Note, moreover, that our credential-based access control
model makes the management of subject subscriptions very
efficient. Indeed, each time a new subject subscribes to the
service or an existing subject is removed from the system, it
is not necessary to update the SE-XML version and the
secure structure of the documents on which the subject has
access, since policies are not specified according to an
identity-based mechanism.

Another kind of modification that implies an update of
the SE-XML version and of the secure structure of a
document is the update of the documents belonging to
the Owner’s source. These modifications can result in the
insertion and deletion of a node of a document or the
update of the data content of an element or of the value of
an attribute. All these updates imply the recomputation of
the Merkle Signature of the document that is sent to the
Publishers along with the updated nodes of the correspond-
ing SE-XML document and of the secure structure.

9.2 Storage Complexity of Security Related
Information

Another relevant issue is the size of the SE-XML document,
the secure structure, and the reply document with regard to
the size of the original XML document.

Let us first consider the SE-XML document. Let d =
(Va, 04, Eq, ¢5,) be an XML document, and N, be the
cardinality of V. To create the SE-XML version of d, the
Owner adds to d one attribute for the Merkle Signature, and
at most 2N, attributes representing the PC, and PCyy,
attributes, respectively. Moreover, the SE-XML version of d
contains an additional element, i.e., the Policy element.
Thus, the information, which more influences the size of the
SE-XML document, is the element/attribute policy config-
uration. More precisely, let N, be the number of access
control policies that apply to document d. The size of the
policy configuration of an element e in d is % characters.
The policy configuration of attributes of an element e is
given by the concatenation of the policy configurations of
each attribute of e. Thus, let N, be the number of attributes
associated with an element e, the size of the policy
configuration of attributes of e is IV, x % characters. Thus,
in the worst case, that is, when for each element/attribute at
least a policy is specified, the size of the original document
is increased of Ne(% + Ny X %) bytes, where Ny is the
maximum number of attributes associated with an element
of the document. It should be noted, however, that we
expect that, in most cases, both N4y and N, be very limited
because the number of different policies that usually apply
to a document, even in the case of documents with
heterogeneous security requirements, is not very high nor
the number of attributes associated with an element.
Moreover, the increased document size is compensated by
the fact that, once the Publisher has received the SE-XML
version of a document, it can locally answer subject queries,
filtering query answers according to the access control
policies of the Owner, and making a subject able to verify
query authenticity by considering only the information in
the SE-XML document and without interacting with the
Owner. Therefore, the additional information appended by
the Owner to documents are instrumental in reducing the
number of interactions with the Owner.

Let us consider now the storage overhead of the secure
structure. Similar to the SE-XML document, the secure

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 16, NO. 10, OCTOBER 2004

structure also contains policy information and the Merkle
Signature. This means that, in addition to the Sign element,
it contains a unique Policy element, and at most 2N,
additional attributes representing the PC, and PCyy,
attributes, respectively. The storage increase due to this
information is thus equal to that calculated for the SE-XML
document. We need also to make two considerations. The
first is that, according to its definition, the secure structure
does not contain data content. And, the second is that the
Publisher sends the secure structure to a subject only the
first time a subject submits a query on the corresponding
document.

Finally, we consider the storage overhead in the reply
document. In the proposed framework, in order to make a
subject able to verify the authenticity of a query result, the
Publisher adds to the query result some additional informa-
tion, i.e., the MhPath attributes. These attributes contain a set
of hash values. All these hash values have the same size,
denoted in the following as HashSize."' Thus, according to
Definition 6, given a terminal node e, the maximum size of
MhPath is equal to HashSize * Nc, 4 sum epan(e) HashSize
*(2 + |sib(f)|), where |sib(f)| denotes the number of f’s
siblings. It is, however, important to note that it is possible
that the sets of Merkle hash values stored into different
MhPath attributes be not disjoint. In order to reduce this
redundancy, in the prototype system we have developed, we
have adopted an approach that makes us able to store each
hash value only in one MhPath attribute of the reply
document. According to this approach, in the generation
phase of theMhPath attributes before inserting an hash value,
we verify if this value is already stored into another
previously computed MhPath attribute. If this is the case,
weinsertin the new MhPath attribute only a reference to such
an existing value. By this approach, the number of hash
values stored in all the MhPath attributes of a reply document
is, in the worst case, equal to the number of nodes of the
original document d. Thus, in the worst case, the size of the
information added to a query answer is N; x HashSize,
where N, is the number of nodes of d on which the query is
performed.

