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The problem of inherently differing time scales of core and valence electrons in Monte Carlo~MC!
simulations is circumvented in a straightforward and intuitive manner. By appropriately subdividing
into equivalent subspaces the high-dimensional~many-electron! space in which Monte Carlo
integration is done, it is possible to choose completely independent and appropriate sampling times
for each ‘‘electron.’’ This approach trivially satisfies detailed balance. The partitioning of space is
applicable to both variational and Green’s function MC. Such a partitioning, however, only provides
a significant computational advantage in variational MC. Using this approach we were able to have
inner electrons move with reasonably large steps and yet avoid excessive rejection, while outer
electrons were moved great distances in few steps. The net result is a large decrease in the sampling
autocorrelation time, and a corresponding increase in convergence rate. Results of several standard
algorithms are compared with the present acceleration algorithm for the atoms Be and Ne, and the
molecule Li2. © 1999 American Institute of Physics.@S0021-9606~99!50838-6#
av
re
n
x
s
y

ar
th
ic
t t
s

he
e

go
ria
p
e

ns
ot
-
s
h

ul
n
ea
ifi
tin

so-
-

ap-
xts,
st a
tum
ely,
rge
rlo
or
tem

le
o
or-
ve

ll-
he
e
r a

e
te
er-

um

is.C
INTRODUCTION

Variational Monte Carlo~VMC! methods allow one to
calculate quantum expectation values given a trial w
function.1 Wave functions of great functional complexity a
amenable to this treatment, since analytical integration is
being performed. This greater complexity, including for e
ample, explicit two-body and higher-order correlation term
in turn allows for a far more compact description of a man
body system, with the benefit of high accuracy. The prim
disadvantage of using a Monte Carlo approach is that
calculated quantities contain a statistical uncertainty, wh
needs to be made small. This can always be done, but a
cost of CPU time, since the statistical uncertainty decrea
asN21/2. The term ‘‘variational’’ Monte Carlo derives from
the use of this type of Monte Carlo sampling to optimize t
trial wave function via the variational principle. Despite th
inherent statistical uncertainty, a number of very good al
rithms have been created that allow one to optimize t
functions.2–7 The best of these approaches go beyond sim
minimizing the energy, and exploit the minimization of th
energy variance, which vanishes for energy eigenfunctio

All total energy methods, whether Monte Carlo or n
suffer from scaling problems.8–10 That is, as the system be
ing treated increases in size, the computational cost rise
an ~often large! power of the system size. Although suc
behavior is far preferable to that of the exponentially diffic
problems in the classes NP and beyond, large-power poly
mial scaling is nevertheless a severe roadblock to the tr
ment of many physically interesting systems. Even sign
cantly faster computers will leave large classes of interes
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problems untouchable. This is the motivation behind the
called order-N methods now becoming well-known in den
sity functional theory, whereN is the number of electrons in
the system. While density functional theory provides an
proach to electron correlation and is useful in many conte
often an exact treatment of such correlations, or at lea
systematically improvable one, is necessary. Quan
chemical approaches are of the latter variety. Unfortunat
they are among the class of methods that scale with la
powers of system size. On the other hand, Monte Ca
methods exist which are either systematically improvable
exact, and these methods scale reasonably well with sys
size. Generally these methods scale roughly betweenN2 and
N3; moreover algorithms with lower powers are in princip
possible to implement~e.g., using fast multipole methods t
evaluate the Coulomb potential, and the use of localized
bitals together with sparse matrix techniques for the wa
function computation!.

There is still a problem. This remaining problem is we
known from other contexts. It is often referred to as t
multiple time scales problem.11,12 Possibly the most extrem
instance of it occurs in condensed matter physics nea
phase transition, where the problem is known ascritical
slowing down.In the VMC @and more generally quantum
Monte Carlo~QMC!# context it has come to be known as th
large-Z problem. This class of problem occurs in both Mon
Carlo and molecular dynamics simulations, and more gen
ally whenever dynamical calculations are performed.

Although, as mentioned above, the various quant
Monte Carlo algorithms scale well withN, they have been
shown to scale much more poorly with atomic numberZ. A
common estimate is that computational timeT rises between
Z5.5 andZ6.5. Upon reflection it is clear that the problem
the differing time~as well as distance and energy! scales for
.

0 © 1999 American Institute of Physics
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core and valence electrons. AsZ increases, the range of tim
scales increases as well. In fact,Z→` is in many ways
analogous to a critical point.10,13,14 As in critical slowing
down, an unending hierarchy of time scales ensues as
critical point is approached. This is the problem that must
addressed.

