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The energy variance optimization algorithm over a fixed ensemble of configurations in variational
Monte Carlo often encounters problems of convergence. Being formally identical to a problem of
fitting data, we re-examine it from a statistical maximum-likelihood point of view. We show that the
assumption of an underlying Gaussian distribution of the local energy, implicit in the standard
variance minimization scheme, is not theoretically nor practically justified, and frequently generates
convergence problems. We propose alternative procedures for optimization of trial wave functions
in quantum Monte Carlo and successfully test them by optimizing a trial wave function for the
helium trimer. © 2002 American Institute of Physics.@DOI: 10.1063/1.1455618#
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INTRODUCTION

The problem of the optimization of a trial function wit
many nonlinear parameters for a quantum system is stil
open issue. This is especially true in the field of quant
Monte Carlo simulations, where usually one uses trial wa
functions for which the analytical evaluation of the energy
impossible. For this reason, the variational Monte Ca
~VMC! method is used to numerically evaluate the ene
and other properties of the trial wave functions, and to o
mize them. While in standard quantum mechanical calcu
tions it is common to optimize a trial wave function by min
mizing its variational energy, in VMC simulations it is muc
more common to minimize the variance of the local ene
s2(H)5^H2&2^H&2, rather than the energy itself. The re
son is that the minimization of the energy by a Monte Ca
method is much more troublesome from a numerical poin
view than the minimization of its variance, which is howev
far from being problem free, as discussed below.

The minimization of the variance, as an alternative to
minimization of the energy, has been first proposed, to
best of our knowledge, by Weinstein1 in the context of lower
bound calculations of eigenvalues of the Schro¨dinger equa-
tion, and by Bartlettet al.,2 who suggested the use of th
variance of the local energy as a criterion of goodness
approximate wave functions. Frost and co-workers3–7 and
Conroy8–10 implemented the minimization of the varianc
within a numerical scheme to optimize trial wave functio
for small atoms and molecules. Variance minimization w
introduced in VMC by Coldwell11 and Umrigar and
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co-workers.12 The main reason this method is rarely appli
nowadays in standard computational methods is that its
involves the expectation value of the square of the Ham
tonian, a very difficult quantity to compute analytically.
second problem is that for some~albeit, very poor! trial wave
functions this quantity might diverge. A third problem is th
sometimes, again for very poor wave functions, a local m
mum cannot be found@for example, it is easy to check tha
using a single Gaussian function to describe the ground s
of the hydrogen atom, a minimum ofs2(H) does not exist#.
The main point, i.e., the difficulty in its computation, is n
an issue in VMC, while the other two problems are not m
usually using realistic trial wave functions. However the
sue of the quality of the optimized wave function remains
be settled. For an infinitely flexible trial wave function, bo
energy and variance minimization procedures recover the
act ground state, in practice however, using an incomp
basis, the resulting wave functions are different. Whethe
not the variance optimized wave function is an overall be
wave function than the energy optimized one has been
cussed in the QMC literature.13–15 Initially the variance op-
timized wave function was thought to be at least as good
the energy optimized one, if not superior for certain prop
ties. At present there are suggestions that this is not so,13–16

especially if the trial function is not flexible enough. The
conclusions seem to confirm the results that James
Coolidge17 and later Goodisman18 obtained a long time ago
in the field of ab initio methods. For this reason, sever
papers have recently focused on the problem of minimiz
the energy using VMC.14,19However, the modern energy op
timization algorithms can approach only few electron s
tems and in any case the methods do not appear to be a
as the standard variance minimization algorithm. For th
reasons the variance minimization method is still genera
5 © 2002 American Institute of Physics
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used in VMC and it is easy to predict that its use will last.
spite of this large diffusion, there is a problem that the qu
tum Monte Carlo practitioner is sometimes faced with wh
trying to optimize a trial wave function using a fixed e
semble of configurations. Varying the parameters in the t
wave function to minimize the variance of the local ener
the optimization algorithm reaches a minimum and produ
the best set of parameters for that fixed ensemble of confi
rations. However, when the new trial wave function is us
in a VMC simulation, often it appears even worse than
previous function, in the sense that both the energy and
variance are worse.