10 RELATED WORK

Merkle hash trees are a well-known mechanism used in
several computer areas for certified query processing. For
instance, it has been exploited by Naor and Nissim in [14] to
deal with the problem of creating and maintaining efficient
authenticated data structures holding information about the
validity of certificates. More precisely, the paper proposes
as data structure a sorted hash tree scheme, such that tree
leaves correspond to revoked certificates. Thus, verifying
that a certificate is revoked or not implies verifying the
existence of certain leaves in the tree. A similar approach
has been proposed by Devanbu et al. [8] to prove the
completeness and authenticity of queries on relational data.
Similar schemes have also been used for micropayments [5],
where Merkle hash trees are used to minimize the number
of public key signatures that are required in issuing or
authenticating a sequence of certificates. By contrast, the use
of such trees for handling XML documents is still a novel
aspect, which, to the best of our knowledge, has been so far

11. The size of the hash value depends on the algorithm used. It could be
128 or 160 bits.

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on April 16,2010 at 17:47:02 UTC from IEEE Xplore. Restrictions apply.

BERTINO ET AL.: SELECTIVE AND AUTHENTIC THIRD-PARTY DISTRIBUTION OF XML DOCUMENTS

investigated only by Devanbu et al. in [9]. In this work, the
authors have developed a scheme, based on Merkle hash
trees, allowing clients to validate the answers to certain type
of queries against XML sources managed by untrusted
publishers. The method developed in [9] is based on the
definition of a data structure, called “xtrie,” which stores
the set of possible paths that can be specified on a given
DTD. However, the work presented in [9] has many
differences with regard to our proposal. A first difference
is the type of XML documents supported by the two
approaches. In our approach, we have no limitation on the
structure of XML documents, whereas the approach
presented in [9] does not consider attributes and it imposes
that data content be only present in leaf nodes. Another
important difference is the kinds of queries for which the
subject is able to verify authenticity. In our approach, we
can certify the authenticity for each possible kind of XPath
queries, whereas the approach presented in [9] considers
only queries returning whole subtrees. A further distinction
is that we also consider completeness with regard to access
control rights, besides data authentication, and we provide
a comprehensive architecture and related mechanisms to
support data authentication and completeness services.

11 CONCLUSIONS

In this paper, we have presented an approach for secure
Web publishing of XML documents. With a set of digital
signatures generated by the Owner and no trust required
for the Publisher, we have shown that a subject can verify
the authenticity of a query response. Additionally, for a
wide range of XPath queries, a subject is also able to verify
the completeness of a query result, with respect to the
access control policies stated by the information Owner.
This is obtained using secure structures. Making a distinc-
tion between the Owner and the Publisher offers two
benefits. First, in any decentralized architecture, such a
solution offers the advantage of being scalable and of
reducing the risk that the Owner becomes the bottleneck of
the entire system. Second, this architecture does not require
the Publisher to be trusted, with respect to document
authenticity and completeness. We have already developed
a Java-based prototype implementation of the architecture
proposed in this paper, where we make use of DOMHASH
[12] for the computation of the Merkle hash values.

We plan to extend the research described in this paper
along several directions. First, we plan to develop a more
comprehensive service for confidentiality. Such a task
requires addressing two main issues. First, the Owner must
be sure that each access granted by the Publisher agrees
with the access control policies it specified. Second, a
subject must be able to verify that a Publisher does not
prevent him/her to access a document portion for which
the subject has a proper authorization according to the
policies specified by the Owner. In the work presented in
this paper, we mainly focus on client-side verification, thus
we deal only with the second issue. However, we plan to
also investigate the first issue. The idea is to use a solution
based on cryptographic techniques by applying an ap-
proach similar to that proposed by us in [2] for client/server
architectures. According to such a paradigm, different
portions of the same XML document are encrypted with
different encryption keys, according to the access control
policies applied on them, then the same encrypted copy of
the XML document is released to clients. In the third party

1277

scenario, this means that a Publisher receives an encrypted
copy of the data it is allowed to manage. Moreover, in order
to allow a Publisher to perform queries on encrypted data,
without having the encryption keys, we plan to adopt
polymorphic cryptography techniques, such as the one
adopted in [10], [11].

Then, we plan to perform an extensive performance
analysis of the proposed framework. Additionally, we
intend to integrate the Owner-Publisher system into
[4]—an XML document server providing a comprehensive
environment for securing XML documents. In this context,
an interesting issue is how to detect and prevent inference
of unauthorized data from the data source. This is the case,
for instance, of queries stating conditions on unauthorized
attributes/elements, whose answers make the subjects able
to inference avoided information. Literature and commer-
cial DBMSs propose several solutions to deal with this
issue, such as, for instance, the approaches presented in
[16], [17]. Thus, we plan to investigate how to adopt these
approaches in our framework. Moreover, we plan to
investigate the problem of completeness verification for
more generalized classes of queries. We also plan to
integrate our system with platforms for privacy preferences
[6] to ensure privacy of subjects credential, and with
anonymity services [7], as well as with evolving XML
standards.