In critical phenomena, the problem has been effectiv
addressed through a class of acceleration methods, par
larly so-called cluster acceleration methods.15,16 These take
advantage of the self-similarity that occurs in the vicinity
a critical point. In the electronic structure problem, there
exist analogous critical points.17,18However, ground states o
typical systems are not near the regime of these crit
points. Thus, a common way to address the large-Z problem
has been through the use of effective-core potentials wh
eliminate the largeZ at the outset. This is the standard a
proach in quantum chemistry and solid-state physics. I
also becoming widely~and effectively! used in quantum
Monte Carlo simulations.9,19–22 However, in Monte Carlo
there are many other possible ways to address the prob
The method we discuss here can be used in VMC to av
entirely the pseudopotential approximation, or can be use
conjunction with it to provide additional computational a
vantage.

OVERVIEW OF VMC

Since very detailed descriptions of the VMC method a
available,1,23 we only give here a short resume. The esse
of VMC is the sampling of a distribution proportional t
uCT(R)u2, whereCT is a given~‘‘trial’’ ! wave function—a
function of the 3N-dimensional coordinateR. Once such a
distribution is established, expectation values of nondiffer
tial operators may simply be sampled, since

^Ô&5E Ô~R!uCT~R!u2d3NRYE uCT~R!u2d3NR

'
1

N (
i 51

N

Ô~Ri !. ~1!

Differential operators are only slightly more difficult, sinc
we can write

^Ô&5
*@ÔCT~R!/CT~R!#uCT~R!u2d3NR

* uCT~R!u2d3NR

'
1

N (
i 51

N

@ÔCT~Ri !/CT~Ri !#. ~2!

The remaining problem is how to sample the distributi
uCT(R)u2. This is readily done in a number of ways. Th
most straightforward is simple Metropolis sampling.24 Spe-
cifically, this involves generating a Markov chain of steps
‘‘box sampling’’ R85R1zD, with D the box size, andz a
3N-dimensional vector of uniformly distributed rando
numberszP@21,11#. This is followed by the classic Me
tropolis accept/reject step, in whichuCT(R8)/CT(R)u2 is
compared to a uniformly distributed random number b
tween zero and unity. The new coordinateR8 is accepted
only if the ratio of trial functions squared exceeds the ra
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dom number. Otherwise the new step remains atR. This
completes one step of the Markov chain~or random walk!.
Under very general conditions,25 such a Markov chain result
in an asymptotic equilibrium distribution proportional t
uCT(R)u2.

From the above description of the standard Metropo
VMC simulation algorithm, it is clear that the attempte
move of an electron covers a volume which is independ
of its position. This means that the optimal move size is
trade-off between the best move size for electrons far fr
the nucleus~i.e., valenceor outer electrons!, which need to
be large since the accessible region of configuration spac
very large, and the best move size for the electrons clos
the nucleus~i.e., coreor inner electrons!. These latter moves
must be small, since the relevant region of configurat
space is quite limited, and also because the wave func
changes rapidly near the nucleus, meaning that large mo
would cause a high rejection rate.

This situation is only mildly improved when on
switches to the commonly used, and otherwise more e
cient, Langevin simulation scheme.26 This scheme is a gen
eralization of the standard Metropolis algorithm in which
Langevin equation containing drift and diffusion~i.e., a
‘‘quantum’’ force term and white noise! is employed for the
transition matrix fromR to R8. Although the quantum force
depends on position, the size of an attempted move is
determined by the step size~now thetime-step size!. Using a
single time step for all the electrons still implies a certa
degree of negotiation between inner and outer electron
choosing the best global time step. The inner electrons
end up dominating the dynamics, and slowing down
outer electrons.

There are many ways one can think of improving t
simple algorithm. Several methods have been explored w
differing degrees of success. For example, one can rende
attempted moves position-dependent, which subseque
entails the need for a modified coordinate system to main
detailed balance.27 Another approach, borrowed from high
energy theory, has been to modify the VMC dynamics wh
keeping the steady-state unchanged.10,12,28One can also radi-
cally change the algorithm by mixing a molecular dynam
approach with VMC29 or using a feedback method.30 Here
we explore an intuitive and straightforward new approach

THEORETICAL APPROACH

Partitioning the space

As a result of the antisymmetry of an electronic wa
function, there are multiple regions of (3N-dimensional!
space which are equivalent. Specifically, up to a sign,
value of the wave function is the same when any two co
dinates representing like-spin electrons are interchang
This results inNup!Ndown! equivalent volumes or domains
Since it is hard visualizing in high-dimensional spaces, it
worth pointing out here that we arenot talking aboutnodal
volumes, that is, regions of the 3N-dimensional space sur
rounded by a hypersurface where the wave function is z
Though these volumes may be equivalent~e.g., in 1D!, gen-
erally the nodal volumes are connected sets of the volu
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we are discussing here. In fact, there are suggestions tha
number of distinct nodal volumes for all ground state atom
or molecular systems is just two.31,32 The volumes we are
distinguishing are the following: given a pointR in configu-
ration space, there are anotherNup!Ndown! 21 points gener-
ated by permutations of the indices. We can think of th
points as belonging to different regions, or subspaces, of
full space. If we can explicitly construct such subspaces, t
the integration over the entire 3N-dimensional space is re
dundant, since for any operatorÔ which is totally symmetric
with respect to the exchange of two identical particles

