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Abstract 

 

Several polynuclear Hg(II) complexes containing the flexible ditopic bisimidazolylmethane ligand 

(C7H8N4, bim) have been prepared by reaction of equimolar quantities of mercury salts (acetate, 

cyanide, thiocyanate, chloride and iodide) in EtOH or acetonitrile solution. Their crystal and 

molecular structures were retrieved from laboratory powder diffraction data, and their thermal 

properties fully characterized, including the determination of the thermal expansion coefficients and 

the related strain tensor using thermodiffractometric methods. [Hg(bim)(CH3COO)2]2 consists of 

cyclic dimers with chelating acetates, while the [Hg(bim)X2]n species (X = Cl, CN, SCN and I) are 

one-dimensional polymers, with dangling X groups. A further complex of nominal Hg2(bim)Cl2 

formulation was also prepared, but the complexity and non-ideality of its powder diffraction traces 

prevented the determination of its main structural features. 

 

Keywords: Hg(II) complexes, nitrogen ligands, X-ray powder diffraction, thermal strain tensor. 
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Introduction 

 

In the last years we have been interested in the coordination chemistry of polydentate ligands 

possessing multiple donor sites. Starting from simple heteroaromatic anions, such as pyrazolate,1 

imidazolate2 and pyrimidinolate,3 we further increased the complexity of the polytopic N-ligands 

employed in the formation of monomeric, oligomeric and polymeric species. For example, our 

recent results of substituted triazines,4-5, scorpionates6 and substituted heterocycles7 has allowed us 

to prepare and characterize a number of functional species, ranging from catalytically active 

(soluble) oligomers,8 to extended solids capable of molecular sensing and recognition.9 Recently, 

when the isolated material was not available as single crystals of suitable quality, the structural 

characterization has been performed employing state-of-the-art powder diffraction methods coupled 

with 13C CP-MAS NMR spectroscopy.10 

In the last years, bisimidazolylmethane (bim),11 a ligand employed for the investigation of the 

biological allosteric effect in zinc-gable porphyrin complexes12 and as an artificial receptor capable 

of binding anionic guests,13 has been successfully used as a flexible divergent donor to construct 

coordination polymeric materials. Several Ag,14 Mn,15 Cd,16 Zn,17 Co18 and Li,19 monodimensional 

zig-zag chains or two-dimensional grid network structures have been recently reported and some of 

them have been described as promising candidates for application in electronic devices and 

catalysis. To date, no mercury derivatives of this ligand are known, notwithstanding a very recent 

report on the use of imidazolyl-based ligands for the preparation of luminescent polymeric mercury 

complexes, in which weak interactions play a significant role in the formation of supramolecular 

architectures.20 

In particular, several oligomeric or polymeric species containing the neutral bisimidazolylmethane 

ligand (bim, see Scheme I) have been recently prepared, and studied by a combination of less 

conventional structural methods,21; these studies included a detailed analysis of the stereochemical 

preference about the two rotationally flexible CH2-N bonds, and the thermal characterization of the 

anisotropic thermal expansion coefficients and of the thermal strain tensor derived there from.  

We have now prepared several third row transition metal derivatives (Hg(II) complexes), which 

were studied by X-ray powder diffraction methods and thermodiffractometry, adding a partial 

structural interpretation of the observed thermally induced deformations. Mercury compounds are 

extremely toxic, and it might appear somewhat unusual for researchers to systematically pursue 

their preparation, isolation and full characterization. However, we found it very useful to determine 

the stereochemical preferences of Hg(II)-based bim-containing polymers, after we successfully 

addressed the nature, reactivity and structure of several zinc and cadmium analogues in a very 
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recent contribution.21 In addition, in this particular case, the presence of a dominant scatterer makes 

it possible to accurately follow the trend of Hg…Hg interatomic distance changes upon thermal 

treatment, well beyond the typical accuracy normally granted by intrinsically poor (if compared 

with single-crystal)  powder diffraction data 

 

Experimental Section 

 

Materials and Methods. All reagents were obtained from commercial sources and were used 

without further purification. Solvents were distilled using the standard methods. The sample for 

microanalysis was dried in vacuum to constant weight (293 K, ca. 0.1 Torr). Elemental analysis (C, 

H, N, S) were performed with a Fisons Instruments 1108 CHNS-O Elemental analyser. IR spectra 

were recorded from 4000 to 600 cm-1 using a Perkin-Elmer Spectrum 100. Melting points (m.p.) 

