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The number of Maxwell-Bloch equations describing the spatiotemporal evolution of solid-state and

semiconductor-based lasers can be reduced when the temporal scales of the fields and atomic variables are very

different. We demonstrate the existence of slow scenterd manifolds for models of solid-state lasers ssuch as

Nd:YAGd and vertical-cavity surface-emitting lasers and determine reduced equations in the presence of both

diffraction and carrier diffusion. Two separate methods of obtaining the reduced equations are presented.

Excellent agreement between the reduced models and the original equations is obtained when the slow mani-

folds are expanded in a perturbative series. Since stiffness is removed, the computational time for the long-term

spatiotemporal dynamics of these devices can be strongly reduced, typically by 2 orders of magnitude.
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I. INTRODUCTION

Several numerical models based on Maxwell-Bloch sMBd
equations for the spatiotemporal dynamics of solid-state sin-
cluding semiconductord lasers suffer from the so-called

“stiffness.” Stiffness corresponds to the fact that dynamical

variables shere the optical field inside the cavity, the carrier

density, and the dielectric polarizationd evolve on very dif-

ferent time scales, so that numerical implementation is quite

inefficient. Semiconductor laser modeling is far more com-

plex than “standard” solid-state se.g., based on solid-state

doped materials such as Nd:YAGd device modeling. The

problem of stiffness is, however, common to both these

groups of lasers since in both cases the cavity field and, in

particular, the carrier density evolve on time scales much

longer than other dynamical variables such as the medium

polarization.

Effective reduced models that eliminate stiffness can be of

importance in reducing the computational time and hence

increasing the predictive power of these numerical simula-

tions. Stiffness in ordinary and partial differential equations

can be eliminated by reducing the number of coupled vari-

ables to just those that evolve on a slow time scale. Several

years ago, Ref. f1g showed that in laser models which in-

clude diffraction the straightforward elimination of fast vari-

ables can lead to spurious instabilities and that more ad-

vanced techniques are needed for a correct description of

their long-term spatiotemporal dynamics. Moreover, the dif-

ficulty in obtaining simple reduced models for broad ranges

of parameter values has often restricted the analysis to re-

gimes very close to the laser threshold f2,3g. In recent years

Maxwell-Bloch models have been used extensively in the

simulation of spatiotemporal structures in broad area micro-
cavity semiconductor absorbers f4g and in vertical-cavity
surface-emitting lasers sVCSELsd f5g. Close-to-threshold

models are excellent in capturing the essential ingredients for

the dynamics of laser devices but, of course, cannot describe

the output of these modern solid-state lasers that may be

operated several times above threshold.

One method standardly used in the literature to eliminate

stiffness is based on the theory of center manifolds sCMsd
f6g. CMs are subspaces of the original phase space that at-

tract the long-term dynamics of the system. They are also

known as slow manifolds sSMsd. One of the presumed limi-

tations of center manifold theory is that the perturbation ex-

pansion is restricted to the neighborhood of a specific steady-

state solution. In the laser problem, where there are at least

two states of interest corresponding to on and off lasing ac-

tion sand all their bifurcating solutionsd, it appeared that re-

ductions based on center manifolds would possess a local

character only f1g. Here we show that this difficulty can be

circumvented by using higher-order expansions and linear

operators. We derive and test reduced models for standard

solid-state doped-crystal lasers and VCSELs. With typical

decay times of the medium polarization, the cavity field and

the carrier densities of around 100 fs, 10 ps, and 1 ns, re-

spectively, a carefully reduced model can achieve the same

asymptotic result as the original simulation 1000 times faster.

Because of the larger number of operations per step required

in the reduced model, we have achieved gain factors of 300

and more in the simulation times of the same spatial struc-

tures for both solid-state doped lasers and

VCSELs. We also show that the agreement between the

original and reduced models extends to lasers operated far

above threshold where models derived under the close-to-

threshold approximation can no longer be applied. For ex-

ample, we show that a Hopf bifurcation with a finite trans-*gianluca@phys.strath.ac.uk
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verse wave vector is absent in close-to threshold models but

is accurately reproduced by our reduced equations.

The paper is organized as follows. In Sec. II we discuss

the theory of CMs. We then demonstrate the existence of

CMs containing more than one fixed point and with a

broader range of validity than previously considered for the

solid-state sSec. IIId and VCSEL sSec. IVd models. We next

apply a perturbative determination of the CM technique to

obtain reduced equations. A further rescaling through a sin-

gular perturbation expansion of the population scarrierd vari-

able is then applied. In particular, we show that the dynamics

of the complex amplitude of traveling-wave solutions is ac-

curately described by the reduced models at resonance. Nu-

merical comparisons demonstrating the wide range of valid-

ity and applications of the reduced models are presented in

Sec. V. Conclusions and discussion of the relevance of our

results to the analysis of dissipative spatiotemporal structures

in the output of a large variety of laser systems are presented

in Sec. VI.

II. EXISTENCE OF SLOW (CENTER) MANIFOLDS

In Ref. f1g CM techniques were applied to spatiotemporal

models of lasers. For convenience the CM was developed

around a specific stationary solution of the model equations.

In the laser case there are at least two stationary solutions

above threshold: one corresponding to lasing and one corre-

sponding to nonlasing action. Without spatial effects only the

lasing solution is relevant. In fact, the nonlasing solution lies

on an unstable manifold that cannot be reached by the dy-

namical evolution of the differential equations since once it

is attained it traps the system dynamics forever. For this rea-

son the logarithmic transformation s=lnsId with I being the

laser intensity was introduced in Ref. f7g. Such transforma-

tion moves the nonlasing fixed point corresponding to I=0 to

minus infinity.