^Ô&5

E
all space

CT* ~R!ÔCT~R!d3NR

E
all space

CT* ~R!CT~R!d3NR

5

E
any subspace

CT* ~R!ÔCT~R!d3NR

E
any subspace

CT* ~R!CT~R!d3NR
, ~3!

meaning we only need to integrate over a single subspa
Such subspaces are not uniquely defined. The follow

example can help in visualizing this fact. Consider a tw
dimensional box centered at the origin as the analogue of
3N-dimensional space, and the inversion operatorî ~the op-
erator which takesR to 2R! as analogous to the permutatio
operator. Assume that in this spaceC( îR)52C(R) and
V( îR)5V(R). This system can be thought of as a particle
a two-dimensional box with an additional symmetry co
straint. For each pointR there is a ‘‘corresponding point’
R85 îR. Two ~of an infinite number! of equally valid sub-
space constructions are shown in Fig. 1. Each divides
space into two regions such that the pointsR andR85 îR are
in opposite regions. In the example illustrated, the points
2, and 3 all belong to the same subspace if we divide
volume with the vertical line. The other curve shown s
divides all the points from their counterparts, however n
point 18 rather than 1 sits in the same volume as points 2
3. Because of the inversion symmetry, integration over
one of these subspaces is equivalent to integration over
whole configuration space! Yet none of these curves need
be a nodal line for the system. Only an even low
dimensional surface~here the origin! is guaranteed to be o

FIG. 1. Different partitioning schemes, illustrated with the inversion ope
tor in a 2D box.
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the nodal surface. Now we will see how this simple fact c
be used to our advantage to help avoid the time-scale p
lem. Let us concentrate on an atomic system. Later in
paper we will discuss the modifications needed to treat m
ecules.

Separating time scales

In none of the earlier attempts to accelerate VMC~as
described in the overview section above! was an attempt
made to make the electrons ‘‘distinguishable’’ within th
simulation. Based on the idea of dividing space into equi
lent subspaces, this is now possible. Here we explore suc
approach.

Naı̈vely trying to assign a different time step~and so a
different time scale! to different electrons does not work, o
course. Given a symmetric or antisymmetric wave functi
two identical particles~here like-spin electrons! can ex-
change positions without changing the probability of t
configuration. Thus, assigning larger time steps to electr
starting out in the valence region at the beginning of
simulation would not accomplish our goal, since ultimate
such electrons exchange positions with inner electrons, w
no energy penalty. Once this happens the electrons are ta
inappropriate step sizes. In terms of our previous discuss
of subspaces, we can restate this fact saying that in the s
dard algorithm, for any subspace division, electrons can g
erally cross the subspace boundaries. We can, however
force the boundaries and constrain particles to stay in cer
subspaces.

Thus far, however, nothing suggests that constrain
moves to subspaces would be better for the efficiency of
algorithm than simply integrating over the whole configur
tion space. Nevertheless, since the subspace division is
large extent arbitrary, there is hope that a good choice ca
fact help. Specifically, we seek to construct a subspace s
that the electrons in the outer regions of 3-space, away f
the nucleus, and likewise the electrons close-in, near
nucleus, each stay in their relative places through the ac
of the constraint. This would enable us to assign differ
time steps to the different electrons, and let them expl
their respective regions of configuration space with the m
appropriate step sizes. This is actually quite readily done
the example below illustrates. Moreover, this generalizes
mediately to a practical scheme for constructing subspa
for any atom, and with little modification, for molecules.

An example: The Be atom

Let us take as a practical example the Be atom in
ground state. After having~arbitrarily! assigned spin up to
electrons 1 and 2, and spin down to electrons 3 and 4, we
left with a configuration space in which it is possible
define four equivalent subspaces. Given a point in one s
space, we can generate the symmetry-related points by
muting electrons 1 and 2 and/or 3 and 4.

Our chemical intuition tells us that, on the average, el
trons 1 and 2 are not likely to be both close to the nucle
simultaneously. This is because they have the same spin
we expect the beryllium ‘‘core’’ to be composed of electro

-
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of opposite spin. Of course, the same reasoning applies to
other electron pair. We can now assign, say, electrons 1
3 to the core, and electrons 2 and 4 to the valence. Ha
done so, we can define our subspace as the set of pointsR in
configuration space for which the first electron is alwa
closer to the nucleus than the second, and the third cl
than the fourth. Specifically, we can define the space

V1~R!5$R: r 1,r 2 AND r 3,r 4%
~4!

r i5Axi
21yi

21zi
2.

