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ABSTRACT

We develop a formalism for studying the dynamics ofmassive black hole binaries embedded in gravitationally bound
stellar cusps, and study the binary orbital decay by three-body interactions, the impact of stellar slingshots on the density
profile of the inner cusp, and the properties of the ejected hypervelocity stars (HVSs). We find that the scattering of
bound stars shrinks the binary orbit and increases its eccentricity more effectively than that of unbound ambient stars.
Binaries with initial eccentricities ek 0:3 and/or unequal-mass companions (M2 /M1P 0:1) can decay by three-body in-
teractions to the gravitational wave emission regime in less than a Hubble time. The stellar cusp is significantly eroded,
and cores as shallow as � / r�0:7 may develop from a preexisting singular isothermal density profile. A population of
HVSs is ejected in the host galaxy halo, with a total mass�M2. We scale our results to the scattering of stars bound to
Sgr A�, the massive black hole in the Galactic center, by an inspiraling companion of intermediate mass. Depending on
binarymass ratio, eccentricity, and initial slope of the stellar cusp, a core of radius�0.1 pc typically forms in 1Y10Myr.
On this timescale about 500Y2500 HVSs are expelled with speeds sufficiently large to escape the gravitational po-
tential of the Milky Way.

Subject headinggs: black hole physics — methods: numerical — stellar dynamics

Online material: color figures

1. INTRODUCTION

In the standard paradigm of cosmic structure formation, it is
expected that many wide massive black hole binaries (MBHBs)
will form following the mergers of two massive galaxies (e.g.,
Begelman et al. 1980; Volonteri et al. 2003a; Mayer et al. 2007).
The binary will subsequently shrink due to stellar or gas dy-
namical processes and may ultimately coalesce by emitting a
burst of gravitational waves. It was first proposed by Ebisuzaki
et al. (1991) that the heating of the surrounding stars by a de-
caying massive black hole (MBH) pair would create a low-
density core out of a preexisting cuspy (e.g., � / r�2) stellar
profile. In a purely stellar background a ‘‘hard’’ binary shrinks
by capturing the stars that pass close to the holes and ejecting
them at much higher velocities, a superelastic scattering pro-
cess (‘‘gravitational slingshot’’) that depletes the nuclear re-
gion. Observationally, there is evidence in early-type galaxies for
a systematically different distribution of surface brightness pro-
files,with faint ellipticals showing steep power-law profiles (cusps),
while bright ellipticals have much shallower stellar cores (e.g.,
Faber et al. 1997; Ravindranath et al. 2001). Dwarf ellipticals
seem to elude this paradigm by showing somewhat flat pro-
files, similar to bright ones (Graham & Guzmán 2003). Late-
type spirals tend to show steep central cusps, as in the case of the
MilkyWayorAndromeda. DetailedN-body simulations have con-
firmed the cusp-disruption effect of a hardening MBHB (Makino
& Ebisuzaki 1996; Quinlan & Hernquist 1997; Milosavljevic &
Merritt 2001), while semianalytic modeling in the framework
of hierarchical structure formation theories has shown that the
cumulative damage done to stellar cusps by decaying black hole
pairs may explain the observed correlation between the ‘‘mass

deficit’’ (the mass needed to bring a flat inner density profile to
a r�2 cusp) and the mass of the nuclear black hole (Volonteri
et al. 2003b).
This is the third paper of a series aimed at the detailed study

of the interaction between MBHBs and their stellar environ-
ment. In Sesana et al. (2006, 2007a, hereafter Paper I and Paper II,
respectively), we analyzed the three-body scatterings between
a MBHB and background stars unbound to the binary. The
assumption of a fixed background breaks down once the binary
has ejected most of the stars on intersecting orbits, and the ex-
traction of energy and angular momentum from the binary can
continue only if new stars can diffuse into low angular momen-
tum orbits (refilling the binary’s phase-space ‘‘loss cone’’), or
via gas processes. In galaxies with inner cores or shallow cusps,
only a small fraction of the loss cone is confined within the sphere
of influence of the binary, and the approximation of a back-
ground of unbound stars is reasonable. A similar argument holds
also in the case of a galaxy with a steep cusp hosting a nearly
equal mass binary (M1 �M2). The radius of influence of such
a pair, rinf ¼ G(M1 þM2)/(2�

2), where � is the stellar velocity
dispersion, is of the order of the binary hardening radius, ah ¼
GM2 /4�

2, and only few low angular momentum stars have orbits
with semimajor axis Prinf . This is not true for unequal-mass bi-
naries, where rinf 3ah, and almost all interacting stars are bound
to M1.
In this paper we develop a formalism for studying the dy-

namics of MBHBs embedded in gravitationally bound stellar
cusps. The plan is as follows. In x 2 we describe our suite of
three-body scattering experiments between the black hole pair
and ambient bound stars. Our numerical results are used in xx 3
and 4 to construct a ‘‘hybrid model’’ of binary dynamics and
investigate the orbital decay and shrinking of MBHBs in time-
evolving stellar cusps. The properties of the ejected HVSs are
discussed in x 5. The massive black hole (Sgr A�) in the Ga-
lactic center and the stars around it offer a unique opportunity
to study stellar dynamics in the extreme environment around a
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relativistic potential. The scattering of stars bound to Sgr A�

by an inspiraling intermediate-mass black hole (IMBH) is treated
in x 6. Finally, we present a brief summary in x 7.
2. SCATTERING EXPERIMENTS WITH BOUND STARS

Consider a massive black hole of mass M1 surrounded by a
stellar cusp (with density profile � / r�� , � > 0), interacting with
a secondary ‘‘intruder’’ hole of mass M2 < M1. As the binary
separation decays, the effectiveness of dynamical friction slowly
declines because distant stars perturb the binary’s center of mass
but not its semimajor axis. The bound pair then loses orbital
energy by capturing ambient stars and ejecting them at much
higher velocities, a three-body scattering process known as the
‘‘gravitational slingshot.’’ For unequal-mass binaries (mass ratio
qP0:1), ahTrinf , implying that the stellar mass inside ah is
Mcusp(<ah)TM1. In this case, the contribution to the poten-
tial energy given by the stellar distribution during a binary-star
interaction can be ignored, and the problem can be tackled by
means of three-body scattering experiments. Following the guide-
lines fully described in Paper I, we performed numerical experi-
ments to study the interaction of a MBHB with a star of massm�
(m�TM2 < M1) bound to M1. Note that for extreme mass ra-
tios qT1, the encounter is essentially a two-body scattering as
the star and the secondary hole move in the static potential of the
primary.