were undertaken with a SMP3 Stuart scientific instrument and in a capillary apparatus and were 

uncorrected. Perkin Elmer STA-6000 model thermogravimetric analyzer was used for 

determination of the thermal stabilities of mercury complexes. Samples weighing 5–10 mg were 

heated in dynamic nitrogen atmosphere from 20 to 800°C at a heating rate of 5° C min-1. The ligand 

bim has been prepared by standard literature methods.22,23,24 

[Hg(bim)(CH3COO)2]2, 1. An ethanol (20 mL) solution of bis(imidazolyl)methane (0.296 g, 2.0 

mmol) was added to an ethanol (40 ml) solution of mercury(II) acetate, Hg(OAc)2 (0.636 g, 2 

mmol). A colorless precipitate formed. The suspension was stirred for 6 h, then filtered off and the 

colorless residue was washed by a mixture of ethanol/diethyl ether and identified as 1 (0.887 g, 95% 

yield). El. Anal. Calc. for C14H14HgN4O4: C, 28.30; H = 3.02; N, 12.00. Found: C, 27.99; H, 2.93; 

N, 11.80. IR (KBr, cm-1): 3114(m), 3024(w), 2935(m), 1559(s), 1523(m), 1504(m), 1391vs(vs), 

1332m(vs), 1285(m), 1229(s), 1092(m), 1034(w), 1017(w), 944(w), 931(w), 859(w), 786(w), 

764(m), 709(m) 666(s), 653(s), 618(m), 390(w). 

[Hg(bim)(SCN)2]n, 2. An ethanol (20 mL) solution of bis(imidazolyl)methane (0.178 g, 1.2 mmol) 

was added to an ethanol (40 mL) suspension of mercury(II) thiocyanate, Hg(SCN)2 (0.316 g, 1.0 

mmol). A colorless precipitate immediately formed. The suspension was stirred for 6 h, then filtered 

N

N N

N
τ2 τ1 

Scheme I. Schematic drawing of the bim ligand, highlighting the flexible 

torsional angles discussed in the text. 
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off and the colorless residue was washed by ethanol:diethyl ether 1:1 (5 mL) and identified as 2 

(0.348 g, 75% yield). El. Anal. Calc. for C9H8HgN6S2: C, 23.25; H = 1.73; N, 18.08; S = 13.79. 

Found: C, 23.58; H, 1.69; N, 17.73; S = 13.93%. IR (cm-1): 3121(m), 3025(w), 2113(s), 1521(m), 

1499(m), 1441(w), 1419(w), 1386(m), 1229(s), 1188(w), 1117(m), 1085(s), 1025(w), 928(m), 

847(m), 833(m), 750(s), 702(s). 1H NMR (DMSO-d6, 293K): δ, 6.35 (s, 2H, CH2Bim), 7.03 (pd, 2H, 

CHBim), 7.57 (pt, 2H, CHBim), 8.18 (pd, 2H, CHBim). 

[Hg(bim)(CN)2]n, 3. An acetonitrile (20 mL) solution of bis(imidazolyl)methane (0.075 g, 0.5 

mmol) was added to an acetonitrile (40 mL) solution of mercury(II) cyanide, Hg(CN)2 (0.126 g, 0.5 

mmol). A colorless precipitate immediately formed. The suspension was stirred for 4 h, then filtered 

off and the colorless residue was washed by acetonitrile (5 mL) and identified as 4 (0.150 g, 75% 

yield). Mp. 257°C dec. El. Anal. Calc. for C9H8HgN6: C, 26.97; H = 2.01; N, 20.97. Found: C, 

27.25; H, 1.95; N, 20.60%. IR (cm-1): 3142(w), 3117(w), 3024(w), 1521(m), 1492(m), 1392(m), 

1367(w), 1355(w), 1287(m), 1227(s), 1112(m), 1081(s), 1029(w), 921(m), 845(m), 771(m), 747(s), 

708(s), 655(s). 1H NMR (DMSO-d6, 293K): δ, 6.33 (s, 2H, CH2Bim), 7.00 (pd, 2H, CHBim), 7.52 (pt, 

2H, CHBim), 8.16 (pd, 2H, CHBim). 

[Hg(bim)I2]n, 4. An acetonitrile (20 mL) solution of bis(imidazolyl)methane (0.075 g, 0.5 mmol) 

was added to an acetonitrile (40 mL) solution of mercury(II) iodide, HgI2 (0.224 g, 0.5 mmol). The 

red solution turned colorless in few minutes and then a colorless precipitate formed. The suspension 

was stirred for 6 h, then filtered off and the colorless residue was washed by acetonitrile (5 mL) and 

identified as 3 (0.280 g, 93% yield). Mp. 206-208°C dec. El. Anal. Calc. for C7H8I2HgN4: C, 13.95; 

H = 1.34; N, 9.30. Found: C, 14.23; H, 1.28; N, 9.02%. IR (cm-1): 3140(w), 3115(w), 3103(w), 

3005(w), 1596(w br), 1521(m), 1504(m), 1486(m), 1386(m), 1280(m), 1232(m), 1111(m), 1093(s), 

1084(s), 1022(m), 928(m), 8448m), 837(m), 771(m), 753(s), 738(s), 710(s), 652(s). 1H NMR 

(DMSO-d6, 293K): δ, 6.26 (s, 2H, CH2Bim), 6.92 (pd, 2H, CHBim), 7.47 (pt, 2H, CHBim), 8.05 (pd, 

2H, CHBim). 