ACKNOWLEDGMENTS

This work has been partially supported by a grant from
Microsoft Research.

REFERENCES
[1] World Wide Web Consortium, Xml, http://www.w3.org/XML,
2004.

[2] E. Bertino, B. Carminati, and E. Ferrari, “A Temporal Key
Management Scheme for Secure Broadcasting of XML Docu-
ments,” Proc. Ninth ACM Conf. Computer and Comm. Security,
pp- 31-40, 2002.

[3] E. Bertino, S. Castano, and E. Ferrari, “On Specifying Security
Policies for Web Documents with an XML-Based Language,” Proc.
Sixth ACM Symp. Access Control Models and Technologies, pp. 57-65,
2001.

[4] E.Bertino, S. Castano, and E. Ferrari, “Authorx: A Comprehensive
System for Securing XML Documents,” IEEE Internet Computing,
vol. 5, no. 3, pp. 21-31, May/June 2001.

[5] S. Charanjit and M. Yung, “Paytree: Amortized Signature for
Flexible Micropayments,” Proc. Second Usenix Workshop Electronic
Commerce, 1996.

[6] L. Cranor and J. Reagle, “The Platform for Privacy Preferences,”
Comm. ACM, vol. 42, no. 2, pp. 48-55, 1999.

[7]1 L. Cranor and P. Resnick, “Protocols for Automated Negotiations
with Buyer Anonymity and Seller Reputations,” Proc. Telecomm.
Policy Research Conf., Sept. 1997.

[8] P. Devanbu, M. Gertz, C. Martel, and S. Stubblebine, “Authentic
Third-Party Data Publication,” Proc. 14th Ann. IFIP WG 11.3
Working Conf. Database Security, Aug. 2000.

[9] P. Devanbu, M. Gertz, A. Kwong, C. Martel, G. Nuckolls, and S.
Stubblebine, “Flexible Authentication of XML Documents,” Proc.
Eighth ACM Conf. Computer and Comm. Security, 2001.

[10] H. Hacigumus, B. Iyer, C. Li, and S. Mehrotra, “Executing SQL
over Encrypted Data in the Database Service Provider Model,”
Proc. SIGMOD Conf., 2002.

[11] H.Hacigumus, B. Iyer, and S. Mehrotra, “Providing Database as a
Service,” Proc. Int’l Conf. Data Eng., 2002.

[12] H. Maruyama, K. Tamura, and N. Uramoto, “Digest Values
for Dom (Domhash),” Network Working Group, http://
www.ietf.org/rfc/rfc2803.txt, 2004.

[13] R. Merkle, “A Certified Digital Signature,” Proc. Conf. Advances in
Cryptology (Crypto '89), 1989.

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on April 16,2010 at 17:47:02 UTC from IEEE Xplore. Restrictions apply.

1278

[14] M. Naor and K. Nissim, “Certificate Revocation and Certificate
Update,” Proc. Seventh USENIX Security Symp., 1998.

W. Stallings, Network Security Essentials: Applications and Standars.
2000.

B. Thuraisingham, “The Use of Conceptual Structures for
Handling the Inference Problem, and Cover Stories for Database
Security,” Proc. Fifth IFIP WG 11.3 Working Conf. Database Security,
1991.

B. Thuraisingham, “Security Checking in Relational Database
Management Systems Augmented with Inference Engines,”
Computers and Security, vol. 6, pp. 479-492, 1987.

(15]

[lo]

(17]

Elisa Bertino is a professor of database
systems in the Department of Computer Science
and Communication at the University of Milan,
where she is currently the chair of the depart-
ment and the director of the DB&SEC Labora-
tory. She has been a visiting researcher at the
IBM Research Laboratory (now, Almaden) in
San Jose, at the Microelectronics and Computer
Technology Corporation, at Rutgers University,
at Purdue University, and at Telcordia Technol-
ogies. Her main research interests include security, privacy, database
systems, object-oriented technology, and multimedia systems. In those
areas, Professor Bertino has published more than 200 papers in all
major refereed journals, and in proceedings of international conferences
and symposia. She is a coauthor of the books Object-Oriented Database
Systems—Concepts and Architectures (1993, Addison-Wesley), Index-
ing Techniques for Advanced Database Systems (1997, Kluwer
Academic), and Intelligent Database Systems (2001, Addison-Wesley).
She is a coeditor-in-chief of the Very Large Database Systems (VLDB)
Journal and a member of the advisory board of the IEEE Transactions
on Knowledge and Data Engineering. She serves also on the editorial
boards of several scientific journals, incuding /EEE Internet Computing,
ACM Transactions on Information and System Security, Acta Informa-
tica, the Parallel and Distributed Database Journal, the Journal of
Computer Security, Data & Knowledge Engineering, the International
Journal of Cooperative Information Systems, and Science of Computer
Programming. She has been a consultant to several ltalian companies
on data management systems and applications and has given several
courses to industries. She is involved in several projects sponsored by
the European Union (EU). She is a fellow of the IEEE and a member of
the ACM, and has been been named a Golden Core Member for her
service to the IEEE Computer Society. She has served as a program
committee member of several international conferences, such as ACM
SIGMOD, VLDB, ACM OOPSLA, as program cochair of the 1998 IEEE
International Conference on Data Engineering (ICDE), as program chair
of 2000 European Conference on Object-Oriented Programming
(ECOOP 2000), and as program chair of the Seventh ACM Symposium
of Access Control Models and Technologies (SACMAT 2002). She will
be serving as program chair of the 2004 EDBT Conference.