The problem we are addressing in this paper we
false convergence. We need to understand its origin in ord
to make the algorithm more reliable and able to gene
better wave functions. The origin of the problem can
traced back to the presence in the fixed ensemble of s
configurations that have values of the local energy very
ferent from the average. We call these walkers ‘‘bad’’ as th
presence in the fixed ensemble spoils the minimization p
cess. A practical, and sometimes effective, solution is
eliminate these bad walkers from the fixed ensemble in so
ad hoc way. For example, retaining only those walke
whose local energy is within a fixed chosen window, or d
carding all the walkers whose local energy is off byLs from
the average value, for some value ofL, as suggested by Ken
et al.20 These solutions are far from being satisfactory fro
the theoretical point of view, since these empirical crite
are somehow arbitrary. A better solution would be to des
a method that automatically deals with these bad walker
a nonarbitrary way.

The variance minimization algorithm searches the m
mum

min
a

(
i

N

~EL~Ri ,a!2ER!2 ~1!

given N data points (Ri ,EL(Ri)), whereRi represents the
walker andEL(Ri) its local energy associated to the tri
wave functionC(R;a) that depends on the adjustable p
rameters vectora. ER is a reference energy, close to the exa
one. In order to understand why things sometimes go wr
in this process and how to correctly deal with bad walke
we first need to understand what we arereally doing when
we are minimizing the variance of the local energy. We w
show that the origin of the problem of false convergen
might not reside in the bad walkers, but rather in the optim
zation procedure itself.

We now derive Eq.~1! in the standard way, and sho
that an alternative derivation, focused on the discrete a
rithm used to search the minimum, involving a sum ov
discrete points and not a continuous integration, can s
light on the problem of false convergence.

The integral point of view

The usual way to derive Eq.~1! is to start from the
variance minimum principle3,8,12,21

s2~H !5^H2&2^H&2>0. ~2!
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For an eigenstate, the variance of the Hamiltonian is a
local minimum, and equal to zero.

Optimizing a wave function using this principle mea
solving the problem

min
a

s2~H~a!!. ~3!

Explicitly writing the integrals

min
a

s2~H~a!!5min
a

*C~R;a!2~EL~R;a!2^H&!2 dR

*C~R;a!2 dR
.

~4!

In practice, since the integrals cannot be evaluated a
lytically, they are estimated using a finite~small! number of
integration points, generated by VMC. Suppose the VM
process generatedN points Ri distributed according to
C(R;a)2, the discrete approximation of the variance is

s2~H~a!!>
1

N (
i

N

~EL~Ri ;a!2^H&!2. ~5!

Instead of minimizings2(H(a)), sometimes it is preferable
to minimize a related quantity, namely the second momen
the local energy with respect to a fixed~or reference! energy
ER ,

mER

2 ~H~a!!5
*C~R;a!2~EL~R;a!2ER!2 dR

*C~R;a!2 dR

>
1

N (
i

N

~EL~Ri ;a!2ER!2. ~6!

The constantER should be close to the energy of the sta
being sought, although the optimization does not dep
strongly on its value. Minimizing this quantity@which many
authors calls2(H(a)) without making any distinction# is
almost equivalent to minimizing the variance. A little algeb
shows that

mER

2 ~H !5s2~H !1~^H&2ER!2 ~7!

from which Eq.~1! is recovered, using the minimum prin
ciple of Eq.~2!.

This is, in short, what we might callthe integral point of
view. Adopting this view, one uses Eq.~5! or Eq.~6!. Taking
the integral point of view, it is very easy to invent differe
functionals upon which to base the minimization proce
For examples,

*~EL~Ri ;a!2ER!2C~R!4 dR

~*C~R!2 dR!2 ~8!

and

* uEL~Ri ;a!2ERuC~R!2 dR

*C~R!2 dR
~9!

and several others have been suggested and discusse
Alexander et al.,22 in the context of the biased-selectio
Monte Carlo method. In general, any functional of the ge
eral form
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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*P~R! f ~EL~Ri ;a!2ER!dR

*P~R!dR
~10!

can be proposed, as long asP is a probability distribution
and f is a non-negative function such thatf (0)50.

