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The energy variance optimization algorithm over a fixed ensemble of configurations in variational
Monte Carlo often encounters problems of convergence. Being formally identical to a problem of
fitting data, we re-examine it from a statistical maximum-likelihood point of view. We show that the
assumption of an underlying Gaussian distribution of the local energy, implicit in the standard
variance minimization scheme, is not theoretically nor practically justified, and frequently generates
convergence problems. We propose alternative procedures for optimization of trial wave functions
in quantum Monte Carlo and successfully test them by optimizing a trial wave function for the
helium trimer. © 2002 American Institute of Physic§DOI: 10.1063/1.145561]8

INTRODUCTION co-workerst? The main reason this method is rarely applied
nowadays in standard computational methods is that its use
The problem of the optimization of a trial function with involves the expectation value of the square of the Hamil-
many nonlinear parameters for a quantum system is still atonian, a very difficult quantity to compute analytically. A
open issue. This is especially true in the field of quantumsecond problem is that for sont@beit, very pooy trial wave
Monte Carlo simulations, where usually one uses trial waveunctions this quantity might diverge. A third problem is that
functions for which the analytical evaluation of the energy issometimes, again for very poor wave functions, a local mini-
impossible. For this reason, the variational Monte Carlomum cannot be founffor example, it is easy to check that
(VMC) method is used to numerically evaluate the energysing a single Gaussian function to describe the ground state
and other properties of the trial wave functions, and to opti-of the hydrogen atom, a minimum of2(H) does not exigt
mize them. While in standard quantum mechanical calculaThe main point, i.e., the difficulty in its computation, is not
tions it is common to optimize a trial wave function by mini- an issue in VMC, while the other two problems are not met
mizing its variational energy, in VMC simulations it is much usually using realistic trial wave functions. However the is-
more common to minimize the variance of the local energysue of the quality of the optimized wave function remains to
a?(H)=(H?—(H)?, rather than the energy itself. The rea- be settled. For an infinitely flexible trial wave function, both
son is that the minimization of the energy by a Monte Carloenergy and variance minimization procedures recover the ex-
method is much more troublesome from a numerical point ofact ground state, in practice however, using an incomplete
view than the minimization of its variance, which is however basis, the resulting wave functions are different. Whether or
far from being problem free, as discussed below. not the variance optimized wave function is an overall better
The minimization of the variance, as an alternative to thewave function than the energy optimized one has been dis-
minimization of the energy, has been first proposed, to theussed in the QMC literaturé® Initially the variance op-
best of our knowledge, by Weinstéiim the context of lower timized wave function was thought to be at least as good as
bound calculations of eigenvalues of the Sclinger equa- the energy optimized one, if not superior for certain proper-
tion, and by Bartlettet al,> who suggested the use of the ties. At present there are suggestions that this is nét 26,
variance of the local energy as a criterion of goodness foespecially if the trial function is not flexible enough. These
approximate wave functions. Frost and co-worRetsand  conclusions seem to confirm the results that James and
Conroy~*° implemented the minimization of the variance Coolidge”’ and later Goodismaf obtained a long time ago
within a numerical scheme to optimize trial wave functionsin the field of ab initio methods. For this reason, several
for small atoms and molecules. Variance minimization wagpapers have recently focused on the problem of minimizing
introduced in VMC by Coldwelt and Umrigar and the energy using VMG*'?However, the modern energy op-
timization algorithms can approach only few electron sys-
tems and in any case the methods do not appear to be as fast

aE|ectronic mail: dario.bressanini@uninsubria.it

bElectronic mail: gabriele.morosi@uninsubria.it as the standard_varianc_e_m?nimization algo_rithn_L For these
®Electronic mail: massimo.mella@unimi.it reasons the variance minimization method is still generally
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used in VMC and it is easy to predict that its use will last. In For an eigenstate, the variance of the Hamiltonian is at a
spite of this large diffusion, there is a problem that the quaniocal minimum, and equal to zero.
tum Monte Carlo practitioner is sometimes faced with while  Optimizing a wave function using this principle means
trying to optimize a trial wave function using a fixed en- solving the problem
semble of configurations. Varying the parameters in the trial o,
wave function to minimize the variance of the local energy, ~Mino~(H(a). )
the optimization algorithm reaches a minimum and produces ?
the best set of parameters for that fixed ensemble of configuExplicitly writing the integrals
rations. However, when the new trial wave function is used o _ )
in a VMC simulation, often it appears even worse than the min o i JV(R;&)*(EL(R;a)—(H))“dR