In a similar way, one can define the other three equiva
subspaces,

V25$R: r 1,r 2 AND r 3.r 4%

V35$R: r 1.r 2 AND r 3,r 4% ~5!

V45$R: r 1.r 2 AND r 3.r 4%.

An equivalent integration can be performed over any of th
subspaces. The simulation in e.g., the domainV1 can be
done rejecting any configuration where (r 1.r 2) or (r 3

.r 4). Since electrons 2 and 4 are outer electrons~and in the
above sense will always remain so during the simulatio!,
we can assign to them a larger time step than the one we
to the inner electrons. Separately optimizing these time s
increases the efficiency of the overall simulation.

Any starting configuration, i.e., a walker in VMC, is
single point in the 3N-dimensional space, and thus resides
a single subspace. Subsequent moves need only enforc
boundaries by rejecting any attempts to cross them. It is e
to see that detailed balance is trivially satisfied. One way
see this is to regard the present algorithm as the stan
VMC algorithm, without any constraint~thereby satisfying
detailed balance!, applied to a wave function that vanishe
outside the boundaries. Since all the subspaces are eq
lent, Eq. ~3! tells us that all expectation values for this r
stricted wave function are the same as those computed
the full space.

One point is worth noting here: we have designed a p
tition of configuration space through a set of constraints
fined in three-dimensional space rather than 3N-dimensional
space. This is a desirable feature of any partitioning sche
since this greatly simplifies the practical implementation
the algorithm, and also leads to a nice physical interpretat
However, since other division schemes of t
3N-dimensional space are possible, we must take partic
care when devising the constraints in three-dimensio
space, in particular to ensure that no configurations are
out. Consider for example the following division scheme
electron 1 and 2, which superficially looks similar to th
previous one. We can constrain the two electrons, e.g., t
on different sides of a given fixed plane passing through
nucleus, say the planexy. Apart from the fact that such a
partition would be useless for our purposes, it also is wro
since it leaves out all the configurations where the two e
trons are on the same side. A correct, though still usel
scheme is to constrain the second electron to be always to
‘‘left’’ of the first, with respect to a given plane.
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Heavier atoms

As the number of electrons increases, so does the n
ber of equivalent subspaces, and with that our freedom
choosing them. In particular, we can combine subspace
increase efficiency. Again, we prefer to give a concrete
ample for pedagogical purposes: let us consider the n
atom. With five spin-up electrons and five spin-down ele
trons the number of equivalent subspaces is 5!2514 400. We
can choose any one as our integration space, imposing,
the constraint r 1,r 2,r 3,r 4,r 5 AND r 6,r 7,r 8,r 9

,r 10, in analogy to what was done for the Be atom. Ho
ever, using again our chemical intuition, we expect the ne
core to be composed of two electrons, and the ‘‘valenc
space of the other eight. Since the outer electrons share
same three-dimensional region of space, we expect very l
gain in imposing the above overly restrictive boundary co
ditions. Instead, a more physically-sound partition would
always to keep electron 1 closer to the nucleus than all
other spin-up electrons, while electron 6 is kept closer to
nucleus than all the other spin-down electrons. The net ef
is that we have merged some of the smaller equivalent s
spaces to build a bigger subspace.

Loosely speaking, we might expect that a good partit
is one in which we prevent electrons from changi
‘‘shells,’’ while we leave free the electrons within a shell
explore all the ‘‘shell’’ space. This should be more efficie
as well, because we avoid unnecessary rejections w
would be caused by crossings among electrons with the s
time scale. Thus, going to still largerZ, for the argon atom
we would divide the spin-up electrons~and similarly the
spin-down ones! into three groups, and would impose co
straints such that electrons in any group never exchange
‘‘role.’’

Molecules

All the theoretical considerations regarding the subdi
sion of configuration space into equivalent subspaces, wh
we gave for atoms, are still valid for the molecular case. T
is so because these considerations were based only on
Pauli principle and not on any particular potential. Wh
needs to be modified, of course, is the prescription on how
divide the configuration space in an efficient way. In partic
lar, if we want to keep the useful picture of electrons
shells we need to choose, e.g., an origin from which to m
sure the distance to the electrons. We could measure al
distances from the heaviest nucleus of the molecule,
implement the constraints described above. This should
sufficient for a molecule with only one heavy atom and oth
very light atoms. In general, however, we have different n
clei with various atomic numbers and different cores belo
ing to the various nuclei. A more physically motivated a
proach is thus to assign the various core electrons to
corresponding nuclei, and to treat the remaining electron
belonging to the ‘‘valence’’ space for the entire molecu
The core electrons can, as before, be assigned to mul
shells.