[Hg(bim)Cl2]n, 5. An acetonitrile (20 mL) solution of bis(imidazolyl)methane (0.178 g, 1.2 mmol) 

was added to an acetonitrile (40 ml) suspension of mercury(II) chloride, HgCl2 (0.340 g, 1.1 mmol). 

A colorless precipitate formed. The suspension was stirred for 6 h, then filtered off and the colorless 

residue was washed by acetonitrile (10 mL) and identified as 5 (0.369g, 80% yield). El. Anal. Calc. 

for C7H8HgN4Cl2: C, 20.03; H = 1.92; N, 13.35. Found: C, 19.93; H, 1.87; N, 12.95. IR (cm-1): 

3117(m), 3011(w), 1499(br), 1388(m), 1354(w), 1276(m), 1227(s), 1196(w), 1188(w), 1109(m), 

1084(s), 1032(w), 1022(w), 943(w), 936(w), 928(w), 852(m), 844(m), 832(m), 782(m), 761(s), 

750(s), 707(s), 654(s). 1H NMR (DMSO-d6, 293K): δ, 6.28 (s, 2H, CH2Bim), 6.94 (pd, 2H, CHBim), 

7.48 (pt, 2H, CHBim), 8.07 (pd, 2H, CHBim). 
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[Hg2(bim)Cl2]x, 6. An acetonitrile (20 mL) solution of bis(imidazolyl)methane (0.178 g, 1.2 mmol) 

was added to an acetonitrile (40 ml) suspension of mercury(I) chloride, Hg2Cl2 (0.236 g, 0.5 mmol). 

A colorless precipitate formed. The suspension was stirred for 1 h, then filtered off and the colorless 

residue was washed by acetonitrile (10 mL) and identified as 6 (0.280g, 90% yield). El. Anal. Calc. 

for C7H8Hg2N4Cl2: C, 13.56; H = 1.30; N, 9.03. Found: C, 13.86; H, 1.30; N, 8.87. IR (cm-1): 

3143(w), 3117(m), 3017(w), 1526(m), 1508(m), 1492(m), 1427(w), 1394(m), 1353(w), 1285(m), 

1229(s), 1196(m), 1115(m), 1097(m), 1086(s), 1035(w), 1025(w), 935(m), 850(m), 845(m), 760(s), 

744(s), 708(s). 

[Hg(bim)Cl2]x·xDMSO, 7. Reaction between 5 and two equivalents of DMSO in CH2Cl2, yields a 

powder that has been identified as 5·DMSO. El. Anal. Calc. for C9H14Cl2HgN4OS: C, 21.72; H, 

2.83; N, 11.26; Found: C, 21.77; H, 3.02; N, 11.55. IR (cm-1): 3118(w), 2995(w) 2912(w)), 

1530(w), 1507(w) 1309(w) 1290(w), 1234(m), 1092(br), 1043(s), 1017(s), 951(m), 931(m), 896(w), 

852(w), 765(m), 746(m), 697(m) 667(m). 

 

X-ray Powder Diffraction Analysis: Powdered, microcrystalline samples of 1-5 were gently ground 

in an agate mortar, then deposited in the hollow of an aluminium sample holder (equipped with a 

zero-background plate). Diffraction data were collected with overnight scans (16 h long) in the 5-

105° 2θ range on a Bruker AXS D8 Advance diffractometer, equipped with a linear position-

sensitive Lynxeye detector, primary beam Soller slits, and Ni-filtered Cu-Kα radiation (λ = 1.5418 

Å); sampling interval (in continuous mode): ∆2θ = 0,02°. divergence slit: 1.0°; goniometer raidus 

300 mm; generator setting: 40 kV, 40 mA. Standard peak search, followed by indexing with 

TOPAS25 allowed the detection of the approximate unit cell parameters later improved by LeBail 

refinements. Indexing figures of merit (M/Gof, falling in the 23 – 69 value range) can be found in 

Table 1. Space group determinations, performed using systematic extinction conditions, in 

conventional mode as well using a structureless full pattern profile match, indicated, as probable 

space groups (later confirmed by successful structure solutions and refinements) P21/n for 1, P21/c 

for 2, C2/c for 3,26 and P21/m for 4 and 5. Structure solutions was performed (by the simulated 

annealing technique, as implemented in TOPAS, using for bim a partially flexible rigid, idealized 

model,27 independent metal and/or, where pertinent, halide ions, as well as rigid acetate, 