. ) X o“(H(a))=min —— )
previous function, in the sense that both the energy and the a J¥(R;a)7dR
variance are worse. (4)

The problem we are addressing in this paper we call
false convergencéVe need to understand its origin in order
to make the algorithm more reliable and able to generat
better wave functions. The origin of the problem can be
traced back to the presence in the fixed ensemble of so
configurations that have values of the local energy very dif-
ferent from the average. We call these walkers “bad” as their 1 N
presence in the fixed ensemble spoils the minimization pro-  ¢?(H(a))= — >, (E (R;;a)—(H))2. (5)
cess. A practical, and sometimes effective, solution is to N5
eliminate these bad walkers from.the fixed ensemble in SOMB giead of minimizings2(H()), sometimes it is preferable
ad hoc way. For e>.<am_plet, retglnlng only thpse walke.rsto minimize a related quantity,
whose local energy is within a fixed chosen window, or dis-
carding all the walkers whose local energy is offlby from
the average value, for some valuelgfas suggested by Kent
et al?° These solutions are far from being satisfactory from ) [¥(R;a)%(E_(R;a)—Egr)?dR
the theoretical point of view, since these empirical criteria “ER(H(a)): f¥(R;a)2dR
are somehow arbitrary. A better solution would be to design

In practice, since the integrals cannot be evaluated ana-
éytically, they are estimated using a finitemal) number of
integration points, generated by VMC. Suppose the VMC
ocess generate®l points R; distributed according to
(R;a)?, the discrete approximation of the variance is

namely the second moment of
the local energy with respect to a fixéar referencgenergy

a method that automatically deals with these bad walkers in 1 " _ 5
a nonarbitrary way. = NZ (EL(Ri;a)—Eg)”. ©)
The variance minimization algorithm searches the mini-
mum The constanEg should be close to the energy of the state
being sought, although the optimization does not depend
N strongly on its value. Minimizing this quantifyvhich many
min>, (E.(R;,a)—Eg)? (1)  authors callo?(H(a)) without making any distinctiohis
a ! almost equivalent to minimizing the variance. A little algebra
_ ) shows that
given N data points R; ,E, (R;)), whereR; represents the
walker andE (R;) its local energy associated to the trial M%R(H):UZ(H)+(<H>—ER)2 (7)

wave functionV(R;a) that depends on the adjustable pa-

rameters vectoa. Eg, is a reference energy, close to the exactfrom which Eq.(1) is recovered, using the minimum prin-
one. In order to understand why things sometimes go wrongiple of Eq.(2).

in this process and how to correctly deal with bad walkers,  This is, in short, what we might caihe integral point of
we first need to understand what we agally doing when  view. Adopting this view, one uses E(p) or Eq.(6). Taking

we are minimizing the variance of the local energy. We will the integral point of view, it is very easy to invent different
show that the origin of the problem of false convergencefunctionals upon which to base the minimization process.
might not reside in the bad walkers, but rather in the optimi-For examples,

zation procedure itself. J(EL(R :8)— En)2W(R)* dR

We now derive Eq(1) in the standard way, and show > 5 (8)
that an alternative derivation, focused on the discrete algo- (J¥(R)*dR)
rithm used to search the minimum, involving a sum over nd
discrete points and not a continuous integration, can she%
light on the problem of false convergence. [|EL(R;;a)— ER|¥(R)?dR 9
The integral point of view J¥(R)?dR ©

The usual way to derive EqJl) is to start from the and several others have been suggested and discussed by
variance minimum principfe?12:2! Alexander et al,?? in the context of the biased-selection
Monte Carlo method. In general, any functional of the gen-
a?(H)=(H?—(H)?=0. (2)  eral form
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JP(R)f(E (R;;a)—Eg)dR by normally distributed independent errors with a fixed stan-
TP(R)AR (10 dard deviationo. Thelikelihood of a single observation is
_ Cea) 2 02
can be proposed, as long Bsis a probability distribution Pjoce” VAELR A BRI, (13)

andf is a non-negative function such th(0)=0. _ The total probability, assuming the same valuerdbr each
Although this derivation of the optimization process is point, is