With spatial effects due to the inclusion of diffraction, the

nonlasing solution loses stability to the homogeneous lasing

solution for one sign of the detuning ssay that corresponding

to positive ud. In this case the logarithmic transformation

remains valid. For the opposite sign of the detuning, how-

ever, the zero solution loses stability to traveling-wave pat-

terns f8g. Standing wave solutions, obtained from two coun-

terpropagating traveling waves with suitable boundary

conditions f9g, alternate regions of zero and nonzero laser

intensities and so the logarithmic transformation loses its va-

lidity. There thus appeared to be the need for two CMs for

laser equations: one for positive and one for negative detun-

ings ssee Ref. f1gd.
An elegant, yet partial, solution to the problem was pro-

vided by Lega et al. f2,10g while introducing a complex

Swift-Hohenberg sCSHd equation for lasers. The CSH re-

duced model is, at least in principle, valid only in a rectangle

of sides se ,e2d swhere e is the smallness parameterd in the

sdetuning, pumpd parameter region ssee Fig. 1d. Within this

parameter region, all relevant homogeneous solutions and

phase modulated patterns are correctly described by the CSH

equation. In the stiff limit, however, an effective equation for

the medium population must be added to the model in order

to catch the instabilities of the traveling-wave solution that

arise, in that limit, from the coupled dynamics of the electric

field and the slow population. One remarkable fact of work

of Lega et al. is that the reduced model formed by the CSH

equation for the field and a mean flow equation for the popu-

lation displayed agreement with the original equations well

beyond the perturbative limit of the close-to-threshold ap-

proximation and up to twice the threshold value for negative

detunings ssee the dashed rectangle in Fig. 1d. Such consid-

erations have recently been extended to VCSEL models in

f3g.
It is the aim of this paper to obtain reduced models that

maintain their validity far from threshold. The application of

the CM theorem f6g guarantees the accuracy and validity of

the final equations. Let us then briefly recall the main state-

ment of the CM theorem: if a set of ordinary or partial dif-

ferential equations for the vector variables Z and Y can be

written in the form

]tZ = AZ + eFsZ,Y,ed ,

]tY = eGsZ,Y,ed , s1d

where e is a smallness parameter and A is a matrix with

eigenvalues with negative real part, then a center manifold

Z = Hse,Yd s2d

exists and can be found perturbatively. This implies that

there are two distinct time scales for the evolution of the Z
and Y variables. On the short time scale the Z vector quickly

relaxes to a submanifold of the full phase space. On the

long-term time scale the dynamics is confined to the CM and

will not leave such subregion of the phase space since the

CM is asymptotically stable. Note that formula s2d is equiva-
lent to a multiple time scale analysis.

FIG. 1. Simplified detuning u and pump smd parameter space for

a standard laser. Without diffraction the parabola represents the la-

ser threshold. With diffraction, traveling-wave patterns are gener-

ated for negative detunings at a flat threshold. The solid rectangle,

of sides e and e2, represents the range of validity of the CSH model

derived in f2g while the dashed rectangle represents the extended

validity of a model formed by a CSH plus an effective equation for

the population variable as described in f10g.
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We first derive the dynamical equations evolving on the

slow manifold and then extend the time scale by using a

singular perturbation expansion of the population scarrierd
variable D. These methods are applied to both solid-state and

VCSEL models sSecs. III and IV, respectivelyd.

III. DERIVATION OF THE REDUCED EQUATIONS:

THE SOLID-STATE LASER CASE

We start with the standard Maxwell-Bloch equations for a

solid-state doped laser se.g., Nd:YAGd in the presence of

diffractive effects. We define with E and P the complex

slowly varying amplitudes of the electric and polarization

fields, with D as the normalized population, with e and

gs=se2d as the decay rates of the field and population nor-

malized to that of the polarization, with u and m as the de-

tuning parameter and the amplitude of the external pump,

and we use transverse space units such that the diffraction

parameter, which is usually denoted by a, is equal to 1. The

resulting equations, after the mean-field limit, are f1,11g

]tE = i¹2E + efP − s1 + iudEg , s3ad

]tP = − s1 − iudP + DE , s3bd

]tD = − se2fD − m + ResEpPdg , s3cd

where the reference frequency is that of the spatially inde-

pendent shomogeneousd single-mode lasing solution. Typical

orders of magnitude of the normalized decay rates provide e
in the range of 10−2–10−3 for a large variety of solid-state

lasers, while the parameter s is of order 1 or smaller. We

then consider e as our smallness parameter and note the

structure of the equations for e=0,

s]t − i¹2dE = 0, s4ad

]tP = − s1 − iudP + DE , s4bd

]tD = 0. s4cd

These equations admit a simple traveling-wave solution

E = A expfiskW · xW − vtdg , s5ad

P =
DE

1 − iu − iv
, s5bd

D = const, s5cd

where A is a constant amplitude, kW is the spatial wave vector,

and v satisfies the dispersion relation v=k2.
If eÞ0 the traveling-wave solution has the same form as

Eq. s5d but with A and D given by

A = Îm − mthe
if, D = mth, s6ad

mth = 1 + Su +
k2

1 + e
D2

, s6bd

v =
k2

1 + e
, s6cd

where f is an arbitrary phase and mth is the laser threshold.

This illustrates the role of the sign of u in the wave-vector

selection at threshold: for u,0, the threshold has a mini-

mum, mth=1, when the wave vector kW is such that k2=−us1
+ed; for u.0, the threshold has a minimum, mth=1+u2, for

the homogeneous solution kW=0. Notice that us1+ed repre-

sents the detuning between the atomic frequency and the

cavity frequency of the nearest longitudinal mode, while u is

the detuning between the atomic frequency and the lasing
frequency of the nearest longitudinal mode. The latter is

smaller by a factor 1+e which accounts for the mode pulling

effect. In the presence of diffraction, the traveling-wave so-

lution with the minimum threshold is that resonant with the

atomic transition.

The polarization is still given by Eq. s5bd which, taking

into account the above expression for v, can be rewritten as

P = DLE s7d

after using the operator L defined as

L = S1 − iu +
i¹2

1 + e
D−1

. s8d

This suggests that a convenient way to recast Eq. s3d in the

same form as Eq. s1d is to use a dynamical variable Z and a

space-time differential operator D defined as

Z = P − DLE , s9d

D = ]t −
i¹2

1 + e
. s10d

We observe that both D and L are linear operators. The

equations for Z, E, and D are

DZ = − L−1Z − s]tDdsLEd − DLsDEd , s11ad

DE = esQE + Zd , s11bd

DD = − se2hD − m + RefEpsDLE + Zdgj −
ie¹e

2D

1 + e
,

s11cd

where the operator Q is defined as

Q = DL − 1 − iu +
i¹2

1 + e
. s12d

In the equation for D the substitution ¹
2=e¹e

2, with ¹e
2

=]2
/ se]x2d+]2

/ se]y2d, accounts for the fact that the popu-

lation is constant in space and time for e=0 and hence we

can assume that, in general, Dst ,x ,yd=Dset ,Îex ,Îeyd. This
agrees with the phase modulations of traveling waves for the

electric field and the polarization ssee Eq. s5d and Refs.

f8,10,12gd.
Equation s11d admits a single center sslowd manifold for

all traveling-wave solutions and for both signs of the detun-
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ing u since all the terms on the right-hand sides sr.h.s’sd of

the second and third equations are on the order of e or higher.