Let us once again construct a practical example: we w
divide the configuration space of the Li2 molecule. We can
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6184 J. Chem. Phys., Vol. 111, No. 14, 8 October 1999 D. Bressanini and P. J. Reynolds
imagine this molecule as having two electrons always cl
to the first nucleus, two electrons likewise close to the s
ond nucleus, and lastly, two electrons free to explore
region outside the two cores. Considering the spin-up e
trons, our subspace is then defined as having electro
closer to nucleusA than either of the other two; electron 2
then the remaining one which is closest to nucleusB; and
electron 3 is the one farthest away from the two nuclei. T
partition is valid as long as the two centers are equivalent~as
in the case of Li2). However, as in the case of the atom
shells, we are unnecessarily restricting the core electron~1
and 2!, as these have the same time step behavior anyw
Thus, it is sufficient on physical grounds to merely preve
the penetration of the third~outer! electron into either of the
cores.

RESULTS AND DISCUSSION

We have tested the proposed algorithm on the Be and
atoms and on the Li2 molecule. Since the main purpose
this algorithm is to separate the different time scales of
electrons, it is natural to compare the average movemen
the electrons in different regions with respect to those i
standard algorithm, one which has the same time scale fo
the electrons. Such a microdiagnostic approach has been
gested recently.33

Usually, when making efficiency comparisons, one co
pares against the ‘‘box Metropolis’’ algorithm, in which
uniform move within a box is accepted or rejected only af
all the electrons have been moved to a new location.
microdiagnostic analysis can be very useful in monitor
such a simulation, to check that all the electrons move r
sonable distances, and to ensure that the run time of
simulation is sufficient to allow a meaningful sampling
configuration space. However, since our algorithm’s mo
are diffusion Monte Carlo based, the standard algorithm
wish to compare against should involve a time step rat
than a box~length scale!. To do so, we use as our standa
algorithm an all-electron Metropolis with moves chos
from a Gaussian distribution whose mean is the box s
The value of a time stept controls the box size. In fact, thi
is just the all-electron version of standard diffusion Mon
Carlo with branching set to unity.

In addition to any microdiagnostic measures, it is a
useful to have a global measure of the efficiency of a sa
pling algorithm. A useful quantity for this is the autocorr
lation time27 of the local energy. This quantity depends n
only on the algorithm, but also on the trial wave functio
employed. Thus it is necessary to compare different s
pling methods while employing the same trial wave functio
In all the work described here we have employed sim
self-consistent-field plus electron-Jastrow forms for the t
wave functions. Choosing approximately optimum time s
sizes for each algorithm required only very short simulatio
to fix the average acceptance ratio for each move at clos
50%.

Of course, measuring the correlation length for an ope
tor other than the Hamiltonian provides a different glob
efficiency measure; nevertheless the energy is usually
e
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most important quantity in which one is interested. The foc
of these investigations has been on the energy correlation~or
more properly, decorrelation! time.

We have implemented our partitioning algorithm with
the framework of both the Metropolis and the Langevin
gorithms. In each case we compare the results obtaine
those of algorithms which move all electrons at once a
with those which move one electron at a time. Although
takes roughly twice as much computer time to move o
electron at a time~versusan all-electron move!, the former
algorithm is the more efficient. This is well-known, but pr
vides a framework in which to observe decorrelation time

Diagnoses and cure: A detailed analysis

In order to better appreciate why this method can help
alleviating the problem of multiple time scales, we presen
detailed analysis of several different simulations of the
ryllium atom, showing the causes of the problem and h
our proposed algorithm eliminates it.

Beginning with a Metropolis algorithm that moves a
the electrons at once, with a fixed time step, Fig. 2 shows
acceptance ratio and the mean displacement obtained. M
displacement is defined for a single pass of a single elect
As is apparent, the acceptance ratio quickly drops with
creasing t. Moreover, the average displacement is qu
small. Note, however, that the old rule of thumb that
acceptance ratio of about 50% is optimal in a Metropo
simulation, is satisfied here. Figure 3 shows the accepta
ratio as a function ofdistance from the nucleus, for different
values oft. One can see that the acceptance ratio is high
the core (r ,1) only if t is sufficiently small. In the valence
region the acceptance ratio remains fairly constant.

Figure 4 illustrates the problem by showing the me
displacement as a function ofr. What it shows is well worth
emphasizing, even if it is well-known. Specifically, in ord

FIG. 2. Plots of mean electronic displacement and acceptance ratio ve
time step size for the Be atom. Here the algorithm used is a simple Metr
lis moving all electrons at once.
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FIG. 3. Acceptance ratio as a function of distance from nucleus for var
time steps in a simulation of the Be atom. The algorithm is as in Fig
namely all electrons move at once. The short length scale fluctuations
are statistical, and are on the order-of-magnitude of the error bars.