Although this derivation of the optimization process
clean and simple, it does not shed any light on the proble
of false convergence that, as mentioned before, one o
encounters in practice. In the derivation, the only role play
by the discretization process is to approximate the integ
by finite sums, while the focus is really on the integral fun
tional. However it is really the discretization process tha
the source of the problem. So, if we want to clarify this iss
we must start from a point of view that includes the discr
nature of the algorithm from the very beginning.

Furthermore, why should one use the variance functio
@Eqs. ~5! and ~6!# rather than the functionals of Eq.~8! and
~9!, or one of the many possible others? Is there anya priori
reason to prefer one to the others?

The fitting point of view

If the discretization process would be only a way to a
proximate the integrals involved in the different functiona
we should be very surprised by the usually good quality
the results obtained with the generally rather small num
of points used~usually from some hundreds to some tho
sands!. As correctly pointed out by Umrigar an
co-workers,12 there is really no need to invoke any kind
integral approximation to justify the algorithm. The key o
servation is that the correct way to look at the optimizat
algorithm is as a fitting process, and if the true wave funct
were representable by ann-parameter trial wave function
then only n walkers would be necessary to determine
exact wave function. So the minimization of Eq.~1! should
be considered in its own right, with no connection to in
grals. This crucial point was already pointed out by Frost a
co-workers4 who observed that, ifC is the exact wave func
tion andER is the exact energy, the sum in Eq.~1! is zero for
any distribution of points, whether or not they are chosen
yield good approximations to integrals. Since the discr
nature of the algorithm is intrinsic in thefitting point of view,
from this perspective we can hope to clarify the problem
false convergence. A related analysis, starting from a dif
ent point of view, of the effects of approximating the r
quired integrals by finite sums has been recently carried
by Kent and co-workers.20

If we do not start by invoking the variance of the Ham
tonian, we must ask ourselves why should we minimize
square of the deviation of the local energy rather than
absolute deviation, or its fourth power or other formula
Which criterion should drive us to select one among the
The answer, well known to statisticians, is themaximum like-
lihood estimator.23 We can view the above formulas as fittin
criteria of N measurements, affected by errors. Each al
rithm generates the vectora that best reproduces these va
ues. There are vectorsa that are very ‘‘unlikely’’ and others
that are more ‘‘likely’’ since they give an average ener
closer toER . We nowassumethat these values are affecte
Downloaded 19 Jun 2002 to 193.206.165.108. Redistribution subject to A
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by normally distributed independent errors with a fixed sta
dard deviations. The likelihood of a single observation is

Pi}e2 1/2(EL(Ri ;a)2ER)2/s2
. ~11!

The total probability, assuming the same value ofs for each
point, is

Ptot})
i

N

e2 1/2(EL(Ri ;a)2ER)2/s2
. ~12!

The usual~and often implicit! choice at this point is to selec
the set of parametersa such that the total probability~or
likelihood! is maximized. This is equivalent to maximizin
the logarithm of Eq.~12!, leading to Eq.~1!.

So, the familiar least squares fitting in Eq.~1! is a maxi-
mum likelihood estimation of the parameters if the under
ing distribution is assumed to be a Gaussian. Implicit is
assumption that points far from the average value are v
unlikely, since the tails of a Gaussian distribution decay v
fast. These points, when they are present, influence the le
squares procedure more than they should. In the statis
jargon these points are calledoutliers.23 If they occur they
might bias the fitting procedure to produce meaningless
ues of the parameters. The problem lies in the fact that
probability of these points in the assumed Gaussian mod
so small that the maximum likelihood estimator tries to d
tort the whole model to take them into account. As a res
using Eq.~1! to find the optimum set of parametersa might
not guarantee the convergence to the set that minimizes
functional in Eq.~4!.

Now that we have identified the problem, we need
understand why we encounter these outliers in VMC a
how to deal with them. This last point is the subject ofrobust
estimation, a well-established field of statistics. Let us co
centrate on the first point.

Is the local energy distribution really Gaussian?

Given a trial wave functionCT , we can define the dis
tribution of the local energy as

r~E!5
*CT~R!d~E2EL~R!!CT~R!dR

*CT
2~R!dR

. ~13!

If the trial wave function is an exact eigenstate, the lo
energy is constant and the local energy distribution is a D
delta. This of course is not the usual case, but if the t
wave function is sufficiently good, the local energy distrib
tion is very sharp, located around the exact energy, and it
be well approximated by a Gaussian. However, in the gen
case there really are no reasons whyr(E) should be well
approximated by a Gaussian.

