

C. Aykanat et al. (Eds.): ISCIS 2004, LNCS 3280, pp. 706−717, 2004.
© Springer-Verlag Berlin Heidelberg 2004

Designing and Enacting Simulations
 Using Distributed Components*

Alberto Coen-Porisini, Ignazio Gallo, and Antonella Zanzi

Dipartimento di Informatica e Comunicazione – Università degli Studi dell’Insubria
Via Mazzini, 5 – Varese 21100, Italy

{alberto.coenporisini,ignazio.gallo}@uninsubria.it
antonella.zanzi@uninsubria.it

Abstract. In the simulation field the demand for distributed architectures is
increasing for several reasons, mainly to reuse existing simulators and to model
complex systems that could be difficult to realize with a single application. In
this paper the ASIA platform that aims at supporting the simulation design and
simulators integration is presented. The paper focuses mainly on the
comparison of the ASIA platform and the High Level Architecture standard. An
example in the manufacturing field is presented as a basis for the comparison of
the two approaches. Finally, some considerations are outlined in the perspective
of the integration of the two environments.

1 Introduction

Simulation allows one to see the effect of the design, configuration or control choices
without having to build or modify such systems, providing in this way a flexible and
cost effective way to assess design, configuration or control choices.

Many simulation tools are available supporting approaches based on different
mathematical models. Moreover, in recent years the issue of interoperability among
such tools has been addressed by many people. One of the main efforts has led to the
definition of the High Level Architecture (HLA) [1], which was initially developed by
the US DoD and more recently has become an IEEE standard [2]. HLA defines a
common architecture supporting reuse and interoperability of simulations and is
intended to have a wide applicability to many different areas. However, its practical
use requires highly skilled people because of its inherent complexity. Moreover, HLA
does not fully address the problem of providing an integrated design environment that
one can use to design simulations while designing systems.

Another approach was introduced by the ESPRIT Project ASIA, which aimed at
defining and implementing an open platform for supporting design and simulation
activities and allowing the integration of simulation tools. The definition of such an
environment required to identify all activities that occur when designing/simulating a
system. The initial results led to the implementation of a CORBA based platform
allowing interoperability among simulators.

* Work supported by the Italian MIUR-FIRB – Tecnologie abilitanti per la Società della

conoscenza ICT.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio istituzionale della ricerca - Università dell'Insubria

https://core.ac.uk/display/53543466?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Designing and Enacting Simulations Using Distributed Components 707

This paper reports on the results of a long term research, aimed at defining an
open-source platform for supporting design and simulation activities and allowing
integration of simulation tools. The paper reviews the main results of the ASIA
project and discusses the relationship among the ASIA approach and HLA by
providing an evaluation of both approaches and by discussing how they can be
actually integrated. One of the advantages we expect from such integration is in term
of usability since users can carry out the activities related to designing and simulating
systems within a single framework.

The paper is organized in the following way: Section 2 presents the ASIA
approach; Section 3 provides a short description of HLA; Section 4 introduces an
example in the domain of Flexible Manufacturing Systems and shows how it can be
dealt with using both ASIA and HLA; Section 5 discusses the main differences and
similarities between the two approaches; Section 6 discusses how ASIA and HLA can
be integrated, while Section 7 reviews the related works. Finally, Section 8 draws
some conclusions.

2 The ASIA Approach

The Esprit ASIA (1998-2001) project aimed at defining and implementing an open
platform for supporting both design and simulation activities and allowing an
effective integration of simulation tools. Two different application domains were
taken into account: space communication and traffic management. Starting from the
requirements expressed by end users of the above mentioned domains ASIA defined
an environment in which all the different activities related to the design and
simulation of systems were supported. However, many issues that were initially
identified were not investigated during the project. Thus, the research on simulation
integration has continued and is still ongoing. In what follows we summarize the
ASIA approach referring to its actual status, which has significantly evolved since the
end of the original project.