FIG. 4. The mean electronic displacement for Be as a function of dista
from the nucleus. It is apparent that to have any significant movem
particularly in the core,t must be small. Thus, we see that all-electrons-
once Metropolis is ‘‘core’’-dominated. Such simulation is inefficient b
cause one requires very small times steps in order to sample well e
where. Note that such very small time steps greatly limit the dista
traveled in a single move, regardless of location relative to the nucleus
the other extreme, large time steps~darker curves! increase the probability
that a move will be rejected, as seen in the previous figure. In this limit,
functional form reflects in part the underlying shape of the electron dis
bution.
to have any significant movement, particularlyin the core, t
must be small~here,0.1!. In other words, this algorithm is
core-dominated: if we try to raise the time step, the acc
tance ratio drops due to bad core moves, and the walker
whole cannot move.~Recall, we are moving all electrons a
once.! On the other hand, if the acceptance ratio is lar
~note values ofA in Fig. 4! the simulation is inefficient be-
cause of the very small moves. Thus, either the simulatio
inefficient, or the 3N-dimensional space is badly sample
As is typical, somewhere aroundA50.5 is an optimal~but
not necessarily good! tradeoff.

We turn now to what is well-known as a more efficie
algorithm. We again use Metropolis, but moving~and ac-
cepting! one electron at a time. Figure 5 is the analog of F
2, but the difference between them is dramatic. Of cour
the acceptance ratio is now that of a single electron move
decreases witht, as expected. However the mean displa
ment increases witht for a long way, until it finally reaches
a plateau~not shown in the plot! and dies off fort.3.0.
Note also that the displacement here is larger than in
all-electrons-at-once case. Figure 6 shows the details. As
fore, the core electrons move only for smallt ~here t
,0.1) causing the sampling of the valence space to be i
ficient. On the other hand, selecting the bestt for the valence
space (t.0.7), or even the bestt overall, results in the core
electrons essentially not moving at all. What we are look
for is an algorithm that moves the electrons with the b
time step both in the coreand the valence.

Let us now consider our proposed algorithm. We pa
tion the space, adding our constraints as discussed ea
namely for Be thatr 1,r 2 andr 3,r 4 . Note that for now we
still use thesamet for all the electrons. However, we ca
now distinguish outer from inner electrons—they no long
exchange. Figure 7 should be compared to Fig. 5. If noth
else, this method allows for a useful diagnostic. We can n
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FIG. 5. Plots of mean electronic displacement and acceptance ratio ve
time step size for the Be atom, now obtained using a Metropolis algori
moving one electron at a time.
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find the bestt for the core and the bestt for the valence
regions separately. This indicates that the one-electron-a
time algorithm is valence dominated: in the mean to
displacement only the valence moves give a sizable co
bution.

With this partitioning we are now in a position to us
different values oft for the different regimes. The plots o
Fig. 8 show what happens when one separately optim
these time steps: specifically we choset50.045 for the core
and t52.5 for the valence. These values were chosen
bring the respective acceptance ratios to 50%. It can be
in Fig. 8 that as a function of radial position, the total acce
tance ratio is quite graceful, always staying around 50%,
actually passes through 50% twice, once at the center of e
orbital. ~The plot is superposed with a graph of the electro
density so that one can better see the limits of the core
valence regions.! It can also be seen that the diffusion leng
follows the overall maximum of the individual mean di
placement curves. This is ‘‘the best of both worlds’’: th
acceptance ratio and displacement follow the smallt behav-
ior in the core and the larget behavior in the valence region

All three of the above algorithms were repeated us
Langevin Monte Carlo34 instead of Metropolis. Actually, the
Langevin approach as implemented is a hybrid of traditio
Langevin and Metropolis. This hybrid maintains the des
able Metropolis property of having no time-step bias. But
Langevin character results in better behavior overall w
respect to decorrelating moves. All the same modificati
can be made here as in the above, pure Metropolis case.
can move all electrons at once, one electron at a time,

FIG. 6. As in Fig. 4, the mean electronic displacement for Be atom a
function of distance from the nucleus. The algorithm, however, is now M
tropolis moving one electron at a time. As can be seen, time steps whic
too short still limit the distance traveled. However, large time steps~see
darker set of curves!, which increase the distance valence electrons
travel, increase the probability that a move will be rejected near the nuc
The entire set of electrons, however, is no longer constrained by the
electrons.
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give each electron a separate time-step size in a suit
chosen partitioning of the space.

Results

The results for the beryllium atom are summarized
Table I. By exploiting the inherently different time scales

FIG. 7. As in Fig. 5, plots of mean electronic displacement and accepta
ratio versus time step size for the Be atom. The algorithm is Metrop
moving one electron at a time. Having partitioned the space we can
separately plot displacement and acceptance ratio for inner and outer
trons.