Let us consider two analytical examples first. Consid
the trial wave functionCT5e2ar for the hydrogen atom.
The local energy associated to this function is

EL52
a2

2
1

a21

r
. ~14!

Note that if a.1, EL.2a2/2, while if a,1,
EL,2a2/2. This means thatr(E) is zero below or above
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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2a2/2. For a51, EL521/2, the local energy distribution
r(E) is a Dirac delta and the trial wave function becomes
ground state eigenfunction.

Suppose thata,1. Then Eq.~13! can be easily inte-
grated, giving~not normalized!

r~E!5H ~12a!3a3e2 $@4(a21)a#/~a212E!%

~a212E!4 , E,2a2/2,

0, E>2a2/2.
~15!

A similar formula can be obtained in the casea.1. The
plot for a50.8 is shown in Fig. 1. First note that this fun
tion is neither a Gaussian, nor peaked on the exact eig
value of21/2. The distribution is quite skewed, and it ev
contains an essential singularity. For values greater t
2a2/2, the distribution is zero. On the other hand, the l
tail decays asE24: substantially slower than Gaussian dec
This means that the number of outliers observed will
higher than predicted by the Gaussian model. Of course
a51 the trial wave function becomes the exact eigens
and the local energy distribution becomes a Dirac delta.

Another interesting case is the 3D harmonic oscillat
Let us consider the trial functionCT5e2ar2

where for a
51/2 the exact wave function is recovered. For the cas
,a, 1

2, Eq. ~13! can be integrated, giving

r~E!55
0, E<3a,

8a

124a2A4a~E23a!

p~124a2!
e2$@4a(E23a)#/~124a2!%,

E.3a.

~16!

Even in this case the local energy distribution is far fro
being a Gaussian. The tail decays exponentially, so eve
this case, in a Monte Carlo simulation, we should expec
number of bad walkers greater than what a simple Gaus
local energy distribution predicts.

Only for very simple cases the analytical form of th
local energy distribution can be obtained. In the case of
helium atom, even for the correlated wave functionCT

5e22(r 11r 2)1r 12/2, satisfying the cusp conditions, the loc
energy distribution has a tail decaying asE24. This means
that the satisfaction of the cusp conditions is not direc

FIG. 1. Local energy distribution for the hydrogen atom wave funct
CT5e20.8r ~see text!.
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involved in the shape of the energy distribution. Unfort
nately it is not possible to make a general statement on
form. However, it seems clear, even from numeric
evidence20,24,25 that the assumption of a Gaussian tail, im
plicit in the variance minimization, might not be a goo
choice, since in this case the bad walkers can spoil the en
optimization process, especially if the trial function is n
flexible enough.

Of course, the local energy distribution associated to
trial wave functionC(R;a) changes when the parametersa
are modified. Here we make the reasonable assumption
the generic analytical form of this distribution does n
change significantly witha.

A robust estimation procedure

A possible solution to this problem comes from the fie
of Robust Estimation. If the outlier points are troublesome,
sensible way to proceed could be to take into account t
presence from the very beginning, assuming a different fu
tional form for the tails of the local energy distribution. In
stead of starting from a simple Gaussian distribution@Eq.
~11!# we can assume a distribution with higher tails. Th
approach is called theM-estimatesapproach.

For example, we could assume that the local energy
tribution decays exponentially

Pi}e2uEL(Ri ;a)2ERu. ~17!

Here the tails of the distribution, although exponentia
decaying, are asymptotically much higher than those o
Gaussian. Using simple algebra it is easy to show that
assumption leads to the minimization of the mean abso
deviation, rather than the mean square deviation,

min
a

(
i

N

uEL~Ri ,a!2ERu. ~18!

So a lower weight is given to the outliers and the risk
spoiling the optimization is reduced. In this way we ha
derived one of the functionals studied by Alexanderet al.22

and empirically found to cure the problem of false conv
gence by Lester and co-workers26 in electronic structure cal-
culations.

Of course it would be possible to start with a distributio
with an even higher tail, like the Cauchy or Lorentzian d
tribution, obtaining

min
a

(
i

N

log@11~EL~Ri ;a!2ER!2/2#. ~19!