2.1 Simulation Design Process

In what follows we briefly discuss a process lifecycle, which is referred to as the
simulation design process, even if what is taken into account is a simulation based
system design. The design process guides system engineers through the enactment of
their systems and can be modeled by a set of “macro” activities, which are general
enough to be applied to almost any domain. The simulation design process, shown in
Figure 1, comprises three main activities.
1. Defining the Information Model means to define the elements that belong to an

application domain, which represent either the logical components of a system or
the simulators. In the latter case it is referred to as a Simulation Information Model.

2. Designing the System/Simulation Architecture means to build a system by
instantiating the elements of the information model. Depending on whether the
information model provides the logical components of the system or the
simulators, the architecture is referred to as System or Simulation Architecture.

Alberto Coen-Porisini et al. 708

3. Executing the simulation architecture means defining how it has to be simulated,
that is, to define which simulations will be performed, what simulation models are
used, and how they are grouped and organized to carry out the simulation.

Information Model
 Definition

Simulation Execution System/Simulation
 Architecture Design

Fig. 1. Simulation process lifecycle (dashed arrows indicate feedback actions)

The first phase of the simulation design process is devoted to activities carried out
before designing the integrated simulation. The simulation architecture, instead,
provides a logical view of how the different simulation models cooperate. Such view
provides both a data flow description, that is, which data are exchanged, and the
control flow description, that is, the way in which the simulators interact.

In order to describe all artifacts (Information Model, Simulation Architecture, etc)
produced during the design phases, ASIA defined a Simulation Architecture
Description Language (SADL). SADL is based on a double language approach [3]
that provides a domain independent abstract notation along with specific concrete
notations, one for each domain. The abstract notation is defined as a simulation-
oriented reuse of UML, domain-specific notations are obtained by means of the
customization facilities of UML. In this way, one can define a specific notation for
each domain as a transformation from the core notation. Once these transformations
are defined, users can work using their own notations. Interested readers can refer to
[4] for a thorough discussion of the ASIA meta-model and the associated SADL.

2.2 The ASIA Functionalities and Tools

The ASIA environment supports the following logical activities:
Modeling. Each entity involved in the previous mentioned phases is modeled using
SADL. The core notation is used internally and is not viewed by users (except for the
information model). Users rely on the domain-specific representation to define their
models (system/simulation architecture).
Consistency Check. Each phase of the design process is based on the results obtained
during the previous phases. Thus, it is necessary to check whether each phase is
consistent with respect to the previous ones (e.g., the objects are connected according
to their declared connectivity, when designing a system architecture).
Executing an Integrated Simulation. In order to execute an integrated simulation it
is necessary to specify the actual data the simulators must use. Moreover, it may be
also necessary to define where the output data will be stored, to set up some
parameters for some simulators (e.g., time step) and so on. Providing all this
information is referred to as Setting up an experiment. Once an experiment is set up
one can run the experiment.

The ASIA approach is supported by three tools. The first one (IME) allows users
to define an information model; the second one (SysAde) allows users to develop
system-simulation architectures. Finally the third tool (DSC) allows one to define and

Designing and Enacting Simulations Using Distributed Components 709

execute an integrated simulation starting from a simulation architecture. All the tools
are under development using Java and XML and are open-source.

In the next sub-sections we will focus on the main features of simulation
architectures and on the way in which simulators can be integrated.

2.3 Simulation Architectures

A simulation architecture is designed by instantiating the elements of the Simulation
Information Model (SIM). Such elements are instances of the following types:
SimulationComponent, representing a simulator or a simulation model. A SIM can
contain SimulationComponents representing different tools (simulators) and/or
simulation models that will be executed using some software tool.
Filter, representing a component that can perform some syntactic transformation on
data. Its role is to transform data from one format to another so that two simulators
can actually exchange information even if they use different data representation.
Activator, representing a component that can control the flow of execution within a
simulation architecture.
Input/Output, representing a component providing (user-defined) input/output data
used/produced by one or more SimulationComponent.