Hg(cyanide)2 or thyocyanide groups. The final refinements were carried out by the Rietveld 

method, maintaining the rigid bodies described above and allowing the refinement of the torsion 

angles of the methylene-heterocyclic rings linkage. Peak shapes were defined by the Fundamental 

Parameters Approach implemented in TOPAS, while crystal size effect was modelled by a 

Lorentzian broadening. The background contribution to the total scattering was modelled by 
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Chebyshev’s polynomials with 2 to 8 coefficients, depending of the nature of the trace below Bragg 

peaks. One, refinable isotropic thermal parameter was assigned to the metal atom, augmented by 2.0 

Å2 for lighter atoms. A preferred orientation correction was introduced (in the March-Dollase 

formulation) along the [111] direction for compound 3. The final Rietveld refinement plots are 

shown in Figure 1. Table 1 contains a summary of crystal data and data collection parameters and 

structural analysis. 

Thermodiffractometric experiments were performed in air from 25°C up to the decomposition 

temperatures using a custom-made sample heater, assembled by Officina Elettrotecnica di Tenno, 

Ponte Arche, Italy. Diffractograms at different temperatures (in 20°C steps) were recorded typically 

in the range 8-35°2θ. Linear, parametric28 Le Bail refinements, eventually afforded the ‘best’ set of 

cell parameters at the different temperatures. Linear thermal expansion coefficients were then 

derived from (1/x)(∂x/∂T) vs. T plots (x being either a lattice parameter or the cell volume). Later, 

for each compound, we selected the cell data at two well separated temperatures (typically, 25°C 

and the last useful point before decomposition, falling in the 125-245°C range) and computed the 

thermal strain tensor, its eigenvalues and eigenvectors, using a locally developed program based on 

Ohashi’s algorithm.29 Thermal strain tensors were visualised with WinTensor,30 which produces a 

VRML three-dimensional surface to be displayed, together with the (properly oriented) whole 

crystal structure, with the CORTONA VRML client Crystal structures VRML pictures produced 

with Accelrys DS Visualizer 2.0. 

 

Results and Discussion 

 

Synthesis and Spectroscopy. 

Complexes of 1 and 2 were synthesised by mixing equimolar quantity of the mercury salts and bim 

in ethanol at room temperature, whereas 3-5 were isolated as colorless precipitates from MeCN 

solutions. All complexes are stable at room temperature and highly insoluble in water and in 

alcoholic and chlorinated solvents. Compound 6 has been obtained by reacting Hg2Cl2 with excess 

bim. Derivatives 2-5 were found to be moderately soluble in DMSO, their oligomeric or polymeric 

nature being likely modified by DMSO solvation and/or coordination: for example, from a DMSO 

solution of 5, [HgCl2(DMSO)2]
31 was always recovered in quantitative yield; at variance, when an 

equimolar quantity of DMSO was added to a CH3OH suspension of 5, the coordination polymer 5 is 

recovered unaltered. Finally, when an equivalent of 5 was reacted with two equivalents of DMSO, a 

new species was obtained, identified by elemental analysis and IR as 5.DMSO, a compound 

analogous to the already known [HgI2(dpb)(DMSO]n polymer (dpb = 2,3-di-(4-pyridyl)-2,3-
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butanediol).32 Differently, compound 1 is poorly soluble also in DMSO, in contrast with its 

molecular (dimeric) structure (vide infra). However, when a DMSO suspension of 1 was heated at 

90°C for 30 min, displacement of the bim ligand from the mercury coordination sphere is observed.  

Our observations suggest that, at room temperature, only excess DMSO is able to disrupt the 

polymeric structure of 2-5, interacting with the tetrahedral mercury centers and breaking the Hg-N 

coordination bonds, whereas it was unable to interact with the dinuclear species 1 in which the 

mercury ions is in a approximately coordinatively-saturated pseudo-octahedral environment. 

Apparently, bim possesses a greater coordinating ability toward Hg2+ with respect to DMSO. 

Accordingly, when an equimolar quantity of bim is added to a MeOH solution of [HgCl2(DMSO)2] 

immediate precipitation of 5 is observed. 

The NMR data in DMSO of the compounds 2-5 are not significantly different from that of the free 

ligand bim, suggesting that the polynuclear chains are completely destroyed in DMSO solution. 

Interestingly, the 1H NMR spectrum of a mixture containing equimolar quantity of DMSO and of 

species 5 (CDCl3 solution) exhibits signals different from those found for the free bim in the same 

solvent, suggesting that in these conditions not all Hg-N bonds are lost. As anticipated, when a large 

excess of DMSO-d6 is added to the CDCl3 solution of 5, then formation of the Hg(DMSO)2Cl2 

species is observed. In addition, the 1H NMR spectrum of a suspension of 1 in DMSO-d6, recorded 

at 90°C, shows only signals of free bim, further supporting our hypothesis. 