Note that a CM of the Maxwell-Bloch equations is a sub-

space sE ,Dd of the full phase space sZ ,E ,Dd where the long-

term spatiotemporal dynamics takes place. The expression

for Z in the equations for E and D can be obtained perturba-

tively by expanding Z in a power series of e, i.e.,

Z = Z0 + eZ1 + e2Z2 + Ose3d s13d

and inserting it in Eq. s11ad. Taking into account the defini-

tion of D, the zeroth-order equation ]tZ0=−s1− iudZ0 pro-

vides Z0=0 on a long time scale. We observe that, should we

stop at this level of approximation, the equations for E and D
with Z=0, which read

]tE = i¹2E + efDLE − s1 + iudEg , s14ad

]tD = − se2hDf1 + ResEpLEdg − mj , s14bd

would contain enough information to exactly reproduce the

traveling-wave solution of the full system, because for this

solution P=DLE. Hence, these equations already provide a

good approximation of the full model. They can be also de-

rived in an alternative way, as shown in Appendix A.

However, in order for the reduced model to better simu-

late the full model, including the stability of the traveling

waves and the dynamical behavior of the system when those

solutions become unstable, next-order corrections in Z must

be included. The first- and second-order terms in the pertur-

bation expansion are

Z1 = − LfDLsQEdg , s15ad

Z2 = sLhfD − m + ResEpDLEdgsLEdj + LhDL2fDLsQEdgj

+ L2fDLsQ2Edg + iLS ]Z1

]D
¹e

2DD . s15bd

Again splitting the operator D into its temporal and spatial

components, the reduced equations in the subspace sE ,Dd
become

]tE =
i¹2E

1 + e
+ esQE + Zd , s16ad

]tD = − se2hD − m + RefEpsDLE + Zdgj s16bd

with Z=eZ1+e2Z2. It is clear that we can reduce the stiffness

of the equations if in Eq. s16ad we can make the substitution

¹
2=e¹e

2 already used in Eq. s11cd, i.e., if E varies slowly in

space. This assumption is certainly true if uuu=Osed because

in that case the wave vector kW of the traveling-wave solutions

is such that k2=Osed. It is also true for u large and positive if

the homogeneous solution selected at threshold is either

stable or unstable against small wave vectors. If u is large

and negative the traveling waves selected at threshold oscil-

late rapidly in space and time. Nevertheless, we can extract

the rapidly oscillating terms from the electric field and write

a set of equations with reduced stiffness for the slowly vary-

ing envelope. In the following we consider the different lim-

its separately.

A. zuz=O(e)

In this limit we can set u=ed with d=Os1d and assume

that E varies slowly in space. With the substitution ¹
2=e¹e

2

the dynamical equations become

]etE =
i¹e

2E

1 + e
+ QE + Z , s17ad

]etD = − sehD − m + RefEpsDLE + Zdgj . s17bd

These equations evolve on a slower time scale setd than the

original MB equations and contain the long-term dynamics

of the laser systems. From their structure, it may appear that

a further reduction in the number of equations is possible

since the rhs of the dynamical equation for the variable D is

multiplied by e. It has been shown, however, that in the limit

of small e the system approaches a conservative dynamics

and that the reduction to a single variable D is not possible

f7g. Nevertheless, a renormalization of the temporal scales by

a further singular expansion in Îe is still feasible. With this

aim in mind we observe that in this limit L=1+Osed and

Q=D−1 at order zero in e. Hence, if we use the following

singular scaling for the population variable f1,7g

D = 1 + ÎeW , s18d

and the time t=e3/2t, the stiffness of the equations for E and

W may be completely removed.

Taking into account that L=1+Osed and Q=OsÎed we

can easily find the expression for Z valid in this limit as

follows:

Z = − e3/2fs1 + ÎeWdW − sÎes1 − m + uEu2dgE . s19d

Expanding L and Q in power series of e, the final equations

for E and W are

]tE = H i¹e
2

Îes1 + ed
+

W

1 + e
+ ieWsd − ¹e

2d − e3/2fW2 + sd − ¹e
2d2

− ss1 − m + uEu2dgJE , s20ad

]tW = − sfs1 + ÎeWds1 + uEu2d − m − es1 + ÎeWdResiEp
¹e

2Ed

− e3/2WuEu2g . s20bd

Notice that the term sd−¹e
2d2 in Eq. s20ad implies that the

traveling-wave solution selected at threshold for negative d
is the one with wave vector k2=−ed=−u instead of k2=
−us1+ed, as predicted by the full model. However, in the

limit uuu=Osed this results just in an error of the order e3 in

the intensity of the traveling-wave solution and in its thresh-

old, while the frequency is still correct up to that order.

The close-to-threshold limit of Eq. s20d amounts to as-

suming that D−1, m−1, and uEu2 are Ose2d. The assumption

on D is equivalent to W=Ose3/2d. The reduced equations

valid in the close-to-threshold limit can be obtained from Eq.

s20d keeping only terms up to the order e3/2,

]tE =
i¹e

2E

Îes1 + ed
+WE − e3/2sd − ¹e

2d2E , s21ad
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]tW = − ss1 + ÎeW + uEu2 − md . s21bd

In Appendix B these equations are shown to be equivalent to

those of Lega et al. f2,10g when the field decay rate of those

equations is Osed as in our model.

B. zuz=O(1)

When the detuning u is large and positive, the lasing so-

lution above threshold is homogeneous in space sk=0d. If,
instead, u is large and negative the traveling wave with the

minimum threshold oscillates rapidly in both time and space.

In order to separate the fast and slow temporal and spatial

scales we write the electric field E as

Esx,y,td = FsÎex,Îey,etdexpFiSkW · xW −
k2

1 + e
tDG s22d

and observe that we can write

¹
2E = eik

W·xWs− k2 + 2iÎekW · ¹W e + e¹e
2dF , s23d

where ¹W e is the gradient operator in the plane sÎex ,Îeyd. It
follows that LE=eikW·xWL8F, where the operator L8 acts only

on the slowly varying amplitude F and is defined as

L8 = S1 − iD −
2ÎekW · ¹W e − ie¹e

2

1 + e
D−1

s24d

with

D = u +
k2

1 + e
. s25d

Correspondingly we use the operator Q8, defined as

Q8 = DL8 − 1 − iD −
2ÎekW · ¹W e − ie¹e

2

1 + e
, s26d

and observe that at the zeroth order in e

Q8 =
D − 1 − D2

1 − iD
. s27d

Hence, the correct scaling for the D variable is

D = 1 + D2 + ÎeW . s28d

To determine Z we need to know only the lower-order terms

in the power expansions of L8 and Q8, which are

L8 =
1

1 − iD
+ Îe

2kW · ¹W e

s1 − iDd2
, s29d

Q8 = Îe
W + 4iDkW · ¹W e

1 − iD
+ 2eF WkW · ¹W e

s1 − iDd2
+ 2k2

1 + iD

s1 − iDd2
¹e

2

+
D¹e

2

1 − iD
G . s30d

Using the above approximations we can write Z=eikW·xWZ8,

with Z8 given by

Z8 = − e3/2
1 + iD

s1 − iDd2
sW + 4iDkW · ¹W edF +

e2

s1 − iDd3
hss1 − iDd

3s1 + D2 − m + uFu2d −W2 − 2Ds1 + D2d¹e
2 − 2Ws3

+ 5iDdkW · ¹W e − 4s1 + iDdfs1 + iDdk2¹e
2 + 4iDskW · ¹W ed

2

+ kW · s¹W eWdgjF . s31d

The dynamical equations for F and W are then

]tF = −
2kW · ¹W e − iÎe¹e

2

es1 + ed
F +

Q8F + Z8

Îe
, s32ad

]tW = − shs1 + D2 + ÎeWdf1 + ResFpL8Fdg − m + ResFpZ8dj .