Each component comprises input and output Gates, which are in turn linked by
means of SimulationLinks. In particular, an input gate is a gate through which a
component receives data, while an output gate is a gate through which a component
sends data.

2.4 Semantics of Simulation Architectures

The semantics of the simulation architecture is given in term of High Level Petri Nets
(HLPN) [5] in which one can associate values with tokens and actions with
transitions. Each component is associated with a HLPN and thus the simulation
architecture results in a HLPN obtained by composing the different HLPN associated
with the components therein. For instance a stand-alone simulator† having n input
gates and m output gates is modeled by a single transition having n input places and
m output places, as shown in Figure 2. The marking of each input place represents the
availability of the data on the corresponding input gate of the simulator. The value
associated with each token represents the data needed by the simulator. Thus, the
firing of the transition represents the execution of the simulator that will mark the
output places to represent that the result of the simulation has been produced. As a
second example Figure 2 shows an activator named two-way selector, which can
receive inputs from two different sources and provides as output one of the two inputs
depending on the selection condition.

† A stand-alone simulator requires all input data to be available before starting the simulation.

Once started, no data exchange occurs until the simulation ends. When the simulation ends
the output data is available.

Alberto Coen-Porisini et al. 710

TSim

IG1

IGn

OG1

OGm

 IG1

 IG2

0G1

 TA1

 TA2

 Stand-alone Simulator Two-way Selector

Fig. 2. The HLPN representation of two elements

2.5 Executing Distributed Simulations

In order to run a simulation one has to set up an experiment, that is to define the input
data needed by the different simulators. Once the experiment has been set up, the
execution is carried out by a tool named Distributed Simulation Controller (DSC),
which is in charge of determining the control flow by executing the HLPN associated
with the simulation architecture and managing data exchange among simulators.
When a simulator produces a new data it notifies DSC, which, in turn, determines
which simulators should receive it.

Communication between DSC and the simulators is implemented using
CORBA[6]. The motivations behind such choice are: (1) CORBA is a standard
middleware defined by the OMG and many implementations are available (Some of
them are freeware or even open-source); (2) CORBA supports many programming
languages and operating systems and thus it is very effective when one needs to
integrate components written in different programming languages and/or working
with different operating systems.

The CORBA Interface Definition Language (IDL) is used to describe the
interfaces of the objects connected to the CORBA Object Request Broker. Thus ASIA
requires each simulator to support two IDL interfaces, which we refer to as the
simulation control interface, allowing DSC to drive a simulator by calling the
methods to initialize, activate, suspend, restart and terminate the execution, and the
data exchange interface, allowing DSC to handle data exchange among simulators.

Thus, the integration of a simulator requires the development of an ad hoc adaptor
supporting on one side the two IDL interfaces and on the other side the simulator API.
Also DSC has an IDL interface, in order to allow simulators to notify that they have
produced new data and/or they have ended a simulation. The interested reader can
refer to [7].

3 An Overview of the High Level Architecture

The High Level Architecture (HLA) [1,8] provides a framework to describe
simulation applications, to facilitate interoperability among simulations and to
promote reuse of simulations and their components. HLA describes simulations in
terms of federations of federates, where a federation is a simulation system composed

Designing and Enacting Simulations Using Distributed Components 711

of two or more simulator federates communicating through the Run-Time
Infrastructure (RTI).

HLA requires federations and federates to be described by an object model that
identifies the data exchanged at runtime. This is accomplished by the HLA Object
Model Template (OMT), which defines the object classes (objects) and the interaction
classes (interactions). Objects represent the data structures shared by more than one
federate, while interactions represent data sent from one federate to others. The OMT
defines the format of the following key models:
Federation Object Model (FOM), providing the specification for data exchange
among federates. It describes the objects, attributes, and interactions used across a
federation.
Simulation Object Model (SOM), describing the federate in terms of objects,
attributes, and interactions that it can offer to a federation. The SOM describes the
capabilities of a federate to exchange information as part of a federation.
Management Object Model (MOM), identifying the objects and the interactions
used by the RTI to manage the federation state.