2.1. Initial Conditions and Orbit Integration

The integration of the three-body encounter equations is greatly
simplified by setting the center of mass of the binary at rest in the
origin of the coordinate system. The binary orbits counterclock-
wise in the (x, y)-plane, and the apastron of M2 is located along
the positive x-axis. Stars are drawn from a spherical isotropic
distribution bound toM1. The problem is completely defined by
10 variables:

1. the binary mass ratio q � M2 /M1;
2. the binary eccentricity e;
3. the stellar mass m�;

4. the initial distance between the primary hole and the star,
r� � jr�j;

5. the specific energy of the stellar orbit around M1, E� ¼
�GM1 /(2a�), or equivalently the semimajor axis of the stellar
orbit, a�;

6. the specific angular momentum of the stellar orbit L� ¼
jv < r�j, where v � jvj is the stellar velocity relative to M1;

7. four angles: � and� describing the latitude and longitude of
the star, defining the orientation of v? (the stellar velocity com-
ponent normal to r�), i.e., selecting the orbital plane of the star,
and �, the initial binary phase.

Compared to the unbound scattering problem (which is defined
by nine variables; see Paper I), there is here the extra variable r�,
and E� and L� replace the asymptotic initial speed and impact
parameter of the incoming field star. A sketch of the experiment
setup is given in Figure 1. In each numerical integration, the bi-
nary massM ¼ M1 þM2 and separation a are set equal to unity
and the stellar mass to m� ¼ 10�6M . Scattering events are sim-
ulated in sets of 5 ; 104 trials for fixed values of q and e. We
sample five values of the binary eccentricity, e ¼ 0, 0.1, 0.3, 0.6,
and 0.9, and five values of the binary mass ratio, q ¼ 1/9, 1/27,
1/81, 1/243, and 1/729, for a grand total of 25 models. The dis-
tribution of stars bound toM1 is modeled as follows. The stellar
semimajor axis a� is randomly sampled from 50 logarithmic bins
spanning the range 0:03a < a� < 10a. The angular momentum is
sampled in the interval [0, L2

�;max] according to an equal proba-
bility distribution in L2

� , where L
2
�;max ¼ GM1a� is the specific

angular momentum of a circular orbit of radius a�. A popula-
tion of stars with such distribution in L2

� has mean eccentricity
he�i ¼ 0:66, corresponding to hv?i ¼ 2hvki. This condition de-
fines an isotropic stellar distribution (e.g., Quinlan et al. 1995).

The quantities E� and L� define the shape of the stellar orbit.
We sample the initial value of r� from the distribution P(r�) dr�,

P r�ð Þ dr� ¼
2 E�j j 3=2

�GM1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E� � L2

� =2r
2
� þ GM1=r�

p dr�; ð1Þ

Fig. 1.—Geometry of the three-body scattering experiments. The stellar orbit is determined by E� and L�, while its orientation with respect to the binary plane is
determined by angle  . See the text for a definition of all symbols. [See the electronic edition of the Journal for a color version of this figure.]
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which is proportional to the fraction of time spent by the star at a
distance between r� and r� þ dr� fromM1. The probabilityP(r�)
is defined in the range r�;� < r� < r�;þ, where

r�;� ¼ L2
� GM1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G2M 2

1 þ 2E�L2
�

q� ��1

;

r�;þ ¼ L2
� GM1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G2M 2

1 þ 2E�L2
�

q� ��1

: ð2Þ

The angles � and � are randomly generated to reproduce a uni-
form density distribution over a spherical surface centered onM1,
while the orientation angle is chosen froma uniform distribution
in the range [0, 2�]. We start numerical integration withM2 at its
apastron (� ¼ 0) and have checked that the chosen initial phase
of the binary does not affect our results. The orbit of the pair is in
the (x, y)-plane with the center of mass at coordinates (0, 0, 0).

The nine coupled, second-order, differential equations of the
three-body problem are integrated using themost recent version of
the subroutine DOPRI5, based on an explicit Runge-Kutta method
of the order of 4(5) taken from Dormand & Prince (1978). A
complete description of the integrator can be found in Hairer et al.
(1993). The integration is stopped if any of these events occurs:

1. The star leaves the sphere of radius r ¼ (1010�/M )1=4a0 with
positive total energy, where � ¼ M1M2 /M is the reducedmass of
the binary and a0 its initial semimajor axis. At r the force induced
by the quadrupole moment of the binary is 10 orders of magni-
tude smaller than the total force acting on the star at a distance a0.

2. The physical integration time exceeds 1 Gyr.
3. The integration reaches 108 time steps. This typically cor-

responds to the complete integration of 104Y105 binary orbits.

Examples of integrated stellar orbits are given in Figures 2
and 3. Figure 2 shows a strong interaction: the star has a close

encounter withM2 and leaves the binary sphere of influence with
positive energy. Depending on the value of a� we have a variable
number of numerically ‘‘abandoned events,’’ i.e., bound triple sys-
tems that do not readily produce an ejection. Figure 3 shows one
such event: the periastron of the star is much larger than the binary
orbital separation a, and the star is not perturbed by the binary
quadrupole field, except for the precession of its periastron.

2.2. Tests

We have performed a number of tests to check the sensitivity
of our results on numerics. Because of the intrinsically chaotic
nature of the three-bodyproblem, the properties of the ejected stars
are meaningful only for a statistically significant sample. The inte-
gration of the full three-body problem allows us to directly control
the conservation of total energy and angularmomentum. The code
adjusts the integration step size to keep the fractional error per step
in position and velocity, �, below 10�13. This allows a total energy
conservation accuracy of �E /E � 10�9 in a single orbit inte-
gration; i.e., for m� /M ’ 10�6 the energy of the star is conserved
at the level of one part in a thousand during a single orbit. We
varied � between 10�11 and 10�15 and m� /M between 10�5 and
10�7, and found no significant differences in the statistics of the
ejected population. We have also checked that the mean energy
and angular momentum exchanges scale linearly with m�. A set
of longer orbit integrations was performed to test that the number
of abandoned events does not depend on the finite numbers of
time steps allowed, again finding no systematic decrease in such
a number.