It is worth to note that, differently from that observed in the case of the already reported zinc and 

cadmium derivatives,21b when Hg(II) ions are used in the starting materials, only species showing 

the 1:1 HgX2:bim stoichiometry were isolated, independently on the metal-to-ligand ratio 

employed. As expected, 6 shows a different stoichiometry, being the only species containing Hg in 

a lower oxidation state. 

The IR spectra of these solid species typically show several bands usually associated with the 

organic ligand: signals of weak and medium intensity at ca. 3000 cm-1 (C-H stretching modes) and 

other more intense bands between 1600 and 1500 cm-1 (typical of ring breathing) are present, 

shifted to lower frequency by about 15-20 cm-1 from the reference free ligand values.22-24 

Somewhat more informative are the IR spectra of the thiocyanate and cyanide complexes 2 and 4: 

the well defined absorption found at ca. 2110 cm-1 and the weaker one at ca. 2176 cm-1 are typical 

of monodentate S-CN33 and CN34 coordination modes respectively. 

As for derivative 1, it is generally accepted that it is possible to distinguish between ionic, 

monodentate, chelating bidentate or bridging bidentate groups on the basis of ∆ = νa(COO)-

νs(COO) value. On the basis of the observed ∆ = 170 cm-1 value, a chelating bidentate acetate is 

here predicted.35 We have in fact compared the spectrum of 1 with that of a number of 
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mononuclear36 and polynuclear37 mercury(II) acetate complexes and found that 1 show strict 

similarity with spectra of Hg(O2CCH3)2(PR3)2 species,38 containing unsymmetrical chelating 

carboxylates. Chelating bidentate acetates normally have values of ∆ less than 100 cm-1,39 but this 

seems not applicable in the case of Hg(O2CCH3)2 complexes. In fact, the Hg(O2CCH3)2 itself, for 

which two coordination has been assigned, has ∆ value of 270 cm-1, very different from the ∆ found 

for 1.40 

 

Thermogravimetric Analysis. 

In order to examine the thermal stabilities of the complexes 1-6, thermal gravimetric analyses were 

carried out between 30 and 500°C. The TGA curves for compounds 1-6 are supplied as 

Supplementary Information, Figure S1-S6. Compound 1 is stable up to 144 °C, where it begins to 

decompose with a first exothermic effect. The observed weight loss (ca. 10.9%) has been assigned 

to the evolution of acetic anhydride and to the concomitant formation of a new species which, on 

the basis of elemental analyses and IR spectroscopy, was formulated as [Hg2(bim)2(CH3COO)2(O)]. 

Indeed, the IR spectrum of the residue recovered after controlled heating at 200°C exhibits a 

different absorption pattern in the 1700-1300 cm-1 region, suggesting a significant change in the 

coordination of the two residual acetates, which, in the heated material, likely act in the chelating or 

bridging chelating form. The second (complex) step of weight loss begins at ca. 255° C and is 

complete at about 360°C: loss of acetic anhydride, sublimation of the organic ligand and Hg, with 

partial formation of a black residue (carbon), were observed. The thermal behaviour of this 

compound is completely different from that reported for [Hg(µ-4,4’-bipy)(µ-AcO)(AcO)]n.n/2H2O, 

which shows two exothermic and one endothermic event until to 310°C, finally forming HgO.
[21] 

The thiocyanate derivative 2 behaves in a different manner: after melting at ca. 164°C, it starts to 

lose weight above 220°C; at 300°C sublimation of the organic ligand is complete. The IR spectrum 

of the residue recovered after heating at 225°C exhibits a signal corresponding to the SCN group, 

suggesting that at this temperature mercury thiocyanate is not decomposed to HgS. The solid 

residue formed at around 300°C is the ligand-free Hg(SCN)2 which is stable up to 390 °C and 

decomposes exothermically at higher temperatures. Species 3, the cyanide analogue of 2, is stable 

up to 239°C, where it starts to release bim and Hg (up to 340°C). 

Interestingly, species 3, [Hg(bim)I2]n, melts at ca. 210°C, and, at higher temperatures, completely 

decomposes into bim, molecular iodine and Hg with a number of exothermic effects.41 Slightly 

more interesting is the thermal behaviour of the chloro-derivatives 5 and 6. Indeed, 6 [a Hg(I) 

complex] is stable only below 100°C, where is starts losing Hg and transforming to 5, in agreement 

with the following disproponation equation: 
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1/x [Hg2(bim)Cl2]x � 1/n [Hg(bim)Cl2]n + Hg 

 

Above the transition temperature, the TG spectra of 5 and 6 are coincident; in particular, melting at 

ca. 250°C, followed by release of bim, elimination of the two chlorine atoms(likely as Cl2) and then 

elimination of elemental Hg is observed.42  

 

Structural Analysis. 