s32bd

In Eq. s32bd one has to consider only the terms up to the

order e3/2 in Z8. Equation s32d contains the long-term dynam-

ics of solid-state lasers for any value of u. In this respect,

they represent the solution of the single reduced model for

stiff laser equations left open in Ref. f1g. For numerical pur-

poses it may be convenient to expand the operators L8 and

Q8 in power series. The general equations are quite convo-

luted and we do not report them here. In Secs. III B 1 and

III B 2, however, we consider the special cases of positive

detuning u with plane-wave solutions and that of negative u
with D=0 since the final equations can provide interesting

insights in the spatiotemporal dynamics of solid-state lasers.

1. Positive u

For positive u we only consider the case in which the

stationary solution with the minimum threshold is the plane

wave, kW=0. In this case the slowly varying amplitude F co-

incides with the electric field E, and D=u. Making a series

expansion of L8 and Q8 we can write the dynamical equa-

tions explicitly in the following form:

]tE = H i¹e
2

Îes1 + ed
+

W

1 − iu + es1 + iud
+

2Îeu

1 − iu + 2e
¹e

2

−
eW

s1 − iud2
i¹e

2 −
e3/2

s1 − iud2
F W2

1 − iu
+ s1 + iud¹e

4

− ss1 + u2 − m + uEu2dGJE , s33ad

]tW = − sHs1 + u2 + ÎeWdS1 +
uEu2

1 + u2
− e ReF iEp

¹e
2E

s1 − iud2
GD

− m − e3/2
1 − 3u2

s1 + u2d2
WuEu2J . s33bd

For small detunings, u=ed, these equations merge with Eq.

s20d if the substitution W→W−e3/2d2 is made to account for

the fact that W is defined in a different way in Eqs. s18d and

s28d.
From a numerical point of view, the first terms in the rhs

of Eqs. s20ad, s32ad, and s33ad may be seen as a source of
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concern because the denominators contain the smallness pa-

rameter e. This, however, should not be the case since spatial

scale renormalizations of the form X=e3/4x for Eqs. s20d and

s33d and X=e3/2x for Eq. s32d, respectively, provide an in-

stant remedy. By applying these renormalizations one may

consider the removal of several higher-order gradient and

Laplacian terms from the reduced equations. These terms,

however, may become significant at long spatial scales si.e.,
small wave vectorsd and should not be neglected arbitrarily.

We note that the presence of separate spatial scales in the

reduced equations from e3/2x to e1/4x is in any case an im-

provement with respect to the full equations where simulta-

neous accuracy over spatial scales from e2x to x was re-

quired. For example, for typical value of e of 0.025, as

considered in Sec. V, there is a net reduction in the range of

relevant spatial scales of at least a factor of 3.

The reduced equations contain all the long-term spa-

tiotemporal dynamics of interest and evolve on time scales

much slower than the original MB equations. For typical

values of the decay rates for solid-state lasers, the time scale

t=e3/2t is around 1000 times slower than that of the original

model. This means that numerical simulations of the reduced

equations performed on the t scale can, in principle, attain

long-term solutions 1000 times faster than those performed

with the original equation s3d. This point will be discussed

further in Sec. V where the reduced equations have been

numerically integrated and compared with the full original

MB model.

2. Negative u

For negative detunings u,0 Eq. s32d explicitly depends

on the wave vector of the traveling-wave solution that be-

comes stable above threshold. In order to show the relevance

of these equations in this limit, we focus on the most un-

stable wave vector above lasing threshold that is given by

D = 0, k2 = − s1 + edu . s34d

Similar considerations are, however, valid for other wave

vectors and even for spectral intervals of size e around the

most unstable wave vector. In the case of D=0, Eq. s32d
greatly simplifies since Z8 reduces to

Z8 = − e3/2WF + e2fss1 − m + uFu2d −W2 − 6WkW · ¹W e − 4k2¹e
2

− 4skW · ¹W eWdgF . s35d

By retaining terms up to e1/2 in Eq. s32d, it can be further

simplified to

]tF = −
2kW · ¹W e − iÎe¹e

2

e
F +WF + 2ÎesWkW · ¹W e + 2k2¹e

2dF ,

s36ad

]tW = − sfs1 + ÎeWds1 + uFu2d + 2Îe ResFpkW · ¹W eFd − mg .

s36bd

These compact equations accurately describe the stability of

the traveling-wave solution D=0 for generic values of the

pump parameter m. In the case of large negative detunings

Eq. s36d may also provide analytical results since they can be

easily transferred to the Fourier space. These calculations are

beyond the scope of this paper and will be presented else-

where.

IV. DERIVATION OF THE REDUCED EQUATIONS: THE

VCSEL CASE

Following a procedure similar to that of Sec. III, we can

also remove stiffness and reduce the number of equations in

the VCSEL model considered in Ref. f13g,

]tE = i¹2E + efP − s1 − iadEg , s37ad

]tP = jsDds1 − iadDE − fjsDd − ieagP , s37bd

]tD = − se2fD − m + ResEpPd − d¹
2Dg s37cd

with

jsDd = GsDds1 − iad + 2idsDd , s38ad

GsDd = − 0.07 + 2.80D , s38bd

dsDd = esD + ad + 1.51sD − 1d . s38cd

Here a is the linewidth enhancement factor, d is the diffusion

coefficient of carriers, and D plays the role of an effective

detuning parameter. With respect to f13g we have used a

frequency shift ea to make the analysis more similar to that

of the solid-state case.

Equation s37d describes the gain and dispersion mecha-

nisms typical of semiconductor media through the modified

relaxation rate of the polarization f13g. Similarly to the solid-

state case, they admit traveling-wave solutions of the form

E = A expfiskW · xW − vtdg , s39ad

P =
s1 − iadjsDdDE

jsDd − isv + ead
, s39bd

D = mth s39cd

with

A = Îm − mthe
if, s40ad

mth = 1 +
sk2 − eDd2 − e2sD + ad2

Gs1d2s1 + a2d
+ Ose3d , s40bd

v = k2 + Ose2d . s40cd

The above equations show that the parameter D plays a role

analogous to that of −u for the solid-state laser equations: if

D.0 the solution with minimum threshold is the traveling

wave with k2=eD; if D,0 it is the homogeneous solution

k=0.