2.3. Outputs

Each logarithmic bin in a� was sampled by 103 stars. We cal-
culated themean energy and angularmomentum exchange between
the MBHB and the stars, the final velocity and angular distribu-
tion of the scattered stars, the fraction fej of stars that are ejected
in the interaction, and the ejection timescales. The fraction fej is
plotted versus a� /a in Figure 4 for different values of the binary

Fig. 2.—Example of a strong three-body interaction unbinding the star. The pa-
rameters of the system are listed in the figure. The star is ejected toward the lower
rightwith a kick velocityV � 0:05Vc . The thick circlemarks the orbit of M2, while
the small central dot marks the location of M1. The insets zoom in at the moment of
the scattering between the star (approaching from the left) and M2 (approaching
from below). [See the electronic edition of the Journal for a color version of this
figure.]

Fig. 3.—Example of a weak three-body interaction. The thick circle marks the
orbit of M2, while the small central dot marks the location of M1. Left: Projection
onto the binary (x, y)-plane.Right: Projection onto the ( y, z)-plane. [See the electronic
edition of the Journal for a color version of this figure.]
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parameters q and e. Eccentric binaries can eject stars that are ini-
tially very tightly bound toM1, i.e., with a� as small as 0:1a. For
a�k 3a, the expelled fraction declines significantly, regardless of
binary eccentricity. It is also evident that the ejection process is
more efficient for large values of q.

Figure 5 shows the mean fractional eccentricity change of the
pair after each scattering, h�e/ei, as a function of a� /a. This quan-
tity is found to scale linearly with m� /M . Stars with a� < a typi-

cally tend to reduce the binary eccentricity, while stars with a� > a
work in the opposite direction. An eccentric binary spendsmost of
its period near its apocenter, so in the case a� > a the probability
of a close star-binary encounter (and subsequent star ejection) is
maximal at binary apocenter. In the instantaneous interaction the
binary velocity decreases. As the binary velocity is nearly tan-
gential close to the apocenter, the binary is forced on a more radial
orbit. On the contrary, a star with a� < a ‘‘feels’’ the secondary
holeM2 when this approaches the primaryM1 at a distance �a�.
At that point, the interaction with the star is unlikely to occur close
to the pericenter of M2 (where the time spent by M2 at the peri-
center is very small), and typically also extracts a large radial
component from the velocity of the secondary black hole, hence
causing circularization. Note that in this case the absolute value
of�e is larger, according to the a/a� dependence in equation (9)
(see the different positive and negative y-axis scales in Fig. 5).
We will return on this point in x 3, giving a simple, physically
motivated, mathematical derivation of this qualitative argument.

Figure 6 depicts the fractional number of stars ejected in the
time interval 	 and 	 þ d	 as a function of the ejection timescale
	 . The latter is measured in units of the binary orbital period at
separation a0 � a(t ¼ 0), P0 ¼ 2�½a3

0 /(GM )�1=2, and is defined
as the time elapsed from the start of numerical integration to the
moment the interacting star reaches, with positive energy, a dis-
tance3a from the binary center of mass. For large values of q, it
typically takes the MBHB just a few orbits to expel the star, while
lowering qmakes the distribution of slingshot timescales broader
and flatter. The ejection rate remains approximately constant, or
decreases slowly, for 	 P 5/q2, and drops dramatically afterward.
The binary eccentricity plays no role in all the tested cases.
Figure 7 shows the mean ejection timescale [i.e., the integral of
	(dfej /d	) in d	] as a function of the star eccentricity e�, for dif-
ferent values of q and e. As a first approximation, one can assume
that the cusp remains isotropic during the binary orbital evolution.

We checked that our results are practically the same considering
5a rather than 10a as the outer boundary in the sampled a� dis-
tribution. This is because the binary-stars interaction is dominated,

Fig. 4.—Fraction of stars ejected in the interaction as a function of a� /a. Thin
curves are for q ¼ 1/9 and different eccentricities: e ¼ 0 (solid line), e ¼ 0:1 (long-
dashed line), e ¼ 0:3 (short-dashed line), e ¼ 0:6 (dot-dashed line), and e ¼ 0:9
(dotted line). The thick dashed line is for q ¼ 1/729 and e ¼ 0:3.

Fig. 5.—Mean fractional eccentricity change, h�e/ei, of the binary after a scat-
tering, as a function of a� /a. The assumed initial eccentricity is 0.6, and the different
curves are for q ¼ 1/729 (solid line), q ¼ 1/243 (long-dashed line), q ¼ 1/81
(short-dashed line), q ¼ 1/27 (dot-dashed line), and q ¼ 1/9 (dotted line). Note
the different scales of the positive and negative y-axis.

Fig. 6.—Differential distribution of ejection timescales 	 . The assumed initial
eccentricity is 0.3, and the different curves, from top to bottom, are for q ¼ 1/9,
1/27, 1/81, 1/243, and 1/729.
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in terms of energy and angular momentum exchange, by those
stars whose a� is �a.

From our scattering experiments, we can finally derive the
bivariate distribution functions h1(V ; �ja�) and h1(V ; �ja�), along
the same line described in Paper II. For a given a�, we record the
number of stars with ejection speed in the interval V, V þ dV ,
leaving the binary with latitude ( longitude) at infinity in the in-
terval �, �þ d� (�, �þ d�). The differential distributions are
normalized as follows:Z 1

0

dV

Z �

0

d� h1 V ; �ja�ð Þ ¼
Z 1

0

dV

Z 2�

0

d� h1 V ; �ja�ð Þ ¼ 1:

ð3Þ

The subscript ‘‘1’’ is meant to indicate that the scattering experi-
ments are performed for a binary at separation a ¼ 1.

3. HYBRID MODEL OF BINARY DYNAMICS

To study the impact of the gravitational slingshot on the dynam-
ical evolution of a MBHB, we have developed a self-consistent
hybridmodel, inwhich numerical results of scattering experiments
in a fixed stellar background are coupled to an analytical formu-
lation of loss-cone depletion. This technique allows us to simul-
taneously follow the orbital decay of the pair as well as the time
evolution of the stellar cusp. The hybridmodel is similar, in spirit,
to the case extensively discussed in Paper II of an unbound stellar
population interacting with a black hole pair. Scattering experi-
ments are performed for a binary at fixed orbital separation a, and
the results are scaled to any value of a. Then by specifying the
pace at which a evolves, we can solve for the binary orbital decay
with time. Mathematical details, however, are different from the
scheme developed in Paper II. In the unbound case, the pair
interacts with a stellar population approaching its sphere of influ-
ence at a given rate, and the typical three-body interaction is a
‘‘fast’’ process. For stars bound to M1 instead, the interacting