Even better would be to use the ‘‘real’’ local energy distrib
tion for a given trial wave function model. For example, w
have seen@Eq. ~15!# that the tails of the distribution for the
hydrogen atom should behave asE24. A distribution with a
similar tail might be

Pi}
s

11s4~EL~Ri ;a!2ER!4 , ~20!

wheres is an adjustable parameter, which leads to the m
mization of the quantity
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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(
i

N

logS 11s4~EL~Ri ;a!2ER!4

s D . ~21!

However, one rarely knows the functional form of the loc
energy distribution for the trial function employed, but
should be sufficient to use any distribution with sufficien
high tails to reduce or eliminate the problems caused by
outliers.

A REAL EXAMPLE: THE HELIUM TRIMER

The optimization of good trial functions is a very impo
tant issue in the study of pure and doped helium clusters,
in the field of weakly bound clusters in general. The fun
tional forms usually employed25,27–30 are not very flexible
and this frequently generates problems like those we h
described.25,28,29A particularly problematic system is the he
lium trimer, due to its very diffuse nature and high anharm
nicity. The optimization of trial functions for the helium tri
mer has been reported to cause problems,25,28 so it is a good
testing ground for our investigation. The local energy dis
bution for a common trial wave function27 for 4He3 , com-
puted using VMC, is shown in Fig. 2. We employed t
LM2M2 potential,31 but the results do not depend on th
particular form of the potential used. The local energy dis
bution has a noticeably non-Gaussian shape. Although m
of the curve lies in the negative energy region, there i
sizable portion in the positive part. More problematic is t
fact that there is a very slowly decaying tail for energies v
far from the average. In this case, the optimization of
variance of the local energy is likely to cause problems a
probably it would be better to assume a more slowly dec
ing distribution. To test our proposal, we optimized the s
of the absolute deviations and the sum of the square de
tions.

We performed two sets of five optimization cycles, sta
ing from the same trial wave function and from the sa
ensemble of 5000 walkers. In the first set we optimized
variance of the local energy, while in the second set we
timized the mean absolute deviation. After each optimizat
step the energy was computed by a VMC simulation. T
newly generated ensemble was used as fixed sample fo
next optimization.

FIG. 2. Local energy distribution for the helium trimer wave functio
~see text!.
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The calculated energies are reported in Fig. 3. As
pected, the variance minimization is troublesome. The va
tional energy of the starting trial wave function
20.0725(1) cm21. Although the variance minimization pro
cedure is able to produce, after four optimization cycles
trial wave function slightly better than the starting one, g
ing 20.0747(1) cm21, its trend is erratic, and even gene
ates very bad trial wave functions during the process. On
other end, minimizing the mean absolute deviation seem
be a much more reliable procedure, showing a mu
smoother trend. Furthermore, the final wave function give
much better energy of20.0805(1) cm21. So a useful side
benefit of minimizing the absolute deviation rather than
variance is that the resulting wave function is closer to
one that minimizes the energy. We tried optimizing oth
objective functions, including Eq.~19!, all sharing a less fas
decaying tail than a Gaussian, obtaining similar results. T
means that minimizing the mean absolute deviation is not
only possible choice here, and the good behavior is not
rectly related to some peculiar property of the absolute
viation function, but rather to the assumption of a less f
decaying tail. There might be cases where even an expo
tially decaying tail might be too fast, and some benefit co
be gained in assuming a powerlike decaying tail.

CONCLUSIONS

In this paper we have re-examined the discrete natur
the energy variance minimization algorithm in quantu
Monte Carlo methods from themaximum-likelihoodpoint of
view, without regards to any integral approximation. Th
allowed us to unveil the origin of the problem of false co
vergence and to suggest alternative procedures designe
reduce or eliminate the problem. We also showed that
assumption of a Gaussian distribution of the local ener
implicit in the standard variance optimization algorithm,
not theoretically justified. We tested our proposal optimizi
a trial wave function for the helium trimer using several a
gorithms. The minimization of the mean absolute deviat
is shown to be more reliable than the variance minimizati
void of convergence problems, and able to generate
wave functions with better variational energies.

FIG. 3. Sequence of optimization cycles for the helium trimer wa
function.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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