In order to ensure proper interaction of federates in a federation and to describe the
responsibilities of federates and federations, HLA defines a set of rules, which are
divided into two groups one for federations and the other for federates.

The functional interfaces between federates and the RTI is defined by means of
the Interface Specification. Federates do not talk to each other directly; the
communication between federates is managed by the RTI and is based on the
publish/subscribe mechanism. The RTI takes care of communication between the
simulators and provides the required services to the simulation systems. It let
federates join/leave the federation, declare their intent to publish/subscribe
information, etc. In order to allow each federate to implement the described
functionalities the RTI provides to every federate a set of API (Application
Programming Interfaces) [1]. There are two main interfaces: RTIambassador and
FederateAmbassador. Communication between federates and the RTI is based on
RTIambassador and FederateAmbassador interfaces. RTIambassador is used by every
federate to communicate with the RTI, while FederateAmbassador is used by the RTI
to communicate with federates. Finally, RTI supports federations through services
such as the time management service [9] (to correctly reproduce the temporal aspects
of the modeled world).

4 An Example of Use: Flexible Manufacturing System

A Flexible Manufacturing System (FMS) is composed of several machines connected
by means of a transport system. The transport system carries the raw parts to the
machines on pallets where they are processed. Once the machines have finished their
job the parts are moved back to the load station where they are unloaded. Moreover
the machines use a tool-room as a repository for the tools they actually need in order
to properly work the raw parts. A computer controls the machines and the transport
system [10].

Using a distributed simulation in the FMS field provides some advantages. It is
possible, for example, to solve the problem of confidentiality in the context of a

Alberto Coen-Porisini et al. 712

supply-chain with external supplier. Moreover, a distributed simulation provides the
possibility of simulating multiple levels of manufacturing systems at different degrees
of resolution, creating an array of low-cost simulation models that can be integrated
into larger models [11].

We used a simplified FMS to compare ASIA and HLA. The system consists of
two machines working the parts on the pallet; a load/unload station that loads (unload)
the pallets onto (from) the buffer; a tool room that stores all the tools used by the
machines; and a buffer that can hold worked pallets and pallets that need to be
worked.

4.1 FMS Simulation Using ASIA

According to the ASIA development process one has to create the (Simulation)
Information Model (IM), design the System/Simulation Architecture and implement
or adapt the simulators. The IM defines the components needed to model the FMS,
which are Load/Unload, Buffer, Machine A, Machine B, Tool Room (see Figure 3)
and the standard components such as Activator, Input and Output. The
System/Simulation Architecture allows one to instantiate and compose the elements
of the IM.

ToolsRoom

MachineB
MachineA
Buffer
Load-Unload

FMSInfoModel

Input
Output

Activator

Information Model Simulation Architecture

Fig. 3. The FMS and ASIA description

Each simulator sends and receives messages to other simulators according to the
Simulation Architecture. Messages represent requests for loading/unloading a pallet
or for getting/putting back a specific tool from/to the tool room and so on. Ten
different messages are required to properly model the behavior of the whole system.
Activators (two-way selectors) are used to provide either the initial user-defined input
data or the messages coming from other simulation components.

The simulators have been written in Java and have been extended to support the
required IDL interfaces. Each simulator is composed of three different parts: the
actual simulator, the CORBA server and the adaptor, which implements the IDL

Designing and Enacting Simulations Using Distributed Components 713

interfaces, as shown in Figure 4a. The CORBA server is a Java program that
initializes and registers the adaptor in the CORBA Naming service (used to identify
the objects plugged onto the ORB). The adaptor receives/sends messages from/to
ASIA DSC according to the IDL interfaces and takes care of receiving/sending the
appropriate messages to the actual Simulator. All components have been hand written
but in principle both the CORBA Server and the skeleton of the adapter can be
automatically generated.