To proceed with the derivation of the CM associated with

Eq. s37d we observe that Eq. s39bd can be written as

P = s1 − iadDLE s41d

with the operator L given by
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L = f1 + ijsDd−1s¹2 − eadg−1. s42d

If we then use the dynamical variable Z and the space-time

operator D defined as

s1 − iadZ = P − s1 − iadDLE , s43d

D = ]t − i¹2, s44d

we can recast Eq. s37d in a form similar to Eq. s11d,

DZ = − jL−1Z − ]tDsLEd − DLsDEd , s45ad

DE = es1 − iadsQE + Zd , s45bd

DD = − se2hD − m + D Refs1 − iadEpLEg + Refs1 − iadEpZg

− d¹
2Dj − ie¹e

2D s45cd

with Q=DL−1. These equations admit a center manifold.

As before, we can expand the fast variable Z in a power

series of the smallness parameter e. At second order in e one

obtains Z=eZ1+e2Z2 with

Z1 = − s1 − iadLfj−1DLsQEdg , s46ad

Z2 = sLˆj−1hD − m + D Refs1 − iadEpLEgjsLEd‰

+ s1 − iad2Lhj−1DL2fj−1DLsQEdgj

+ s1 − iad2Lhj−1LfDLsQ2Edgj

+ iLSj−1
]Z1

]D
¹e

2DD . s46bd

At this point, in the solid-state laser case, we analyzed the

limits of small and large detunings separately. In the VCSEL

case, however, the assumptions made to derive model s37d
restrict their validity to a frequency range of the order e
around the frequency of maximum gain f13g. Consistently,

we assume that the effective detuning D is at most of order 1,

which means that we consider the limit of small detuning,

where the traveling-wave solutions are characterized by long

spatial scales and slow temporal scales. Hence, we replace

¹
2 with e¹e

2 and write the reduced equations for the VCSEL

as

]etE = i¹e
2E + s1 − iadsQE + Zd , s47ad

]etD = − sehD − m + D Refs1 − iadEpLEg + Refs1 − iadEpZg

− de¹e
2Dj . s47bd

These equations are similar to Eq. s17d obtained for solid-

state lasers in the same limit of small detuning. It is then

possible to proceed as in Sec. III A observing that, as before,

the operator Q admits the singular expansion of the carrier

density variable D=1+ÎeW. As a consequence the function

jsDd fnow jsWdg contains terms of different order in e

jsWd = j0 + j1
ÎeW + 2iesD + ad , s48ad

j0 = Gs1ds1 − iad , s48bd

j1 = 2.80 + is3.02 − 2.80ad . s48cd

With the above substitutions, and with a series expansion of

the operators L and Q, the VCSEL equations read

]tE = H i¹e
2

Îe
+ s1 − iadW + e3/2

sD + ad2 − s¹e
2 + Dd2

Gs1d2s1 + a2d
s1 + iad

− i
Îe

Gs1d
F j0s1 + ÎeWd

j0 + j1
ÎeW

−
e

Gs1d
Gs¹e

2 − ad − s1 − iad

3
eW

Gs1d
F1 + S1 −

j1

j0

DÎeWG +
e3/2s

Gs1d

3s1 − m + uEu2dJE , s49ad

]tW = − sHs1 + ÎeWdF1 + uEu2 −
e ResiEp

¹e
2Ed

Gs1d
G − m

+
e3/2W

Gs1d
ReFij1

j0

Eps¹e
2 − adEG −

e3/2W

Gs1d
uEu2

− de3/2
¹e

2WJ . s49bd

These equations evolve on a time scale much slower that

the original VCSEL equations since the time scale t=e3/2t is
around 1000 times slower than that of the original model for

typical values of e on the order of 10−2. In Sec. V we present

numerical simulations where the reduced equation s49d is

compared with the full model s37d.
Similarly to the solid-state laser model, we can consider

the close-to-threshold limit of Eq. s49d which, after a redefi-

nition of the reference frequency, reads

]tE =
i¹e

2E

Îef1 + e/Gs1dg
+ s1 − iadWE +

e3/2

Gs1d2
S sD + ad2

s1 + a2d

−
sD + ¹e

2d2

s1 − iad
DE , s50ad

]tW = − ss1 + ÎeW + uEu2 − md . s50bd

In Appendix C we discuss similarities and differences be-

tween these equations and the analogous ones derived by

Mercier and Moloney f3g. The differences are due to the fact

that, unlike in the two-level case where the starting equations

are always the well-established Maxwell-Bloch equations, in

the semiconductor laser case various sets of effective

Maxwell-Bloch equations have been proposed, and those

used in f3g differ from ours in some basic assumptions which

are made on the complex semiconductor susceptibility f13g.

V. ANALYTICAL AND NUMERICAL COMPARISONS

BETWEEN FULL AND REDUCED MODELS

In this section we provide evidence that the reduced mod-

els obtained in Secs. II–IV provide a faithful representation

of the long-term dynamics of the full solid-state laser and
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VCSEL models. Since the equations and, in particular, the

dynamical behavior of the solid-state laser are simpler than

those of the VCSEL, we start from these models, where the

stability of the steady states can be assessed analytically.

A. Solid-state laser models

We first checked the validity of the reduced model by

comparing the results of its stability analysis with those of

the full Maxwell-Bloch model. Although the degree of the

characteristic polynomial is 5 for the full model and 3 for the

reduced one, two eigenvalues of the full model always have

a large negative real part f2,10g, and so the comparison is

made using its remaining three eigenvalues.

We considered the most general set of reduced equation

s32d which is valid for any value of u and kW. For any kW these

equations admit the exact stationary solution

F = Îm − 1 − D2eif, W = 0, s51d

which, taking into account the change in variable s22d, coin-
cides with the traveling-wave solution of the full model,

given by Eqs. s5d and s6d. In fact, for F spatially homoge-

neous and W=0, we have Z8=0 and Eq. s32d reduces to Eq.

s14d which admit the traveling waves as exact solutions.

However, as mentioned above, the inclusion of the term Z8 in

the reduced model provides a better agreement with the sta-

bility and dynamics of the full model. We also compared the

eigenvalues governing the stability of the traveling-wave so-

lution of the full and reduced models with those of the CSH

model of f2,10g.