stellar population is in place from the beginning. The temporal
evolution of the system is then determined by the ejection time-
scale rather than by the supply rate.
It is convenient to describe the stellar cusp using dN� /da�, the

differential number of stars orbiting M1 with semimajor axis in
the range a�, a� þ da�. For an isotropic stellar distribution

dN�

da�
¼C4�a2

�� r ¼ a�ð Þ; ð4Þ

where the stellar density profile is

� rð Þ ¼ �0
r

r0

� ���
; ð5Þ

and C is a fudge factor that depends on the cusp slope, C ¼
(1:013; 0:872; 0:831) for � ¼ (2; 1:75; 1:5) (Ivanov et al. 2005).
Two differential equations determine the rate of change of orbital
separation and eccentricity:

da

dt
¼� 2a2

GM1M2

Z 1

0

�E d 2Nej

da� dt
da�; ð6Þ

de

dt
¼
Z 1

0

�e
d 2Nej

da� dt
da�: ð7Þ

We start numerical integration at time t ¼ 0, orbital separation a0,
and binary eccentricity e0. The terms �e, �E , and d 2Nej /da� dt
are measured from our scattering experiments.
The scaling of the eccentricity change with binary parameters

m� /M , e, q, and a/a� can be derived from (Quinlan 1996)

�e ¼ � 1� e2ð Þ
2e

�E
E þ 2�L z

Lz

� �
; ð8Þ

where L z ¼ �½GMa(1� e2)�1=2 and E ¼ �GM1M2 /(2a) are the
total angular momentum and energy of the binary, respectively.
From�E ¼ ��E� � �GM1m� /(2a�) (in a typical encounter, on
average, the star gets a kick�Vc) and�L z ¼ ��L� � �L� ¼
�m�½GMa�(1� e2� )�

1=2
, assuming M1 ’ M , we have

�e
M

m�
� 1� e2ð Þ

2eq

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2�
� �

a�

1� e2ð Þa

s
� a

a�

2
4

3
5: ð9Þ

This confirms the qualitative argument developed in x 2.3 and
accounts for the features shown in Figure 5: the mean�e scales
with the inverse of the mass ratio, and from e�h i ’ 0:67, results
are negative for a� /aP (1� e2)1

=3 (promoting circularization) and
positive for larger a� /a (hence increasing the binary eccentricity).
The binary energy change per scattering,�E , is related to the

change of stellar energy �E� by �E� ’ ��E, where we have
neglected the energy change of the binary center of mass (which
is a factor of m� /M smaller than�E ). The quantity�E� can be
written as

�E� a�; a; eð Þ ¼ GM1m�

2a�
þ 1

2
km�V

2
c að Þ; ð10Þ

where Vc(a) ¼ (GM /a)1
=2 is the circular velocity of the binary.

The numerical factor k depends on the ratio a� /a and on e, and is
derived from our numerical experiments.

Fig. 7.—Mean ejection timescale 	h i of stars as a function of the star eccentricity
e�, assuming a MBHB with e ¼ 0:1 (solid lines) and e ¼ 0:9 (dashed lines). The
two upper (lower) curves are for q ¼ 1/81 (q ¼ 1/9).
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The term d 2Nej /da� dt quantifies the number of stars orbiting
M1 within a� and a� þ da� that are ejected from the system in the
time interval between t and t þ dt. This term depends on a�, a, e,
and t and is determined as follows. From scattering experiments
we derive the distribution P(	; sje) d	 describing the probability
that a star at s � a� /a becomes unbound from a binary with ec-
centricity e in the time interval (	 , 	 þ d	). Note that the distri-
bution of ejection timescales plotted in Figure 6 is simply the
probability function P averaged over s,

dfej

d	
¼
R
P 	; sjeð Þ dsR

ds
: ð11Þ

When sT1 (the exact value depending on q and e) most stars
remain bound to M1, and P ¼ 0 (see Fig. 4). As s ! 1 all inter-
acting stars are instead expelled.We can see from Figure 6 that in
the ejection regime the distribution P is nearly independent on s
and has the same functional form (as a function of 	) of dfej /d	 .
FromPwe can then compute d 2Nej /da� dt as a function of t if we
set 	 ¼ (a0 /a)

3=2t,where the term (a0 /a)
3=2 accounts for the change

in the time units of P as a changes. Although not formally correct,
the scheme catches the basic physics of the interaction in a time-
dependent fashion.

Suppose now that in a small time interval�t0 after the begin-
ning of the interaction the binary remains at constant separation
a0 corresponding to s0 � a� /a0. The number of stars (with semi-
major axis in the interval a�, a� þ da�) ejected in such time inter-
val is

F 0 �
d 2Nej

da� dt
0ð Þ�t0 ¼

dN�

da�
P 0; s0ð Þ�t0; ð12Þ

where for simplicity we have omitted the dependence of P on the
eccentricity. After�t0 and for an interval�t1, the binary settles
to a new separation a1, corresponding to s1 � a� /a1. The number
of stars ejected in the time interval �t0, �t0 þ�t1 is

F 1 ¼
dN�

da�
� F 0

� �
P �t0; s1ð ÞR1

�t0
P t 0; s1ð Þ dt 0

�t1
a0

a1

� �3=2

: ð13Þ

The integral in the denominator of the right-hand side renormalizes
the distribution P in the time interval [�t0,1] so that the correct
number of stars is involved. Iterating we have

F j ¼
dN�

da�
�
Xj�1

i¼0

F i

 !
P t; sj
� �R1

t
P t 0; sj
� �

dt 0
�tj

a0

aj

� �3=2

; ð14Þ

where t �
P j�1

i¼0 �ti. In differential form,

d 2Nej

da� dt
tð Þ ¼ dN�

da�
�
Z t

0

d 2Nej

da� dt 0
dt 0

� �
P t; sð ÞR1

t
P t 0; sð Þ dt 0

a0

a tð Þ

� �3=2
;

ð15Þ

where s ¼ s(t) ¼ a� /a(t). Simultaneous numerical integration
of the three coupled equations (6), (7), and (15) self-consistently
solves for the evolution of the binary and the depletion of the
stellar cusp. The integration is performed using the subroutine
DOPRI5. The time step is adapted in order to keep the fractional

error per step �10�10, a value much lower than the error associ-
ated with the employed linear interpolation of �e and �E .