FIG. 8. As in Fig. 6, Be atom mean displacement for different choices
time steps. Because the partitioning algorithm described in the text all
different size time steps for core and valence electrons, a ‘‘best of b
worlds’’ curve for the average displacement versus distance from
nucleus is possible~bold, solid line!. Also indicated is the acceptance rat
versus distance from nucleus for this choice~dash-dot line!. The light solid
line indicates the radial electronic density to provide perspective on
regions of enhanced sampling.
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core and valence electrons we see that we were abl
greatly reduce the time needed to decorrelate moves.
remaining correlation time is not due to the different tim
scales in the system but instead to aspects of electronic
tion within the shells. To further reduce the correlation tim
one could couple this algorithm with another specifically d
signed to alleviate this problem. The Appendix describes
such attempt.

Table II illustrates the results for the neon atom. As d
cussed earlier we replace the naı¨ve constraintr 1,r 2,r 3

,r 4,r 5 AND r 6,r 7,r 8,r 9,r 10, which would be the
analogy to what was done for the Be atom with the m
physically-sound partition r 1,r 2 ,r 3 ,r 4 ,r 5 AND r 6

,r 7 ,r 8 ,r 9 ,r 10. This derives from chemical intuition leadin
to the expectation that the neon core is composed of
electrons, with a valence space of the other eight. Thus
end up with a less restrictive constraint which follows t
shell structure of the atom. Again we see the effect of se
rate time scales in decorrelating the Monte Carlo moves.
largerZ for Ne results in a greater effect from the accele
tion algorithm.

Finally we present the results for the Li2 molecule. Table
III illustrates the results for the autocorrelation time for th
simple diatomic. We can imagine this molecule as hav
two electrons which are always close to the first nucleus~i.e.,
its core electrons!, two electrons likewise close to the seco
nucleus, and lastly, two electrons free to explore the reg

TABLE I. Time to decorrelate moves for Be with various algorithms. V
ues of t are in units of hartree21. Correlation time is dimensionless, an
measures the number of steps required to effectively decorrelate two en
measurements.

Algorithm tcore tvalence Correlation time

Metropolis 0.030 0.03 50
Metropolis: individual
electron moves 0.100 0.10 12
As above, with
separated time scales 0.045 2.50 6

Langevin 0.07 0.07 17
Langevin: individual
electron moves 0.10 0.10 7
As above, with
separated time scales 0.13 3.50 3.5

TABLE II. Time to decorrelate moves for Ne with various algorithms. Un
as in Table I.

Algorithm tcore tvalence Correlation time

Metropolis 0.005 0.005 100
Metropolis: individual
electron moves 0.100 0.100 9.5
As above, with
separated time scales 0.006 0.010 5.5

Langevin 0.01 0.01 29
Langevin: individual
electron moves 0.03 0.03 6.5
As above, with
separated time scales 0.01 0.10 2.5
to
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outside the two cores. Considering just the spin-up electro
we can define our subspaces by having electron 1 close
nucleusA than either of the other two; electron 2 is that o
of the remaining two which is closest to nucleusB; and
electron 3 is then the one, in some sense, farthest away
both nuclei. However, we are still unnecessarily restrict
the core electrons, as the two cores are equivalent, an
have the same time-step behavior. Thus, it is sufficient
physical grounds to merely prevent the penetration of
third ~outer! electron into either of the cores.

CONCLUSIONS

We have shown that a great improvement in the e
ciency of standard VMC algorithms can be achieved by co
bining a very simple partitioning of the 3-space of the ele
trons with appropriate time steps for electrons within ea
partition. This improvement is comparable to what has be
obtained using other acceleration approaches which are
siderably more difficult to implement. In general, a decrea
by a factor of 10 in the autocorrelation time is found ov
naı̈ve algorithms. This amounts to an effective speedup
simulations by an order-of-magnitude.

Using the present algorithm, core, and the valen
electrons—and more generally electrons in different sh
and different regions of space—can be made to move at t
own optimum rates, independent of the time steps of ot
electrons. Moreover, the configuration space can be divi
on either a physical basis or using other practical crite
The algorithm is extremely easy to apply, and at almost
additional computational cost. Detailed balance rema
trivially satisfied. Application to molecules is not any mo
difficult. Finally, the algorithm can be used in conjunctio
with virtually any sampling approach, such as Metropo
and Langevin as demonstrated here, or with others yet to
invented.

In essence, this approach overcomes the autocorrela
resulting from the mixture of time scales due to core/valen
exchange. However, within any given shell the algorith
does nothing, so there is room for improvement. In fact
can be noted that the residual autocorrelation appears to
rive mainly from the core.

Future work needs to focus on study of the effect
constrained movement on other sampling methods, on in

rgy

TABLE III. Time to decorrelate moves for Li2 with various algorithms.
Units as in Table I.