(a) (b)

Fig. 4. The ASIA and the HLA run time structures

4.2 FMS Using HLA

In what follows we describe how the FMS has been simulated with HLA, using the
same simulators of the previous example and an IEEE 1516 compliant RTI.

HLA requires to define a federation in which each simulator represents a federate.
Moreover, it is necessary to define the FOM for the whole federation, describing the
classes used by the federates and one SOM for each federate, describing its
capabilities. The communication between the simulators has been defined using
interaction classes only, and more specifically one class for each message identified in
the previous sub-section. As a result the FOM contains ten different interaction
classes.

Every simulator has been extended in order to become a federate. This required
writing code for implementing both the initialization of the distributed simulation
(federation creation, simulators joining the federation, simulators publishing/
subscribing interactions) and the handling of data for each simulator (sending/
receiving interaction to/from RTI). In particular, one has to implement the
FederateAmbassador in order to create (if not already existent) and to join the
federation and to publish/subscribe to the interaction classes of interest. This is done
using the methods provided by the RTIAmbassador, which comes with the RTI
implementation. Moreover the user has to implement the method receiveInteraction()
in the FederateAmbassador to let the RTI notify the federate of any interaction to
which it has subscribed, while for sending an interaction the federate has to call the
method sendInteraction() of the RTIAmbassador. Figure 4b shows the data exchange
of the HLA-based implementation.

O
R
B

 Adaptor

 Corba
 Server R T I

Simulator Federate
Ambassador

RTIambassador

Simulator

Alberto Coen-Porisini et al. 714

5 Comparison Between ASIA and HLA

Both ASIA and HLA address the problem of integrating simulators to allow one to
execute distributed simulations. However, there are many differences and
complementarities between the two approaches. First of all ASIA provides an
integrated environment in which one can design systems and simulations beside
providing support for executing a distributed simulation, while HLA focuses mainly
on the latter problem. Thus, ASIA provides an approach having a higher level of
abstraction with respect to HLA. In fact HLA can be integrated in ASIA in order to
allow execution of simulation architectures. This point is discussed in the next
section.

When looking at the way in which distributed simulations are handled in the two
approaches one can notice that ASIA provides a static view of the simulators
participating at a distributed simulation, while HLA is based on a dynamic view. In
other words in ASIA one has to know before starting the distributed simulation how
many simulators will cooperate and how they are interconnected, while HLA allows
simulators to join and leave a federation during the execution of a distributed
simulation. However, in many domains the static approach provided by ASIA is
sufficient to model even complex systems. For example, a FMS is usually designed in
a static way, that is it is necessary to determine how many (and what kind of)
machines will compose the system.

The dynamic approach used by HLA reflects the particular application domain for
which HLA was initially developed that is military simulations, where a dynamic
view of the system is necessary. However, in many non-military domains a dynamic
approach is not required and sometimes may also be counterproductive being more
difficult to handle.

Another difference between ASIA and HLA is in the way in which
communication among simulators is handled. In ASIA, when designing the
simulation architecture one has to statically determine how simulators are
interconnected, while in HLA simulators are implicitly connected by using a
publish/subscribe mechanism. Such difference is a consequence of the different ways
in which systems are described. In other words since HLA allows simulators to join
and leave a federation at run-time, the only way to handle communication is by using
the publish/subscribe mechanism, while ASIA can make use of point-to-point
communication since the different simulators and their role are known before starting
the simulation. Moreover, HLA provides two different ways for simulators to
exchange data: shared objects and interactions, while ASIA provides only message
passing. It is well known that inter-process communication can be based either on
shared memory or on message passing. These two mechanisms are “computationally
equivalent” although the shared memory paradigm is easier to use for programmers
but requires a more complex infrastructure (e.g., CORBA, RMI) while message
passing is more complex to use but it is simpler to support. Thus, HLA choice to
support both of them does not provide any functionality that could not be obtained by
using message passing.

In conclusion, we claim that the ASIA approach is more abstract than HLA and
that ASIA and HLA can be integrated by using HLA as the communication
infrastructure used to make simulators communicate.