The bivariate distributions h1(V ; �ja�) and h1(V ; �ja�) derived
from our suite of scattering experiments (see x 2) can be convolved
with the ejection rate d 2Nej /da� dt to compute the final velocity
distributions h(V ; � ) and h(V ; �). The procedure is similar to that
described in the Appendix of Paper II. As the binary shrinks to
separation a < 1, the normalized distribution of ejection veloci-
ties for stars with semimajor axis in the interval a�, a� þ da� is

ha V ; �ja�ð Þ ¼ 1ffiffiffi
a

p h1
Vffiffiffi
a

p ; �ja�
� �

; ð16Þ

where the ejection speed V was shifted by the factor 1=
ffiffiffi
a

p
to

account for the increase in the circular velocity of the binary Vc

as the pair shrinks. The prefactor 1/
ffiffiffi
a

p
normalizes the distribu-

tion according to equation (3). The kick velocity function of the
expelled population as a whole can then be written as

h V ; �ð Þ¼
R af
1

R1
0

d 2Nej=da� da
� �

ha V ; �ja�ð Þda� daR af
1

R1
0

R �
0

R1
0

d 2Nej=da� da
� �

ha V ; �ja�ð Þda� da d� dV
;

ð17Þ

where af is the final binary separation,

d 2Nej

da� da
� d 2Nej

da� dt

dt

da
; ð18Þ

and dt /da is given by equation (6). The distribution h1(V ; �ja�) is
evaluated for different values of the eccentricity e.We can account
then for the evolution of binary eccentricity by interpolating the h1
distribution on a grid of e-values as the orbit decays. The above
procedure returns the velocity distribution in units of Vc(a0). The
calculation of h(V ; �) can be performed following the same lines.

Finally, integrating the rate d 2Nej /da� dt over the entire evolu-
tionary history of the binary yields the quantity dNej /da�, which
can be compared to dN /da� to study the depletion of the stellar
cusp by three-body interactions. The Monte Carlo technique de-
veloped to address this point is described in x 5.1. The functions
dNej /da� and h(V ; � ) can be used to check energy conservation,
by simply equating the total energy gained by the stars to the in-
crement in the binding energy of the black hole pair, i.e.,

m�

Z 1

0

dNej

da�
� a�ð Þ da�

þ 1

2
m�

Z 1

0

V 2Nejh Vð Þ dV ¼ GM1M2

2

1

af
� 1

a0

� �
; ð19Þ

where�(a�)¼ GM1 /a�, h(V ) ¼
R
h(V ; � ) d�, andNej ¼

R
(dNej /

da�) da�. We have checked that energy is conserved to better than
�1%.

It is important to remark at this point that equations (6) and (7)
are independent of the absolute value of M and m�. Indeed, in
equation (6), the total number of interacting stars is /M2 /m�, and
the energy exchange term is /Mm�. The scaling factor 1/M1M2

cancels out, so that the orbital evolution depends only on q and e.
The same consideration holds for equation (7): as �e / m� /M
while the number of interacting stars /M2 /m�, the dependence
on M and m� cancels out.

4. BINARY EVOLUTION

For comparison with our previous results on the scattering of
unbound stars (Paper II ), it is convenient to introduce the stellar
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velocity dispersion, �, and model the outer stellar component as
a singular isothermal sphere (SIS) with density profile

� rð Þ ¼ �2

2�Gr 2
: ð20Þ

We assume that this profile extends inward up to the characteristic
radius r0 withinwhich the total stellar mass is 2M1 (Merritt 2004).
Matching the inner cusp described by equation (5) to the outer SIS
at r0 yields

r0 ¼ 3� �ð Þ GM1

�2
: ð21Þ

We also assume that stellar-binary interactions start at separation
a0 where the enclosed stellar mass is M�(<a0) ¼ 2M2, yielding

a0 ¼
q

1þ q

� �1= 3��ð Þ
3� �ð Þ GM

�2

� �
: ð22Þ

This assumption is motivated by recent N-body simulations of
the hardening of unequal MBHBs in stellar cusps. Matsubayashi
et al. (2007) found that dynamical friction is efficient in driving
orbital decay only as long as the stellar mass inside the binary
semimajor axis is kM2. Beyond this point, the evolution of the
pair is driven by three-body interactions with individual stars.

4.1. Orbital Evolution and Eccentricity Growth

Our results on binary orbital decay are summarized in Table 1.
A MBHB can shrink by factors ranging from 6 to 18 depending
on q, e0, and �. The decay factor a0 /af grows with e0, as more
eccentric binaries can expel stars that are more tightly bound (see
Fig. 4). The importance of the initial eccentricity e0 is modest for
low values of �, since in shallow cusps the number of tightly
bound stars is small anyway. The factor a0 /af is also a weakly
increasing function of q; as for higher q the radius of influence of
the binary is larger (in terms of a� /a; see Fig. 4). The dependence

of the decay factor on � simply reflects the fact that for steeper
stellar cusps the mean binding energy of the stars is larger.4

Binary eccentricity also grows as a function of q and �. A
shallow cusp increases the relative importance of stars with large
a�, and the eccentricity growth is then larger. Moreover, binaries
with large q aremore effective in ejecting stars with a� /aT1. As
these stars act to circularize the binary orbit, nearly equal mass
binaries decay following less eccentric orbits. Figure 8 shows
examples of binary evolution as a function of time. Note the dif-
ferent scale of the time axis for the three mass ratios: as shown in
Figure 6, it takes nearly equal mass pairs a smaller number of
binary orbits to unbind the stellar cusp.
Results for the � ¼ 2 cusp can also be compared to those

obtained in Paper II for the case of a binary interacting with a
population of unbound stars. ( In Paper II, shrinking factors were
normalized to the ‘‘hardening radius’’ ah � GM2 /4�

2, where, by
definition, a0 ¼ 4ah for � ¼ 2.) Binaries with e0 ¼ 0:1 and q ¼
(1/9; 1/27; 1/81; 1/243), for example, shrinkby the factorsah /af ¼
(2:85; 2:55; 2:35; 2:33) according to Table 1, compared to the
corresponding ah /af ¼ (2:09; 1:49; 1:19; 1:06) for the unbound
case; i.e., very unequal mass binaries can only decay by extracting
the cusp binding energy.
The evolution of the eccentricity in the bound and unbound

cases is compared in Figure 9, for two different initial values of e0.
Compared to the scattering of unbound stars, the binary eccen-
tricity grows to larger values. This can be understood by the fol-
lowing argument. In the bound case treated here, there are many
stars able to extract angular momentum from the binary right
from the start. Then for large a, e shows a steep increase. When
the orbit shrinks, however, stars with a� < a (increasing circulari-
zation rather than eccentricity; see Fig. 5) become more and more
relevant for the binary evolution as stars with a� > a get pro-
gressively depleted, and as result, e increases at a reduced pace. In
the unbound case, the binary interacts with the same distribution
of stars independently on its separation. As, in general, significant
changes of e happen whenever a strong star-binary interaction
occurs, the eccentricity grows more rapidly for small a because
stars are slower (in terms of binary circular velocity) and hence
more easily captured in ‘‘quasi-bound’’ orbits before ejection. As
a matter of fact, the eccentricity growth rate K (see Paper I) in-
creases for aTah. In this separation regime,most of the stars inter-
acting with the binary are captured in temporarily bound orbits
and would experience a dynamical interaction similar to that of
bound stars.