Our XRPD structure determination of 1 revealed the existence of cyclic, centrosymmetric, dimers, 

crystallizing in the monoclinic P21/n space group. In each dimeric molecule (shown in Figure 2), 

Hg(II) ions are hexa-coordinated, thanks to the presence of two chelating acetates (Hg-O distances 

in the 2.22-2.32 Å range) and two nitrogen atoms from two different bim ligands (Hg-N distances 

2.32-2.35 Å - restrained). The Bim ligand bridges fairly distant Hg(II) ions, separated by 8.87 Å, 

thanks to the nearly Cs conformation induced by the two CH2-im torsional angles. This 

conformation is not rare, as is has been already observed in oligomeric as well as polymeric metal 

complexes, both of the transition (Cu, Zn, Cd, Rh), or post-transition (Sn) type. Worthy of note, 

another common conformation, of ideal C2 symmetry, has been observed, and the relative geometric 

stereochemical preferences estimated on energetic grounds. 

Similar cyclic oligomers have been found for zinc (another group 12 metal) and rhodium,43 but not 

for cadmium complexes.21b Moreover, zinc dimers containing halides (Cl, Br) as ancillary ligands 

resulted to be very different from the corresponding acetate,21b which showed a one-dimensional 

chain topology (thus not crystallizing as discrete entities). 

Our structural studies of 2-5 revealed that all these species contain monodimensional chains 

determined by the juxtaposition of [-Hg-(bim)-] monomers, with the anionic ligands coordinated to 

the Hg(II) ions in a more-or-less ideal tetrahedral fashion. The most relevant geometrical features of 

the HgN2X2 chromophores are collected in Table 2, together with some ancillary stereochemical 

information. Schematic drawings of the infinite chains present in the [Hg(bim)X2]n species are 

shown in Figure 3a-d. 

Despite sharing a similar shape and conformation [the bim ligand is nearly - or exactly in 4 and 5 - 

Cs], several differences must be highlighted, both at the local coordination sphere of Hg(II) and at a 

supramolecular level. The dicyanide species 3 manifests the largest deviation from a tetrahedral 

coordination, with a (NC)Hg(CN) bond angle (>160°) approaching linearity. A similar coordination 

was found in mercury(II) bispyrazolate, with nearly linear N-Hg-N coordination and two 

significantly longer contacts in the plane normal to the N-Hg-N vector.44 With the caveats imposed 

Page 10 of 26

ACS Paragon Plus Environment

Submitted to Inorganic Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



by the intrinsic low resolution of the method (particularly for the determination of light atoms in the 

presence of a heavy scatterer), it is however rewarding to see that the Hg-X trend nicely depends on 

the size of the ligand or of the atom directly bound to the mercuric ion. Moreover, it should be 

noted that, no matter what the coordination of this ion is (pseudotetrahedral or nearly digonal with 

ancillary Hg-N contacts), N-Hg-N angles fall in a rather narrow range (92 to 97°), centred well 

below the ideal tetrahedral value of 109.5°. 

Significant differences can also found at the supramolecular level. This is particularly evident for 

the diiodide (4) and dichloride (5) couple, which in spite of sharing the same crystal system and 

space group (the not so common P21/m, one) when viewed down b, as shown in Figure 4, clearly 

manifest the different organisation of adjacent chains.  

Additionally, also the cyanide and sulfocyanide couple manifest significantly different crystal 

packings (not shown here), but this is much less surprising, since significant stereochemical 

differences are already present at the local level (vide supra). Perhaps, the most interesting 

supramolecular feature of compound 3 is the presence of crossed, but not weaved, polymeric chains 

running along [110] (and its symmetry equivalent direction, [-110]). 

 

Thermodiffractometric Analysis.  

Aiming at studying the dynamic behaviour of these systems, we employed thermodiffractometric 

techniques to estimate the cell variations on increasing the temperature in “in situ” experiments, 

using the anisotropic shifts of the diffraction peaks, and to build the corresponding strain tensor.45 

The numerically extracted results can be schematized as shown in Figure 5a-e, where the relative 

variations for the cell axes are plotted vs. T. Figure 6a-e, instead, visualizes the thermal strain 

tensors, derived therefrom, positioned in the unit cell. 

As it can be observed in the plots of Figure 5, all cell axes increase with temperature, although at 

different rates. While this is a common behaviour for intrinsically anisotropic molecular crystals, 

where most contacts are given by van der Waals interaction, weak and, therefore, very sensible to 

increased molecular motions (internal degrees of freedom, such as bond distances and angles being 

typically more rigid), in compounds 2 and 5 there is one axis (b and a, respectively), which change, 

5 to 10 times more than the others. However, simple axis deformations may be misleading when the 

lattice vectors are not orthogonal. In such cases, it is better to resort to strain tensors as represented 

by the anisotropic thermal expansion coefficient isosurfaces drawn in green in Figure 6a-e. 