Designing and Enacting Simulations Using Distributed Components 715

6 Integration Between ASIA and HLA

We are currently working to integrate HLA within ASIA. In fact, as stated before,
HLA can be used as the communication infrastructure of ASIA instead of CORBA.
Notice that the first phases of the development process are not affected by the choice
of using HLA, that is both the information model and the system/simulation
architecture do not depend on which technology is used for integrating simulators.
The integration requires to modify the role of ASIA Distributed Simulation
Controller. When using HLA it behaves like a monitor allowing users to keep track of
the status of the simulation.

It must be noticed that the integration does not modify the way in which a
distributed simulation is designed, that is by statically defining the simulators and
their interactions. Thus, the main limitation to the integration is represented by the
fact that it is not possible to use ASIA whenever the system to be simulated requires
that simulators (federates) can be added/removed at run-time. However, many
application domains, for which simulation is very important, do not require such
possibility. In the sequel we sketch the main problems and solutions for integrating
ASIA and HLA.

HLA requires the user to provide a FOM for the whole federation and a SOM for
each federate. The FOM declares the interaction classes and the object classes, which
describe the way in which the different simulators interact. The former mechanism is
similar to the ASIA approach in which interactions among simulators are expressed in
terms of data flowing from one simulator to another. Thus, a system architecture
provides the information necessary to derive the corresponding FOM in which only
interaction classes are used. Also the SOM can be derived starting from the
information provided by the system architecture. However, it must be noticed that
both the FOM and the SOM are “conceptual entities”, that is what is actually
implemented is an XML file containing the information represented by the FOM and
the SOM. Then the FederateAmbassador needs to be implemented (see Sec. 4) to
allow a simulator to be integrated using HLA. This step is similar to the development
of the ASIA adaptor and can be carried out in the same way: we can automatically
derive its skeleton, while the part representing the “business logics” needs to be
written “by hand”.

When executing a distributed simulation using HLA, the ASIA DSC plays a
different role with respect to the one it has when using CORBA. In fact, HLA takes
care of all the communication aspects that are handled by DSC. However, DSC can
still be used to monitor the interactions among simulators. This is done by introducing
a component called DSC Monitor that is viewed by HLA as another simulator. The
difference between a real simulator and the DSC Monitor is that the former is
expected to receive and to send data, while the latter will only receive data. This is
done by having the DSC Monitor subscribe to all interactions (objects updates) that
occur during a distributed simulation.

There are some open points that are currently investigated. More specifically we
still have to address the possibility of deriving from a system architecture a FOM (and
SOMs) in which object classes are used. Secondly, we need to investigate how
already existing HLA compliant simulators (i.e., the simulators coming with an

Alberto Coen-Porisini et al. 716

already developed SOM and FederateAmbassador) can be represented within the
ASIA framework.

7 Related Works

The notations defined in ASIA are used to define the architecture of a system or of an
integrated simulation and therefore can be viewed as an Architecture Description
Language (ADL). Many ADLs have been defined [12–14] but none of them takes into
account the specific needs required when dealing with simulation.

Several works have been done on the problem of integrating simulators. Some of
them were domain-specific such as the CIM Framework architecture [15], in the
context of semi-conductor environment, or [16, 17], which concern the introduction
of data standard or language definition to describe simulation models.

Finally, several works concerning different aspects of HLA are worth to be
mentioned. First of all there are several tools that support the development of HLA-
based distributed simulation such as Visual OMT [18] or OMDT Pro [19] that can be
used to develop the Federate Object Model. Some other tools claim to support the
entire development process such as STAGE [20], which is devoted mainly to military
applications, or FedDirector [19], which allows one to monitor and control a
distributed simulation at run-time. Finally, Calytrix Symplicity [21] provides support
for designing and implementing an HLA-based distributed simulation. However, all
these tools either do not support the “more abstract” phases of simulation design or
are very tied to HLA technology, that is they require a deep knowledge of HLA.
Instead, our approach tries to hide as much as possible the technical aspects of the
technology used to make simulators interact allowing users to focus on the modeling
aspects of their systems.