clean and simple, it does not shed any light on the problems
of false convergence that, as mentioned before, one often
encounters in practice. In the derivation, the only role played

by the discretization process is to approximate the integrals o . . o

by finite sums, while the focus is really on the integral func- 1 e usualand often implici} choice at this point is to select

tional. However it is really the discretization process that isth® Set of parametera such that the total probabilityor

the source of the problem. So, if we want to clarify this issue lik€lihood) is maximized. This is equivalent to maximizing

we must start from a point of view that includes the discretefh® logarithm of Eq(12), leading to Eq(1). _

nature of the algorithm from the very beginning. So, the familiar least squares fitting in Ed) is a maxi-
Furthermore, why should one use the variance functiona™m likelihood estimation of the parameters if the underly-

[Egs. (5) and (6)] rather than the functionals of E¢g) and ing distribution is assumed to be a Gaussian. Implicit is the

(9), or one of the many possible others? Is there apyiori ~ @SSumption that points far from the average value are very
reason to prefer one to the others? unlikely, since the tails of a Gaussian distribution decay very

fast. These points, when they are present, influence the least-

squares procedure more than they should. In the statistical

jargon these points are calleditliers?® If they occur they

might bias the fitting procedure to produce meaningless val-
If the discretization process would be only a way to ap-ues of the parameters. The problem lies in the fact that the

proximate the integrals involved in the different functionals, probability of these points in the assumed Gaussian model is

we should be very surprised by the usually good quality ofso small that the maximum likelihood estimator tries to dis-

the results obtained with the generally rather small numberort the whole model to take them into account. As a result,

of points usedusually from some hundreds to some thou-using Eq.(1) to find the optimum set of parameteasnight

sand$. As correctly pointed out by Umrigar and not guarantee the convergence to the set that minimizes the

co-workers'? there is really no need to invoke any kind of functional in Eq.(4).

integral approximation to justify the algorithm. The key ob- Now that we have identified the problem, we need to

servation is that the correct way to look at the optimizationunderstand why we encounter these outliers in VMC and

algorithm is as a fitting process, and if the true wave functiorhow to deal with them. This last point is the subjectaifust

were representable by amparameter trial wave function, estimation a well-established field of statistics. Let us con-

then only n walkers would be necessary to determine thecentrate on the first point.

exact wave function. So the minimization of EG) should

be considered in its own right, with no connection to inte-

grals. This crucial point was already pointed out by Frost ands the local energy distribution really Gaussian?

co-worker§ who observed that, i is the exact wave func-

tion andEg, is the exact energy, the sum in Ed) is zero for

any distribution of points, whether or not they are chosen t

yield good approximations to integrals. Since the discrete JY+(R)S(E—E_(R))¥(R)dR

nature of the algorithm is intrinsic in tHéting point of view p(E)= [YZ(R)dR : (13

from this perspective we can hope to clarify the problem of T

false convergence. A related analysis, starting from a differ!f the trial wave function is an exact eigenstate, the local

ent point of view, of the effects of approximating the re- energy is constant and the local energy distribution is a Dirac

quired integrals by finite sums has been recently carried owdelta. This of course is not the usual case, but if the trial

by Kent and co-workeré’ wave function is sufficiently good, the local energy distribu-
If we do not start by invoking the variance of the Hamil- tion is very sharp, located around the exact energy, and it can

tonian, we must ask ourselves why should we minimize thée well approximated by a Gaussian. However, in the general

square of the deviation of the local energy rather than it€ase there really are no reasons wWi(E) should be well

absolute deviation, or its fourth power or other formulas.approximated by a Gaussian.