The deformation of a crystal by a change in the temperature is expected to be minimal in the 

direction of the highest atomic density, i.e., the direction of strongest interactions; accordingly, all 

the polymeric species (but 3, vide infra) show small(er) thermal distortion along the chain 
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elongation axis. At variance, the softer direction is that parallel to the vector bisecting the BIM N-

C-N angle which is substantially ‘perpendicular’ to the pseudo-stacking of the imidazolyl rings (and 

to the chain elongation axis). This said, it is now clear why 3 has an ‘oblate’ rather then a ‘prolate’ 

strain tensor. Indeed, in 3 the ab plane contains both the chain elongation axes and the BIM N-C-N 

bisecting vectors of the two crossed polymers. Thus the hardest elongation direction of one polymer 

couples with the softest one of the other polymer and this eventually explains why, in 3, the 

polymeric chains are apparently aligned with the softer directions. 

Further (less common) structural information was derived from structural refinements of the 

polymeric species on all collected XRPD datasets: thanks to the large contribution to the total 

scattering of the unique Hg ions, we derived the temperature dependence of the (Bim bridged) 

Hg···Hg distances, collectively shown in Figure 7. As shown therein, a large change, of nearly 0.10 

Å, occurs for the cyanide derivative 3 which is, after all, a definite outlier in our structural analysis, 

for it shows a nearly digonal coordination and an unusual crystal packing with crossed polymeric 

chains. According to the explanation given above for the anomalous shape of the strain tensor, we 

must conclude that Hg···Hg elongation is here triggered by the lateral vibrations of the ‘orthogonal’ 

crossed chains. 

 

Conclusions. 

Summarizing, we have here presented the complete structural characterization of several novel 

mercury complexes (one cyclic dimer and one chain polymer) from powder diffraction data, 

together with some of the material performances derived from thermodiffractometric analysis, 

linking a structural interpretation with the (apparently incoherent) observed lattice deformation. 

It is very interesting that, in contrast to other SCN, CN, and I complexes where the anions acted as 

bridges over adjactent metal ions (increasing structural dimensionality), in our cases only chain 

polymers were obtained where the bridging linkers is the N2-donor ligand. 

Our thermogravimetric studies demonstrated that in the case of the halide and pseudohalide 

polymeric complexes the interaction between the N2-ligand and the mercury ion is weak, breaking 

of the Hg-N bonds with dissociation into the starting free ligand and mercury salts being observed 

in the temperature range 150-230 °C. On the other hand these complexes, although not very stable 

on heating, were found to be rather resistant to solvent attack (with the notable, though expected, 

exception of DMSO). Work can be anticipated in the direction of studying the structure versatility 

of this system, for example by employing different anions or synthetic conditions.  

 

Page 12 of 26

ACS Paragon Plus Environment

Submitted to Inorganic Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Acknowledgement. This work was supported by MUR (PRIN2006: ‘‘Materiali Ibridi Metallo-

Organici Multifunzionali con Leganti Poliazotati”) and Fondazione CARIPLO (Project 2007-5117). 

We gratefully acknowledge the help of one reviewer, which allowed us to make this paper, in its 

final version, more easily readable. 

 

Supporting information. Supplementary material contain the TGA traces for compound 1-6, the 

tables of the lattice parameter evolution as obtained from Le Bail-fits on selected portions of the 

XRPD trace, and the crystallographic data for compound 1-5. CCDC 720632-720635. These data 

can be obtained free of charge from The Cambridge Crystallographic Data Centre via 

www.ccdc.cam.ac.uk/data_request/cif. Supplementary data associated with this article can be 

found, in the online version, at doi: ***. 

 

Page 13 of 26

ACS Paragon Plus Environment

Submitted to Inorganic Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Table 1: Crystal data and refinement details for the compounds 1-5. 