8 Conclusions

This paper presented an approach for designing and executing distributed simulations
referred to as the ASIA approach, which is the result of an on-going effort started
within the ASIA ESPRIT project. Currently the approach is supported by a set of
tools, some of which are not yet fully implemented, allowing users to define the
components needed in their own domain, to instantiate them and to execute them in
an integrated way. The approach was initially meant to be based on CORBA and is
now extended in order to allow users to choose between CORBA and HLA. The
future work will mainly be devoted to automatize as much as possible the
development process and to enrich the existing tools in order to provide full support
for the automatized process.

Designing and Enacting Simulations Using Distributed Components 717

References

1. Kuhl, F., Weatherly, R., Dahmann, J.: Creating computer simulation systems – An
introduction to the high level architecture. Prentice Hall PTR (2000)

2. http://www.ieee.org
3. Baresi, L.: Formal customization of graphical notations. PhD. Thesis, Dipartimento di

Elettronica e Informazione – Politecnico di Milano (1997)
4. Baresi, L., Coen-Porisini, A.: An approach for designing and enacting distributed

simulation environments. In: International Conference on Software: Theory and Practice,
Beijing, China. (2000) 25–28

5. Jensen, K.: Coloured petri nets: Basic concepts, analysis methods and practical use.
Analysis Methods, Monographs in Theoretical Computer Science, Springer-Verlag (1997)

6. http://www.omg.org/
7. Coen-Porisini, A.: Using CORBA for integrating heterogeneous simulators. In: 14th

International Conference on Software and Systems Engineering and their Applications,
Paris. (2001)

8. IEEE 1516.1: Standard for modeling and simulation (M&S) high level architecture (2000)
9. Fujimoto, R.M.: Time management in the high level architecture. Simulation 71(6) (1998)
10. Upton, D.M.: A flexible structure for computer-controlled manufacturing systems.

Manufacturing Review 5(1) (1992) 58–74
11. McLean, C., Riddick, F.: The IMS mission architecture for distributed manufacturing

simulation. In: Proceedings of the 2000 Winter Simulation Conference. 1538–1548
12. Allen, R.: A formal approach to software architecture. PhD. Thesis, School of Computer

Science, Carnegie Mellon University (1997)
13. Magee, J., Dulay, N., Eisenbach, S., Kramer, J.: Specifying distributed software

architectures. In: Proceedings the 5th European Software Engineering Conference. LNCS
Vol. 989. Springer-Verlag (1995) 137—153

14. Luckham, D.: Rapide: A language and toolset for causal event modeling of distributed
system architectures. In: Proceedings of the 2nd International Conference on Worldwide
Computing and Its Applications. LNCS, Vol. 1368. Springer-Verlag (1998) 88–103

15. The CIM framework architecture guide 1.0. http://www.sematech.org/
16. ISO (International Organisation for Standardization): Industrial automation systems and

integration – Product data representation and exchange (1994)
17. IEEE standard for distributed interactive simulation – application protocols. IEEE standard,

1278.1 (1995)
18. http://www.pitch.se/visualomt1516
19. http://www.aegistg.com/labcut/Labworkscut.html
20. http://www.engenuitytech.com/products/STAGE/index.shtml
21. http://simplicity.calytrix.com/calytrix/simplicity_pages/index.html

	1 Introduction
	2 The ASIA Approach
	2.1 Simulation Design Process
	2.2 The ASIA Functionalities and Tools
	2.3 Simulation Architectures
	2.4 Semantics of Simulation Architectures
	2.5 Executing Distributed Simulations

	3 An Overview of the High Level Architecture
	4 An Example of Use: Flexible Manufacturing System
	4.1 FMS Simulation Using ASIA
	4.2 FMS Using HLA

	5 Comparison Between ASIA and HLA
	6 Integration Between ASIA and HLA
	7 Related Works
	8 Conclusions
	References