4.2. Final Coalescence

Consider now, as in Paper II, the separation at which a MBHB
can coalesce in less than 1 Gyr because of the emission of grav-
itational waves (GWs):

aGW ’ ah

250

1þ q

q

� �3=4

M
1=4
1;6 F eð Þ1=4; ð23Þ

TABLE 1

Binary Shrinking Factors and Final Eccentricities

from the Hybrid Model

� ¼ 1:5 � ¼ 1:75 � ¼ 2

q e0 a0 /af ef a0 /af ef a0 /af ef

1/9 ............ 0.1 9.63 0.608 9.89 0.350 11.38 0.179

0.5 9.99 0.972 11.55 0.907 15.77 0.753

0.9 10.06 0.998 11.80 0.992 17.73 0.969

1/27 .......... 0.1 8.06 0.691 8.35 0.532 10.19 0.408

0.5 8.26 0.959 9.35 0.862 12.35 0.710

0.9 8.27 0.996 9.64 0.988 14.03 0.958

1/81 .......... 0.1 6.99 0.755 7.75 0.650 9.39 0.542

0.5 6.90 0.922 7.81 0.828 10.14 0.717

0.9 6.89 0.996 7.81 0.974 11.00 0.937

1/243 ........ 0.1 6.49 0.906 7.28 0.805 9.30 0.688

0.5 6.39 0.971 7.25 0.914 9.92 0.818

0.9 6.38 0.962 7.19 0.986 10.09 0.955

1/729 ........ 0.1 6.12 0.881 6.91 0.814 8.94 0.724

0.5 5.95 0.919 6.91 0.869 9.09 0.797

0.9 5.94 0.977 6.92 0.953 9.41 0.900

4 Note that we have not included the effect of ‘‘returning stars’’ on the decay of
the binary. These are ejected stars that do not escape the host bulge, return on small
impact parameter orbits, and can have a secondary superelastic interaction with the
MBHB. The role of secondary slingshots was analyzed in Paper II, where it was
found that they can boost orbital decay by as much as a factor of 2 for nearly equal
mass binaries, but do not contribute significantly ( less than 20% for q ¼ 1/9 and
less than 5% for q ¼ 1/81; see Table 1 of Paper II) to binary hardening for very un-
equal mass pairs. In the bound case, the effect of returning stars is likely to be even
smaller. Consider for example the case of an isothermal stellar profile: the impact of
secondary slingshots is proportional to the number of stars that can interact with the
MBHBmore than once, i.e., to the size of the loss cone after thefirst interaction. For
bound stars this is at least a factor of �2 smaller than in the unbound case, so even for
q ¼ 1/9, returning stars would cause at most a �10% increase in binary hardening.
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Fig. 8.—Time evolution of the binary semimajor axis (top) and eccentricity (bottom) for q ¼ 1/9 (left), q ¼ 1/81 (middle), and q ¼ 1/729 (right). In all panels the thick
lines are for a � ¼ 2 stellar cusp, while the thin lines are for � ¼ 1:5. The initial binary eccentricity is assumed to be 0.1 (solid lines) and 0.5 (dashed lines).



whereM1;6 � M1 /10
6 M� and, to fourth order in e (Peters 1964),

F eð Þ � 1� e2
� ��7=2

1þ 73

24
e2 þ 37

96
e4

� �
: ð24Þ

Assuming as before that three-body interactions begin operating
at separation a0, and combining equations (22) and (23), we get

af

aGW
’103 a0

af

� ��1

3� �ð Þ q

1þ q

� �1þ�ð Þ= 12�4�ð Þ
M

�1=4
1;6 F eð Þ�1=4:

ð25Þ

If af /aGW < 1, then a MBHB would coalesce in less than 1 Gyr
after interaction with a bound stellar cusp. As shown in the
‘‘coalescence diagram’’ of Figure 10, eccentric, massive, very un-
equal mass binaries embedded in steep stellar cusps are favored to
reach coalescence. The steeper the cusp, the wider the portion of
the (M1, q)-plane where coalescence can be reached within 1 Gyr.

5. EVOLUTION OF THE STELLAR CUSP

5.1. Cusp Erosion

The orbital decay of the pair occurs following the ejection of a
mass �(2Y4)M2 (depending on cusp slope and binary eccen-
tricity) and results in the progressive erosion of the stellar cusp.
Eccentric binaries can shrink rapidly by scattering at pericenter a
fewer number of deeply bound stars. More mass is expelled in
the case of shallower cusps, because of the larger number of stars
surrounding the binary just outside a0. Our hybrid approach al-
lows us to compute the binary-driven evolution of the stellar den-
sity profile, once isotropy is assumed. At this stage, we do not
perform a self-consistent treatment of the evolution of the an-
isotropy of the stellar cusp. Self-consistent integration of the orbital

decay yields dNej /da�, and the number of stars that remain bound
to M1 as a function of a� is simply

dNbd

da�
¼ dN�

da�
� dNej

da�
: ð26Þ

Weassume that the stellar cusp remains isotropic, i.e., he�i ¼ 0:667.
The a� domain is then subdivided in intervals�a�, and for each
interval a number of bound stars /(dNbd /da�)�a� are generated
with angular momentum distribution /L2

� . We then compute the
probability of finding a star at a distance between r and r þ dr
from M1 (this is proportional to the time spent at such distance
along its orbit) and reconstruct the stellar density profile �(r).
Figure 11 shows the profile before and after binary shrinking.
The cusp is eroded between �0:01a0 and �2a0, depending on
e0. For r P a0, an SIS is flattened to � / r�0:7, while a r�1:5 cusp
becomes �(r) / r�0:5. Such results are independent of the mass
ratio q.
As three-body interactions and stellar ejections tend to circu-

larize the orbits of ambient stars, one may wonder about the val-
idity of the assumption that the cusp remains isotropic.We checked
that even assuming that all stars still bound to the binary at the end
of the process were set on circular orbits (i.e., maximum tangential
anisotropy), then the cusp slope would be flattened at most by a
factor of ’0.3 (for � ¼ 2 and q ¼ 1/729) with respect to the iso-
tropic case. Differences in the cusp slope P0.1 are common for
initially shallower cusps and/or larger mass ratios. We conclude
that depending on � and on the final anisotropy of the bound stars,
the slingshot mechanism creates a central core as flat as �(r) /
r�0:4 to r�0:8.