1. zuz=O(e)

To compare the eigenvalues of a perturbation of wave

vector qW of the CSH model with those of the full and reduced

models, we first considered the same set of parameters used

in f10g. As in that paper, we limit our analysis to the one-

dimensional case, so that the wave vectors kW of the stationary

traveling wave and qW of the perturbation are either parallel or

antiparallel and they can be treated as real numbers. In other

words, we neglect the additional degree of freedom repre-

sented by the angle between kW and qW .
Figure 2sad corresponds exactly to Fig. 7 of f10g, with the

solid lines for the full Maxwell-Bloch equations, the dotted

lines for the CSH model, and the dashed lines for our re-

duced model s32d. Note that the scale of the horizontal axis

differs by a factor of 10 from that of f10g because there the

Laplacian is multiplied by a factor a=0.01 which we set

equal to 1 in our equations. For the same reason the wave

vector of the stationary solution is k=0.09 here and k=0.9 in

f10g. In Fig. 2sbd, which is an enlargement of Fig. 2sad, we

also show the eigenvalues obtained with the reduced model

and Z8=0 sdashed-dotted linesd.
From this figure we can draw the following conclusions:

sid for small q, the reduced model agrees extremely well

with the full model;

siid for any q, the reduced model reproduces the behavior

of the neutral eigenvalue, the one whose real part is zero for

q=0 and tends to a constant value for large q, much better

than the CSH model; and

siiid for the other two eigenvalues, both displaying a maxi-

mum, we observe that the maximum values are calculated

more precisely with the reduced model than with the CSH

model. However, the reduced model with Z8=0 has a similar

degree of accuracy as the CSH model.

2. Negative u and zuz=O(1)

In Fig. 3 we considered a much larger value of u, namely,

us1+ed=−1, for which the equations admit solutions that are

rapidly oscillating traveling waves. For this value of u, the
traveling wave with minimum threshold corresponds to the

wave vector k=1. For generality purposes, we analyzed the

stability of the traveling wave with wave vector k=0.97. We

observe first that even for such a large value of u, and also of

the pump parameter m=3, the CSH model still approximates

the full model quite well, at least for the relevant eigenval-

ues, i.e., those whose real part has positive values. However,

our reduced model performs even better and its results are

indistinguishable from those of the full model, even in the

enlargement shown in Fig. 3sbd. Figure 3sbd also shows that,

as before, the reduced model with Z8=0 has a similar degree

(b)

(a)

FIG. 2. sColor onlined Small and negative u. e=0.1, s=1.0,

us1+ed=−0.001, and m=1.2. Stability of the traveling-wave solu-

tion with wave vector k=0.09. In sad the three eigenvalues with

largest real part of the full equations fsolid lines sblack onlinedg are

compared with the eigenvalues of the CSH model fdotted lines sred
onlinedg and of the reduced equations fdashed lines sblue onlinedg.
In sbd, which is an enlargement of sad, the dashed-dotted lines

sgreen onlined show the eigenvalues calculated with the reduced

model and Z8=0.
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of accuracy as the CSH model, thus emphasizing the benefi-

cial role played by Z8 in our equations.

3. Positive u and zuz=O(1)

For positive values of u the stable stationary solution at

laser threshold is the homogeneous one. We analyzed its sta-

bility for the following set of parameters: e=0.025, s=0.16

sse2=10−4d, us1+ed=0.1, and m=1.3. The value of u is large

in the sense that it is about 4 times larger than e, although it

is still smaller than 1. In this case, since we are analyzing the

stability of the homogeneous solution with null wave vector,

the analysis extends beyond the one-dimensional limit and q
can be regarded as the modulus of a wave vector qW with

arbitrary direction in the transverse plane.

Figure 4 shows that with our choice of parameters the

reduced model again agrees very well with the full model,

while the CSH model provides quite inaccurate results, even

though these parameters are not too far from the limit of

validity of the CSH equations. In particular, the CSH model

does not catch the instability that is present in the full model

in a small interval centered around q.0.047. Figure 4sbd,
however, shows that this instability is described by the re-

duced model with almost the same accuracy as the full

model. To be precise, the instability threshold is m=1.2896

for the full model and m=1.2905 for the reduced model. In

contrast with the previous cases, for these parameters the

reduced model with Z8=0 is far more precise than the CSH
model, although it predicts an instability threshold at m
=1.2645.

To confirm that the reduced equations are indeed capable
of describing the instabilities of the full equations, we nu-
merically integrated with an accurate split-step algorithm
both full and reduced equations with these parameters. In
both cases the pump m was first gradually increased from
1.05 to 1.45 and then decreased from 1.45 back to 1.05. For
each value of the pump the equations were integrated for a
total time of 2.53106 in the units of the full model s3d with
the final values of the variables used as the initial conditions
of the next pump step.

From the calculation of the stability eigenvalues fsee Fig.
4sbdg we expect the instability threshold for both full and
reduced models to be around m<1.29. Figure 5 shows that
the simulations are affected by critical slowing down in the
vicinity of the bifurcation point. This is expected from the

calculation of the stability eigenvalues since the magnitude

of the real part of the eigenvalue is extremely small above

threshold. To avoid this problem, one needs to integrate the

equations for a much longer period of time. We have there-

fore increased the simulation time of the reduced equations

by a factor of 10 both increasing and decreasing the pump m
as before. We have obtained a reduction in the interval of the

instability thresholds between the forward and reverse simu-

lations of a factor of 3 with a final positioning of the insta-

bility threshold at 1.29160.002.

One would expect to see similar results for the full equa-

tions, but a simulation of the full equations of the necessary

(b)

(a)

FIG. 3. sColor onlined Large and negative u. e=0.01, s=1.0,

us1+ed=−1, and m=3. Stability of the traveling-wave solution with

wave vector k=0.97. The meaning of the different line styles is the

same as in Fig. 2.

(b)

(a)

FIG. 4. sColor onlined Positive u. e=0.025, s=0.16, us1+ed
=0.1, and m=1.3. Stability of the homogeneous solution sk=0d. The
meaning of the different line styles is the same as in Figs. 2 and 3.
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duration is simply not feasible on our computer resources.
Note that numerical integration of the reduced equations is
done on a time scale given by t=eÎet which is around 1000
times slower than that of the original model for typical val-
ues e<10−2 of the field decay rate of solid-state lasers. This
means that numerical simulations of Eq. s33d performed on
the t scale can possibly attain long-term solutions around
1000 times faster than those performed on the original equa-
tion s3d. In the above simulation e=0.025 which gives a time
scale of t=253t. However, since in this case s,1, it is
convenient to include it into the singular perturbation expan-
sion, so that we obtain t=633t. In practice, the larger number
of numerical steps required in the reduced equations meant
that for the case considered here simulations of the reduced
equations were performed 285 times faster than simulations
of the full equations. This is still a very significant speedup:
simulations that would take around 1 day using the reduced
model would require almost 1 year using the full model.
Clearly this reduction in CPU time will have a huge impact
on the range of numerical investigations which are now
made possible.