Which criterion should drive us to select one among them?  Let us consider two analytical examples first. Consider

The answer, well known to statisticians, is theximum like- ~the trial wave functionW;=e™ " for the hydrogen atom.

lihood estimator® We can view the above formulas as fitting The local energy associated to this function is

criteria of N measurements, affected by errors. Each algo- a2 a-1

rithm generates the vectarthat best reproduces these val- E =— 7+ - (14

ues. There are vectoesthat are very “unlikely” and others

that are more “likely” since they give an average energy Note that if a>1, E,>—a?%2, while if a<i,

closer toER. We nowassumehat these values are affected E, < —a?/2. This means thap(E) is zero below or above

N
P ] e V2ELRi - Ero? (12
|

The fitting point of view

Given a trial wave functiont';, we can define the dis-
oiribution of the local energy as
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0.8 involved in the shape of the energy distribution. Unfortu-
g nately it is not possible to make a general statement on its
06 — form. However, it seems clear, even from numerical

evidencé®?*?that the assumption of a Gaussian tail, im-
plicit in the variance minimization, might not be a good
choice, since in this case the bad walkers can spoil the entire
T optimization process, especially if the trial function is not
0.2 flexible enough.

i Of course, the local energy distribution associated to the
trial wave functionW (R;a) changes when the parameters

are modified. Here we make the reasonable assumption that
the generic analytical form of this distribution does not
change significantly witfa.

FIG. 1. Local energy distribution for the hydrogen atom wave function
Pr=e %% (see text
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A robust estimation procedure

2 _ _ T A possible solution to this problem comes from the field
—a’f2. Fora=1, E =—1/2, the local energy distribution ¢ oot Estimationf the outlier points are troublesome, a
p(E)isa Dlrac'delta anq the trial wave function becomes the‘sensible way to proceed could be to take into account their
ground state eigenfunction. o presence from the very beginning, assuming a different func-

Supp_oge thag<1. Then Eq.(13 can be easily inte- tional form for the tails of the local energy distribution. In-
grated, giving(not normalizedi stead of starting from a simple Gaussian distributjéu.

(1—a)dae” {[4(a—1)al/(a®+2E)} ) (11)] we can assume a distribution with higher tails. This

E<-a%2,  approach is called the-estimatesapproach.

e 2 4 L)
p(E)= (a2 +2E) For example, we could assume that the local energy dis-
0, E=-a‘2 . tribution decays exponentially
(15 Pioce_|E|_(Ri 18)—Egl (17
A similar formula can be obtained in the case 1. The
plot for a=0.8 is shown in Fig. 1. First note that this func- Here the tails of the distribution, although exponentially

tion is neither a Gaussian, nor peaked on the exact eigerlecaying, are asymptotically much higher than those of a

value of — 1/2. The distribution is quite skewed, and it even Gaussian. Using simple algebra it is easy to show that this

contains an essential singularity. For values greater tha@ssumption leads to the minimization of the mean absolute

—a?/2, the distribution is zero. On the other hand, the leftdeviation, rather than the mean square deviation,

tail decays a& ~*: substantially slower than Gaussian decay. N

This means that the number of outliers observed will be minz |EL(R;,a)—Eg. (18

higher than predicted by the Gaussian model. Of course for a !

a=1 the trial wave fu_ncti_on _becomes the exgct eigenstateyy 5 ower weight is given to the outliers and the risk of

and the local energy distribution becomes a Dirac delta.  gjjing the optimization is reduced. In this way we have
Another interesting case is the 3D harmonic OSC'"ator'derived one of the functionals studied by Alexanééeal?2

. . . _ar2
Let us consider the trial functioWr=e"*" where fora  and empirically found to cure the problem of false conver-
=1/2 the exact wave function is recovered. For the case Qence by Lester and co-work8tsn electronic structure cal-
<a<3, Eq.(13) can be integrated, giving culations.
0, E=<3a, Of course it would be possible to start with a distribution
with an even higher tail, like the Cauchy or Lorentzian dis-

8a 4a(E—3a) » - .
= \/ —{[4a(E-3a)1/(1-4a2)} tribution, obtaining
PB)=\ 12222 V(1=aa?) © . (19

N
E>3a. min >, log[1+(E (R;;a)—Eg)?/2]. (19)

Even in this case the local energy distribution is far from
being a Gaussian. The tail decays exponentially, so even iGven better would be to use the “real” local energy distribu-
this case, in a Monte Carlo simulation, we should expect dion for a given trial wave function model. For example, we
number of bad walkers greater than what a simple Gaussidtave seefiEq. (15)] that the tails of the distribution for the
local energy distribution predicts. hydrogen atom should behave Bs*. A distribution with a
Only for very simple cases the analytical form of the similar tail might be
local energy distribution can be obtained. In the case of the S
helium atom, even for the correlated wave functity P, - ,
=e 2(n*r2a+r1J2  gatisfying the cusp conditions, the local " 1+sY(El(Ri @) ~ER)*
energy distribution has a tail decaying BS“. This means wheres is an adjustable parameter, which leads to the mini-
that the satisfaction of the cusp conditions is not directlymization of the quantity

(20
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FIG. 2. Local energy distribution for the helium trimer wave function FIG. 3. Sequence of optimization cycles for the helium trimer wave
(see text function.