5.2. Distribution of Kick Velocities

The distribution of stellar ejection velocities in units of the
binary circular velocity at the initial separation a0, Vc;0, is shown
in Figure 12. The distribution cannot be fit by a single or a broken
power law, as in the case of the kick velocities imparted at fixed
binary given separation, as the derivative of the distribution is a
monotonic decreasing function of the ejection speed. While the
peak of the distribution shifts toward smaller V /Vc;0 values as q
decreases (Vpeak /

ffiffiffi
q

p
), the high-velocity tail is independent of

q. For initially eccentric binaries, the velocity of M2 at periastron
is >Vc;0, and a significant number of HVSs can then be generated.
Note that the speed distribution is only weakly dependent on �
once V is expressed in units of Vc;0.

5.3. Ejected Mass

Integration of the kick velocity distribution gives the ejected
massMej. This quantity is plotted in Figure 13 as a function of q
for different lower velocity thresholds. As discussed above, the
total number of ejected stars is approximately /q and is weakly
dependent on e0 and �. Stellar ejection occurs in a burst lasting
from few tens to several thousands of binary orbital periods (see
Fig. 14, note the different scale of the time axis in the four panels),
i.e., from 105 to 107 yr. The highest velocity stars are delayed with
respect to the bulk of ejections, as large kicks require close binary
separations. The ejection rate peaks at earlier times in the case of
more eccentric binaries and is larger for steeper cusps.
It must be pointed out that the quantityMej plotted in Figure 13

accounts only for the mass ejected by energetic three-body inter-
actions occurring in the final stage of the binary evolution. During
the entire binary evolution, stars in galaxy nuclei are also displaced
by the heating associatedwith dynamical friction—the cumulative
effect of many weak encounters with distant stars. According to
Merritt (2006b), the total mass displaced by dynamical friction

Fig. 9.—Evolution of binary eccentricity as a function of orbital separation,
for the case of interactions with unbound stars (Papers I and II, dashed lines) and
with a bound cusp (solid lines). The binary is embedded in an SIS, its mass ratio is
q ¼ 1/9, and its initial eccentricity is e0 ¼ 0:3 and 0.6. Note that the scattering
experiments with unbound stars start at a ¼ ah, while those with bound stars start
at a ¼ 4ah (see text for details). In the unbound case the evolution of eccentricity
is negligible (K � 0; Sesana et al. 2006) for a > ah.
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Fig. 10.—Coalescence diagram. In each panel, the thick line delimits those MBHBs that can coalesce, because of GWemission, in less than 1 Gyr starting from sep-
aration af (shaded area). As shown in the top left panel, level curves to the left of that line (thick curve) are labeled according to the ratio af /aGW reached by the binary at the
end of the shrinking process (eq. [25]), while level curves to the right are labeled according to the coalescence time at af .



depends only weakly on binary mass ratio (for q in the range
0:025 < q < 0:5) and has little or no effect on the innermost
stellar cusp for q < 0:1 (see Fig. 5 in Merritt 2006b). While the
total mass deficit accumulated during binary evolution appears
to scale with the mass of the binary (i.e., to M1 for small q), the
mass ejected after the energetic encounters discussed in this
paper, and therefore the number of expected HVSs, scales with
the massM2 of the intruder. The number of stars ejected above
a given velocity threshold (in units of Vc;0) is also a weak func-
tion of e0 and �.

5.4. Angular Properties of HVSs

The angular properties of HVSs show several peculiar fea-
tures, qualitatively similar to those discussed in Paper I for the
scattering of an unbound stellar population. The ejected stars are
flattened in the binary orbital plane and, in the case of eccentric
binaries, are grouped into a ‘‘broad jet’’ aligned to the velocity of
M2 at periastron. Both anisotropies are more pronounced in stars
undergoing a stronger interaction and receiving larger kicks. The
anisotropy of theHVS population can be quantified by computing
as a function of binary separation the angles h�2i and h�i, where
��/2 < � < �/2 is the latitude of the star (the angle between the
velocity vector V at infinity and the binary orbital plane) and 0 <
� < 2� is its longitude (the angle between the projection onto the
binary orbital plane of the velocity vector at infinity and the x-axis).
For a spherically symmetric distribution, h�2i ’ 0:47 and h�i ¼ �.
We find h�2i � 0:35Y0.40 for all HVSs. As a general trend, stars
ejected above a given speed tend to become more isotropic as the
binary shrinks, confirming the analytical result of Levin (2006).
This effect was already seen in three-body scattering experiments
of unbound stars (see Paper I for a detailed discussion) and is
related to the fact that as the pair decays, its circular velocity
grows, and even stars experiencing relatively weak encounters
can attain large kick velocities. In terms of longitude, HVSs are
ejected almost isotropically, although an azimuthal anisotropy

becomes apparent with increasing kick velocities. The high-
velocity tail of the distribution is formed by stars expelled after a
close encounter with M2 near its periastron, in a broad jet with
h�i ’ 3/2�. As the binary potential is non-Keplerian, such a broad
jet will precess during binary evolution on a timescale that depends
on q and � (Levin 2006).