From Fig. 5 and the above considerations, it is clear that
the instability of the homogeneous solution is well repro-
duced by the reduced models and is missed by the CSH.
Above this instability sa Hopf bifurcation at a finite critical

wave vector qcd irregular spatiotemporal oscillations are ob-

served. In order to demonstrate that the agreement between

full and reduced models extends way above the homoge-

neous state instability, we present in Fig. 6 a comparison of

their final output intensities for a wide range of pump values.

The agreement is excellent since the small difference be-

tween the solid sfulld and dashed sreducedd lines above the

instability threshold is due to the different phase of the ir-

regular oscillation at the end of each simulation. These re-

sults demonstrate not only the accuracy of the reduced equa-

tions in finding important laser instabilities of the original

models, but also their usefulness in laser modeling since the

large CPU gain factor makes otherwise unfeasible simula-

tions possible.

B. VCSEL models

The comparison of the full and reduced VCSEL models

was based on the analysis of the long-wavelength instability

of the homogeneous solution which is predicted by Eq. s37d
fknown as Lugiato-Oldano-Narducci sLONd instabilityg. In

f13g it was shown that at the leading order in e the homoge-

neous solution is unstable against any wave vector of modu-

lus k with

k2 , 2ea
m − 1

m
. s52d

The unstable wave vectors are limited to the band 0,k2

,2ea, and no critical wave vector for this instability exists.

For any m larger than 1 sthe laser threshold at order 0 in ed
there is always a band of unstable wave vectors. In an infi-

nitely extended device this means that the homogeneous so-

lution would be unstable just above threshold with respect to

perturbations with infinite wavelength. In a real device, how-

ever, as well as in numerical simulations, the wave vectors
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FIG. 5. sColor onlined Far-field swave-vector spaced components of the numerical integration of the sad full model s3d and sbd reduced

model s33d for the solid-state laser case. In the left panels of sad and sbd, the pump m is gradually increased from 1.05 to 1.45, while in the

right panels it is decreased from 1.45 to 1.05. Parameters are e=0.025, s=0.16, and u=0.1.
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FIG. 6. Comparison of the difference between the laser intensity

I and that of the steady state sm−mthd sk=0d obtained from the

numerical integration of the full model s3d ssolid lined and reduced

model s33d sdashed lined for the solid-state laser case. Parameters

are the same as in Fig. 5.
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are discrete, and a minimum wave vector k1=2p /L exists,

where L is the size of the device sor of the integration win-

dowd. The instability threshold of the homogeneous solution

is then given by

mi = S1 −
k1
2

2ea
D−1

. s53d

In f13g it was found that this instability manifests itself for

both signs of the effective detuning D. If D,0, the laser

selects the homogeneous solution just above threshold, and

such solution remains stable up to mi. If D.0 the solution

selected at threshold is one of the two traveling waves with

wave vector closest to 6ÎeD. The numerical simulations,

however, show that the traveling wave becomes unstable al-

most immediately above threshold and, upon increasing the

pump m, a complex spatiotemporal dynamics appears until,

for a value of m smaller than mi, the electric field jumps to

the homogeneous solution k=0. For larger values of m the

behavior of the VCSEL with positive D is substantially iden-

tical to that observed for D,0, where the homogeneous so-

lution is stable until the value of mi is reached.

We have integrated the full and reduced VCSEL equations

for a positive value of D because in this case the dynamics is

richer and the comparison is more meaningful. With both

models we have found the same sequence when increasing

the pump from below mth to above mi: sid traveling wave with

uku.ÎeD at m.mth, siid competition among traveling waves

with different wave vectors, siiid coexistence of on-axis

emission and a traveling wave with uku.ÎeD, sivd on-axis

emission, svd instability triggered by wave vectors 6k1 at

m.mi, and svid complex dynamics. The agreement between

the two models is very good even in the details, as shown in

Fig. 7.

The horizontal lines show the thresholds of the LON in-

stability in the two models. According to the approximate

formula s53d, the threshold with our choice of parameters

sk1
2
/e=0.25 and a=1.08d is mi=1.130 89. The integration of

the dynamical equations reveals that the thresholds are actu-

ally slightly higher than this value: mi=1.131 45 for the full

model and mi=1.131 46 for the reduced one. The LON in-

stability is captured extremely well by the reduced model.

The differences between the analytical and the numerical

thresholds are due to terms of the order e2 which were ne-

glected in the derivation of Eq. s53d. In the dynamical simu-

lations shown in Fig. 7 the instability threshold is even larger

because of the inertia of the system when a parameter sin this

case md varies in time. We chose the time step in such a way

that the difference between the dynamic and the static thresh-

olds was the same in both models. This can be accomplished

when the time step in the full model is 248 times smaller

than in the reduced model. Because of the large number of

numerical calculations required to evaluate Z the integration

time is 146 less for the reduced model. This gain factor is

still impressive since VCSEL simulations that may require

several months of CPU time with the full equations can now

be accurately performed within a single day with our reduced

system of equations.

For completeness, we show in Fig. 8 a comparison of the

final output intensities between the full and reduced VCSEL

models. As in the case of solid-state lasers, the agreement is

excellent and the small discrepancies between the thick sfulld
and thin sreducedd lines are due to the different phase of the

irregular oscillations where the homogeneous state is un-

stable.

The integration of Eq. s50d, which hold in the vicinity of

the laser threshold, produces a dynamical behavior very

similar to that shown in Fig. 7, with the only difference that

the instability threshold mi is underestimated, since it is

given by

mi,ap = 1 +
q1
2

2ea
. s54d

The larger the term q1
2
/ s2ead, the larger the difference be-

tween mi and mi,ap. With our parameters we have mi,ap
=1.116. Equation s54d holds also for the CSH model of Mer-

cier and Moloney f3,13g.

VI. CONCLUSIONS

We have shown that center manifold techniques can be

successfully applied to a variety of stiff laser models. We

(b)(a)

FIG. 7. Comparison between simulation results for VCSEL

models showing the far-field spectrum versus the pump amplitude

m using the full sleft paneld and reduced sright paneld models and

e=0.025, s=0.16, D=2, and a=1.08.

FIG. 8. Comparison of the difference between the laser intensity

and that of the steady state sk=0d obtained from the numerical

integration of the full model fEqs. s37d and s38dg sthick lined and

reduced model s49d sthin lined for the VCSEL case. Parameters are

the same as in Fig. 7.
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have first demonstrated the existence of the slow manifolds

by recasting partial differential equations of solid-state and

VCSEL lasers into forms appropriate for the applications of

the mathematical theorems. We have then reduced the num-

ber of dynamical variables to those that are relevant to the

long-term spatiotemporal evolution. Perturbative evaluations

of the slow manifolds have been made possible by the large

separation of time scales in the dynamics of the physical

variables in laser devices.