Barbara Carminati received the MS degree in
computer sciences in 2000, and the PhD degree
in computer science from the University of
Milano, in 2004. She is an assistant professor
of computer science at the University of Insubria
at Como, ltaly. Her main research interests
include: database and Web security, XML,
secure information dissemination, and publish-
ing. She is also a lecturer at the Computer
Science School of the University of Milano and
University of Insubria at Como, and she has taught industrial courses on
topics such as database systems and security. She has served as a
program committee member for the Ninth ACM Symposium on Access
Control Models and Technologies (SACMAT ’04).

0 g
N

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 16, NO. 10, OCTOBER 2004

Elena Ferrari received the PhD degree in
computer science from the University of Milano,
in 1997. She is a professor of database systems
at the University of Insubria at Como, ltaly. She
has also been on the faculty in the Department
of Computer Science at the University of Milano,
Italy, from 1998 to March 2001. She has been a
visiting researcher at George Mason University,
Fairfax (Virginia), and at Rutgers University,
Newark (New Jersey). Her main research inter-
ests include database and Web security, temporal and multimedia
databases. In those areas, Professor Ferrari has published several
papers in all major refereed journals, and in proceedings of international
conferences and symposia. She is on the editorial board of the VLDB
Journal and the International Journal of Information Technology (IJIT).
She has served as program chair of the Ninth ACM Symposium on
Access Control Models and Technologies (SACMAT '04), COMPSAC
'02 Workshop on Web Security and Semantic Web, the first ECOOP
Workshop on XML and Object Technology, and the first ECOOP
Workshop on Obiject-oriented Databases. Dr. Ferrari was also the
general chair of the Eighth ACM Symposium on Access Control Models
and Technologies (SACMAT ’03) and the Software Demonstration Chair
of the 10th International Conference on Extending Database Technol-
ogies (EDBT ’04). She has also served as program committee member
for several international conferences. She is a member of the ACM and

the IEEE.

Bhavani Thuraisingham is the Program Direc-
tor in Data and Applications Security at the US
National Science Foundation (NSF). She has
been with the MITRE Corporation since January
1989 and is currently on IPA to NSF. She has
worked in secure databases for more than 17
years and is the recipient of the IEEE Computer
Society’s 1997 Technical Achievement Award
for outstanding and innovative contributions to
secure distributed data management and IEEE’s
2003 Fellow Award for contributions to secure systems involving
database systems, distributed systems, and the Web. Recently, she
received the AAAS 2003 Fellow Award for her research in secure Web
information management. She has published more than 400 technical
papers and reports, including more than 60 journal articles in secure
data management and information technology. She is the inventor of
three patents for MITRE on Database Inference Control. She has written
six books on data management and data mining for technical managers.
Her recent book is on Web data management technologies and their
applications to counter-terrorism based on her keynote presentations on
the subject at the White House and at the United Nations in 2002. Her
current research interests are in secure semantic Web, privacy
constraints processing, and secure sensor information management.
She is a fellow of the IEEE.

Amar Gupta received the bachelor’s degree in
electrical engineering and the master’s degree in
management from the Massachusetts Institute
of Technology (MIT), and a doctorate in compu-
ter science. He holds the Thomas R. Brown
Chair in Management and Technology at the
University of Arizona in Tucson. He is also a
professor of enterpreneurship and MIS, and the
senior director for research and business devel-
opment at the Eller College of Management at
this university. Prior to accepting this endowed position in 2004, he
worked in various capacities at MIT for 25 years, including as codirector
of the Productivity from Information Technology Initiative for half of this
tenure. He has published more than 100 papers in prestigious journals
and is currently the associate editor of the ACM Transactions on Internet
Technology. His areas of research includes knowledge acquisition,
knowledge discovery, knowledge management, and knowledge dis-
semination. He is a senior member of the IEEE and the IEEE Computer
Society.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on April 16,2010 at 17:47:02 UTC from IEEE Xplore. Restrictions apply.