Algorithm tcore tvalence Correlation time

Metropolis 0.05 0.05 35
Metropolis: individual
electron moves 0.10 0.10 11.5
As above, with
separated time scales 0.08 2.00 8.5

Langevin 0.07 0.07 10
Langevin: individual
electron moves 0.30 0.30 6
As above, with
separated time scales 0.20 2.00 3.5



es
on

t
t

p

te
th
s

t
du

f

-
ll
ia

t
hi
ve
na
n
th
tle

h
in

a
a

be

ke

th
th
m

r
e

n-

les

l-

or-

ize

on
n
.

eon
oth
ng
ase
de-
ed

s

,

6188 J. Chem. Phys., Vol. 111, No. 14, 8 October 1999 D. Bressanini and P. J. Reynolds
tigations with larger atoms and more complex molecul
and with other division schemes. One division criteri
worth investigation might be the assignment of electrons
specific nuclei, e.g., on a chemical basis, and enforcemen
constraints for each nucleus.

Finally, it is significant to note that this acceleration a
proach, apparently unlike all previous schemes,can be ex-
tended to full Green’s function or diffusion quantum Mon
Carlo. The basis for doing so is updating all electrons to
same absolute time~thus, requiring varying numbers of step
for electrons in the different partitions! before calculating a
branching factor for the net move. However, the need
synchronize the steps, as indicated, would appear to re
the efficiency of the acceleration over that described here
VMC. This requires further exploration.
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APPENDIX

In this Appendix we describe an alternative approach
accelerate VMC simulations. Our intent was to combine t
approach with that described in the text to achieve an e
greater decoupling of the steps. However, little additio
improvement was discovered. Investigating further we fou
that, used by itself, this approach is almost as good as
described in the body of this paper. It simply provides lit
advantage in combination. Nevertheless, this method
simple enough, and a reasonable starting point for furt
enhancement, that we find it worthwhile to describe it
some detail.

The goal is to modify the Langevin algorithm in such
way that the angular and radial moves of the electrons
decoupled as much as possible. A similar approach has
pursued by Umrigar27 through a geometric construction.

In the standard Langevin algorithm, each random wal
undergoes a displacement from pointR to R8 following the
equation

R85R1DtF~R!1A2Dt x, ~A1!

whereF is the usual quantum force,D is the diffusion con-
stant,t is the step size, andx is a vector of Gaussian random
variables with zero mean and unit width. To decouple
angular movement from the radial movement, while at
same time retaining the simplicity of the Langevin algorith
we use the quantum force in Eq.~A1! to determine only the
direction of the movement~more specifically, the angula
displacement!. We independently choose the radial displac
ment from a separate probability distributionP(r→r 8).

The steps of the algorithm are the following:
~i! Move from the initial pointR[(r ,u,w) to an inter-

mediate pointR1[(r 1 ,u1 ,w1) using

R05R1DtF~R!, ~A2!

R15R01A2Dt x. ~A3!
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This is the usual Langevin movement, where for later co
venience we have designatedR0 as the position after the
quantum force drift movement alone. Keep the ang
(u1 ,w1) and discardr 1 .

~ii ! Generate the new coordinater 8 from the oldr using
a ~selectable, and still to be determined! probability distribu-
tion P(r→r 8).

~iii ! Move to the new trial pointR8[(r 8,u1 ,w1)
[(r 8,u8,w8).

~iv! Accept or reject the move using the Metropolis a
gorithm, with acceptance probability given by

A~R→R8!

5minS 1,
C2~R8!P~r 8→r !PV~~u8,w8!→~u,w!!

C2~R!P~r→r 8!PV~~u,w!→~u8,w8!!
D ,

~A4!

wherePV is the probability for the angular movement.
What we need now is the analytical form forPV . Since

in step ~i! we move fromR5(r ,u,w) to R1[(r 1 ,u1 ,w1)
5(r 1 ,u8,w8) with probability

T~R→R1!5~4pDt!23N/2e2~R12R2DtF~R!!2/4Dt, ~A5!

we need to integrate over all possible radial positionsr 1 in
order to get the probability of getting a certain pair (u,w).
The integration is trivially done passing into spherical co
dinates. Callinga the angle betweenR1 andR0 we get

PV~~u,w!→~u8,w8!!

5e2r 0
2 sin2~a!/4Dt~11Erf~r 0 cos~a!/A4Dt!!

3sin~a!~t1r 0
2 cos2~a!!ADpt

1Dtr 0 sin~2a!e2r 0
2/4Dt. ~A6!

All that remains is the selection of the distributionP(r
→r 8). Once we choose this, we can independently optim
the angular step size and the radial step distribution.

We tested this algorithm using different radial transiti
distributions,P(r→r 8), including both a simple Gaussia
and a box@r 8/D,r 8D#, whereD is here an effective step size
This approach~using either of the radial distributions! gives
quite good results. When tested on the beryllium and n
atoms, we obtained a correlation time of about 3.5 for b
systems, similar to what we obtained with the partitioni
algorithm. Nevertheless, we were not able to further decre
the correlation time by combining the two approaches,
spite the effectiveness of spatial partitioning when us
alone.
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