§N: o 1+s*E (R;;a)—Ep)* (21 The calculated energies are reported in Fig. 3. As ex-
i 9 S ) pected, the variance minimization is troublesome. The varia-
, tional energy of the starting trial wave function is
However, one rarely knows the functional form of the local —0.0725(1) cm. Although the variance minimization pro-
energy distribution for the trial function employed, but it .oqure is able to produce, after four optimization cycles, a
should be sufficient to use any distribution with sufficiently (/5| wave function slightly better than the starting one, giv-
high tails to reduce or eliminate the problems caused by thﬁ1g —0.0747(1) cm?, its trend is erratic, and even gener-

outliers. ates very bad trial wave functions during the process. On the

other end, minimizing the mean absolute deviation seems to
A REAL EXAMPLE: THE HELIUM TRIMER be a much more reliable procedure, showing a much
smoother trend. Furthermore, the final wave function gives a

The optimization of good trial functions is a very impor- ramch better energy of 0.0805(1) cm. So a useful side

tant issue in the study of pure and doped helium clusters, anbenefit of minimizing the absolute deviation rather than the

in the field of weakl nd cl rs in general. The func-" . . . L
the field of weakly bound clusters in genera € unc variance is that the resulting wave function is closer to the

ional form lly employéd?’—°are not very flexibl ,
tiona orms usually e ployéd are c.)t ery flexible gne that minimizes the energy. We tried optimizing other
and this frequently generates problems like those we have

. 528,29 : ; . ~ Objective functions, including Eq19), all sharing a less fast
described: A particularly problematic system is the he decaying tail than a Gaussian, obtaining similar results. This

lium trimer, due to its very diffuse nature and high anharmo- L o
y 9 means that minimizing the mean absolute deviation is not the

nicity. The optimization of trial functions for the helium tri- . . . .
mer has been reported to cause probl&&so it is a good only possible choice here, and the good behavior is not di-
rectly related to some peculiar property of the absolute de-

testing ground for our investigation. The local energy dIStrI_viation function, but rather to the assumption of a less fast

bution for a common trial wave functiéhfor “He;, com- . . .
decaying tail. There might be cases where even an exponen-

puted using VMC, is shown in Fig. 2. We employed the . . o :
LM2M2 potential®* but the results do not depend on the tially decaying tail might be too fast, and some benefit could
be gained in assuming a powerlike decaying tail.

particular form of the potential used. The local energy distri-
bution has a noticeably non-Gaussian shape. Although most
o_f the curve I|e_s in the qggatlve energy region, th_er_e IS &0NCLUSIONS
sizable portion in the positive part. More problematic is the
fact that there is a very slowly decaying tail for energies very  In this paper we have re-examined the discrete nature of
far from the average. In this case, the optimization of thehe energy variance minimization algorithm in quantum
variance of the local energy is likely to cause problems andvonte Carlo methods from th@maximum-likelihoogoint of
probably it would be better to assume a more slowly decayview, without regards to any integral approximation. This
ing distribution. To test our proposal, we optimized the sumallowed us to unveil the origin of the problem of false con-
of the absolute deviations and the sum of the square deviarergence and to suggest alternative procedures designed to
tions. reduce or eliminate the problem. We also showed that the
We performed two sets of five optimization cycles, start-assumption of a Gaussian distribution of the local energy,
ing from the same trial wave function and from the sameimplicit in the standard variance optimization algorithm, is
ensemble of 5000 walkers. In the first set we optimized thanot theoretically justified. We tested our proposal optimizing
variance of the local energy, while in the second set we opa trial wave function for the helium trimer using several al-
timized the mean absolute deviation. After each optimizatiorgorithms. The minimization of the mean absolute deviation
step the energy was computed by a VMC simulation. Thas shown to be more reliable than the variance minimization,
newly generated ensemble was used as fixed sample for thveid of convergence problems, and able to generate trial
next optimization. wave functions with better variational energies.
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