 

Compound 

[Hg(Bim)X2]n 

1 

CH3COO- 

2  

SCN-
 

3  

CN- 

4  

I- 

5  

Cl- 

Emp. Form. C11H8Hg2N4O4 C9H8HgN6S2 C9H8HgN6 C7H8HgN4I2 C7H8HgN4Cl2 

fw, g mol-1 460.80 464.94 400.79 602.56 419.66 

Crystal system Monoclinic Monoclinic Monoclinic Monoclinic Monoclinic 

SPGR, Z P21/n, 4 P21/c, 4 C2/c, 8 P21/m, 2 P21/m, 2 

a, Å 9.4490(2) 14.2249(3) 14.2670(2) 9.1194(2) 8.3477(2) 

b, Å 15.0057(3) 11.0098(3) 11.9344(1) 9.4293(1) 9.4314(2) 

c, Å 10.2300(2) 9.1580(2) 14.8441(2) 8.4101(1) 6.8644(2) 

ββββ, ° 96.409(2) 110.300(2) 65.787(1) 118.519(1) 90.765(2) 

V, Å3 1441.43(5) 1345.19(6) 2305.13(5) 635.43(2) 540.39(2) 

ρcalc, g cm-3 2.123 2.296 2.310 3.149 2.579 

F(000) 856 864 1472 528 384 

µ(Cu-Kα), cm-1 193.4 233.70 251.3 596.5 298.3 

Diffractometer Bruker D8 Bruker D8 Bruker D8 Bruker D8 Bruker D8 

T, K 298(2) 298(2) 298(2) 298(2) 298(2) 

2θ  range, ° 5-105 5-105 5-105 5-105 5-105 

Indexing Method SVD SVD SVD SVD SVD 

M/Gof 68.7 23.3 28.2 71.3 76.7 

Ndata 5001 5001 5001 5001 5001 

Nobs 1666 1554 1332 792 617 

Rp, Rwp
[a[ 0.072, 0.096 0.050, 0.067 0.073, 0.095 0.045, 0.058 0.041, 0.053 

RBragg
[a]

 7.547 2.823 8.426 3.814 2.765 

χ2 [a] 16.522 5.816 15.106 7.296 7.032 

V/Z, Å3 360.4 336.3 288.1 317.7 270.2 

 

[a]
Rp = Σi |yi,o - yi,c|/Σi |yi,o|; Rwp = [Σi wi (yi,o - yi,c)

2/Σi wi (yi,o)
2]1/2; RB = Σn |In,o - In,c|/Σn In,o; χ

2 = Σi wi 

(yi,o - yi,c)
2/(Nobs - Npar), where yi,o and yi,c are the observed and calculated profile intensities, 

respectively, while In,o and In,c the observed and calculated intensities. The summations run over i 

data points or n independent reflections. Statistical weights wi are normally taken as 1/yi,o. 
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Table 2. Synoptic collection of most relevant geometric parameters (Å and °) for compounds 1-5. 

Starred values have been subjected to soft-restraints. 

 

Compound Hg
…

Hg Hg-N N-Hg-N Hg-X X-Hg-X 
Bim 

symmetry 

1-D chain 

// to 

1 8.87 2.32-2.35* 91.9 
2.22-2.24 

2.30-2.32 
- Cs  

2 9.16 2.37* 91.7 2.42-2.43 135.3 Cs [001] 

3 9.30 2.40 96.1 2.05* 161.1 Cs [110] 

4 9.43 2.38 92.3 2.67-2.70 128.9 Cs [010] 

5 9.43 2.36 96.5 2.39-2.42 115.9 Cs [010] 
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Figure 1. Rietveld refinement plots for compounds 1-5 with peak markers and difference plots at 

the bottom. 
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Figure 2. Schematic drawing of the structure of the [Hg(bim)(CH3COO)2]2 1 molecule, as derived 

by our powder diffraction analysis. 
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Figure 3. Schematic drawing of the structures of the [Hg(C7H8N4)(SCN)2]n 2, [Hg(C7H8N4)(CN)2]n 

3, [Hg(C7H8N4)I2]n 4 and [Hg(C7H8N4)Cl2]n 5 molecules (top to bottom), as derived by our powder 

diffraction analysis. 
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Figure 4. Schematic drawing of the crystal packing of [Hg(C7H8N4)I2]n 4 and [Hg(C7H8N4)Cl2]n 5 

highlighting their non-isomorphic character (see text) - a axis in red, c axis in blue. 
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Figure 5. Temperature evolution of the lattice parameters of compounds 1-5, normalized to their r.t. 

values. 
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Figure 6. Thermal expansion coefficients isosurfaces (thermal strain tensors) drawn within the crystal structure of compounds 1 (along c, a from 

left to right, b from bottom to top), 2 (the same orientation of 1), 3 (the same orientation of 1), 4 (along b, a from left to right, c from top to bottom) 

and 5 (along b, a from left to right and c from bottom to top). 

1 2 3 

4 5 
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Figure 7. Temperature evolution of the intramolecular Hg···Hg distance in polymers 1-5. 
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For the Table of Contents 

 

 

 

Several polynuclear Hg(II) complexes containing the flexible ditopic bisimidazolylmethane ligand 

bim ligand have been prepared and their crystal structures retrieved from laboratory powder 

diffraction data. Using thermodiffractometric methods, the thermal expansion coefficients and the 

related strain tensors were also determined. 
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