The reduced models successfully describe laser dynamics

over wide ranges of parameter space for both solid-state and

semiconductor-based devices. In particular we have been

able to remove the “close to threshold” and small detuning

constraints that have affected previous attempts in the iden-

tification of the relevant laser variables. A large part of the

scientific and commercial success of solid-state and VCSEL

devices is related to their high gain and possible operation

well above the lasing threshold. Our reduced models, al-

though fairly complex for analytical manipulation, are very

useful in numerical integration. We have shown that they

correctly capture several spatiotemporal regimes of operation

of the full equations, from traveling-wave dynamics to mul-

titransverse modes locking and from oscillatory behavior at

finite wave vectors to irregular motion. The bifurcation dia-

grams are reproduced with an extraordinary accuracy al-

though the reduced models are obtained via a perturbation

expansion. For example, we have shown in Sec. V A 3 that

our equations reproduce accurately a Hopf bifurcation with a

finite transverse wave vector which is missed in close-to-

threshold models.

One of the main benefits of the use of the reduced models

derived in this paper remains the large reduction in the CPU

time of their numerical simulations with respect to the full

set of equations. We have shown that even in the presence of

relatively “large” e, the smallness parameter of the time scale

separations, CPU gain factors of around 200 are routinely

obtained in the numerical implementation of the reduced

equations. For certain laser devices where e is on the order of

10−3 instead of 10−2, CPU gain factors can easily be around

104, thus making it feasible to simulate spatiotemporal ef-

fects in these devices. The analytical expressions of the slow

manifolds derived here are beneficial to numerical simula-

tions with either fixed or variable time steps.

Applications of the reduced models of solid-state and VC-

SEL equations are in both academic and industrial re-

searches. Static and moving cavity solitons in these reduced

models have already been identified and compared to their

counterparts in the full set of equations. In particular, the

application of cavity soliton lasers to all-optical delay lines

f14g can have benefit greatly from faster and accurate nu-

merical simulations.
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APPENDIX A

In this appendix we show how Eq. s14d can be straight-

forwardly derived from the full Maxwell-Bloch equations.

We start by noticing that Eq. s3bd admits the following solu-

tion:

P = s1 − iu + ]td
−1DE . sA1d

After expanding the linear operator and indicating with ]t
n

the nth time derivative, we have

P =
1

1 − iu
o
n=0

` S − ]t

1 − iu
DnDE

=
1

1 − iu
o
n=0

` S − 1

1 − iu
Dno

m=0

n
n ! ]t

mD]t
n−mE

m ! sn − md!
. sA2d

In the sums it is convenient to separate the terms with m
=0 from the rest, so we can write

P =
1

1 − iu
FDo

n=0

` S − ]t

1 − iu
DnE

+ o
n=0

` S − 1

1 − iu
Dno

m=1

n
n ! ]t

mD]t
n−mE

m ! sn − md!
G . sA3d

The last term is at least of the order e2. As for the first term,

we notice that Eq. s3ad can be rewritten as

]tE =
i¹2E

1 + e
+ eFP − s1 + iudE +

i¹2E

1 + e
G . sA4d

Hence in Eq. sA3d we can set ]tE= i¹2E / s1+ed+Osed and

obtain

P =
D

1 − iu
o
n=0

` S − i¹2

s1 + eds1 − iud
DnE + Osed sA5d

=DS1 − iu +
i¹2

1 + e
D−1

E + Osed = DLE + Osed . sA6d

Incidentally we note that this derivation bears some similari-

ties with the one of Ref. f15g in the context of class A lasers.

APPENDIX B

In this appendix we want to show that, in the close-to-

threshold limit, Eq. s21d is equivalent to the CSH model of

f2g, numbered in that paper as Eq. s5d. We first rewrite Eq.

s21d using the unscaled time t and the substitutions W→ sD
−1d /Îe, d→u /e, and ¹e

2
→¹

2
/e, obtaining

]tE =
i¹2E

1 + e
+ efD − 1 − su − ¹

2d2gE ,
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]tD = − se2sD + uEu2 − md . sB1d

We then consider Eq. s5d of f2g and observe that, if we re-

move the oscillating term −isVc and apply the limit

s ,a ,V=Osed, they can be written as

]tc =
ia¹

2c

1 + s
+ sfr − 1 − n − sV + a¹

2d2gc ,

]tn = − bn + ucu2. sB2d

The detuning V in f2g is measured with respect to the empty

cavity frequency rather than the lasing frequency, as in our

model. Moreover, it is defined with the opposite sign; hence,

V=−us1+ed in our notation. With this and the further sub-

stitutions s→e, b→se2, r→m, c→ÎbE, n→m−D, x /Îa
→x, and y /Îa→y, Eq. sB1d is equivalent to Eq. sB2d up to

fourth order in e, if u=Osed.

APPENDIX C

In this appendix we compare the close-to-threshold limit

of the VCSEL equations given by Eq. s50d with the CSH

model of f3g written in Sec. VD of that paper. We first re-

write Eq. s50d using the unscaled time t and the substitutions

W→ sD−1d /Îe and ¹e
2
→¹

2
/e, obtaining

]tE =
i¹2E

1 + e/Gs1d
+ eFs1 − iadsD − 1d +

e2sD + ad2

Gs1d2s1 + a2d

−
seD + ¹

2d2

Gs1d2s1 − iad
GE ,

]tD = − se2sD + uEu2 − md . sC1d

Alternatively, if we remove the oscillating term −ishc, ne-

glect carrier diffusion, and apply the limit s ,a ,h=Osed, we

can write the CSH model of f3g as

]tc =
ia¹

2

1 + s
c + sfsr − 1ds1 − k − ud − s1 + iadn − sh

+ a¹
2d2gc ,

]tn = − bn + ucu2, sC2d

where k and u are coefficients related to the semiconductor

susceptibility and terms of fourth order or higher in e have

been neglected. With the substitutions s→e, b→se2, r
→m, c→ÎbE, n→m−D, h→eD, and a→−a, and a

change in the reference frequency, Eq. sC2d becomes

]tE =
ia¹

2

1 + e
E + efs1 − iadsD − 1d − sm − 1dsk + ud

− seD + a¹
2d2gE ,

]tD = − e2ssD + uEu2 − md . sC3d

The structure of Eq. sC3d is very similar to that of Eq. sC1d.
The second terms inside the square brackets play a similar

role: since we are considering the limit m=1+Ose2d, they

introduce a correction of the order e2 in the laser threshold.

However, a relevant difference is present in the coefficient of

the third terms inside the square brackets, which contain the

mechanism of wave-vector selection. The coefficient is equal

to 1 in Eq. sC3d and complex in Eq. sC1d.
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