6. THE CASE OF SGR A�

Most of the results presented in the previous sections are scale
invariant; i.e., they are independent on the absolute value of M
and on the chosen normalization of the stellar cusp. The only
underlying assumption is that the interaction between theMBHB
and ambient stars begins when the stellar mass inside the binary
orbit is equal to 2M2. We are interested in scaling our results to
the scattering of stars bound to Sgr A�, the massive black hole in
the Galactic center, by an inspiraling companion of intermediate
mass (Yu & Tremaine 2003; Sesana et al. 2007b). Let us first
express equations (20), (21), and (22) in physical units:

r0 ¼ 0:43 pcð Þ 3� �ð ÞM1;6�
�2
100; ð27Þ

�0 ¼ 1:96 ; 106 M� pc�3
� �

3� �ð Þ�2
M�2

1;6�
6
100; ð28Þ

a0¼ 0:43 pcð Þ 3��ð ÞM1;6�
�2
100q

1= 3��ð Þ 1þ qð Þ 2��ð Þ= 3��ð Þ; ð29Þ

where �100 is measured in units of 100 km s�1. From a0, the time
unit of our experiments is then

P0 ¼ 1:3 ; 105 yr
� �

3� �ð Þ3=2M 1=4
1;6 q

q

1þ q

� � 2��3ð Þ= 6�2�ð Þ
:

ð30Þ

The stellar density profile around the Galactic center can be
described as a double power law, with outer slope’�2 and inner
slope ’�1.5 (Genzel et al. 2003; Schodel et al. 2007). The
massive black hole Sgr A�weighs’3:5 ; 106 M� (Schodel et al.
2002;Ghez et al. 2005). UsingM1;6 ¼ 3:5,�100 ¼ 1, and � ¼ 1:5,
from equations (27) and (28) we obtain r0 ¼ 2:26 pc and �0 ¼
7 ; 104 M� pc�3, in good agreement with the most recent ob-
servations (Merritt 2006a; Schodel et al. 2007). For the relevant
values of q and �, the typical timescale for orbital decay ranges
between �105 and �107 yr (see eq. [30]). In the following, we
will consider two different mass ratios for the putative MBHB at
the Galactic center, q ¼ 1/243 and 1/729, corresponding to an
inspiraling IMBH of massM2 ’ 1:4 ; 104 M� andM2 ’ 4:8 ;
103 M�, respectively, as well as two different slopes for the
initial inner stellar cusp, � ¼ 1:5 and 1.75. We will also study the
impact of binary initial eccentricity. The parameters of the dif-
ferent models considered are listed in Table 2.
The dynamical evolution of a putative IMBHYSgr A� binary

is displayed in Figure 15 for e0 ¼ 0:1. The two top panels show
the time-changing semimajor axis a and eccentricity e. The former
shrinks to 10�2 to 10�3 pc in 2Y15 Myr, depending on q and �.
Lighter IMBHs reach smaller separations on a longer timescale.
Our results for the case� ¼ 1:75 can be directly compared to the nu-
merical simulations of Baumgardt et al. (2006) andMatsubayashi
et al. (2007) and are found to be in excellent agreement. The
eccentricity increases rapidly in all cases to valuesk0.8. We have
checked that when e0 > 0:3, the binary eccentricity can reach
values as large as ek 0:95. This is again in agreement with the
results of Baumgardt et al. (2006) andMatsubayashi et al. (2007).
In Figure 15 we have marked with a horizontal dotted line the
separation at which the binary can coalesce in 1 Gyr because of
GWemission (eq. [23]). Only for a cusp as steep as � ¼ 1:75 does

Fig. 11.—Cusp stellar density profiles (in arbitrary units) before (thin lines)
and after (thick lines) erosion by the shrinking binary for q ¼ 1/9 (solid line), q ¼
1/27 (long-dashed line) q ¼ 1/81 (short-dashed line) q ¼ 1/243 (dot-dashed line)
and q ¼ 1/729 (dotted line). The upper (lower) set of curves is for� ¼ 2 (� ¼ 1:5).
Fiducial r�0:7 and r�0:5 power laws are shown for reference.
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Fig. 12.—Final velocity distribution of ejected stars as a function of V/Vc;0 for q ¼ 1/9 (short-dashed lines), q ¼ 1/81 (long-dashed lines), and q ¼ 1/729 (solid lines).
The assumed values of � and e0 are listed in each panel.



the pair actually reach such separation. One should note that while
in our hybrid model the eccentricity evolves smoothly, in a real-
istic situation it will undergo discontinuous ‘‘jumps’’ triggered by
rare close encounters, which could induce extreme eccentricities
and accelerate coalescence. The two bottom panels of Figure 15
show the resulting stellar density profiles after binary erosion. Cusps
are flattened to � / r�0:7 in the central few ; 10�2 pc. The nu-
merical simulations of Baumgardt et al. (2006) andMatsubayashi
et al. (2007) produce somewhat shallower slopes, a discrepancy
that may be associatedwith our assumption of an isotropic stellar
cusp after the interaction.

The heating of the cusp results in the creation of a population
of HVSs. This is of particular interest since the discovery of the
first HVS in the Milky Way (Brown et al. 2005), and an IMBH
inspiral onto Sgr A� is regarded as a possible source of hyper-
velocity ejections (although the tidal breakup of close binaries by
Sgr A� seems to be supported by observations and statistical
studies; see, e.g., Perets 2007; Sesana et al. 2007b). In Figure 16
we plot the stellar ejection rates as a function of time for different
models and for different velocities at the radius of influence of
Sgr A�. Modeling the Milky Way potential as the sum of a lu-
minous component (Miyamoto &Nagai 1975) and a dark matter
halo (Widrow&Dubinski 2005), we find an escape velocity from
the Milky Way of ’840 km s�1 at rinf . This velocity threshold
translates, in such a gravitational potential, into about 450 km s�1

10 kpc away from Sgr A�. Stars with V > 300 km s�1 at rinf do
not leave the bulge, while stars with V > 600 km s�1 can reach
4 kpc away from the Galactic center. Stars with V > 900 and
>1200 km s�1 are not bound to theMilkyWay and, at a reference
distance of 10 kpc, have still velocities of 600 and 1000 km s�1,
respectively. Figure 16 shows that the ejection occurs in a rela-
tively short burst lasting a fewmillion years, with higher velocity
stars being produced at increasingly later times. At peak, the ejec-
tion rate of HVSs withV > 900 km s�1 varies between 5 ; 10�5

and 2 ; 10�3 yr�1, depending on q and �. The rate is larger in
steeper cusps, as stars are more centrally concentrated and are

scatteredwhen the binary separation is smaller and orbital velocity
larger.
The speed distribution of HVSs depends on the details of the

model. In the range 300Y1000 km s�1 (the velocity range of the
HVSs observed by Brown et al. 2006), and at a galactocentric
distance of 55 kpc (the average distance of the observed HVSs),
the distribution can be approximated by a power law f (V ) /V�1:5,
almost independent of q, e0, and �. Assumingm� ¼ 1 M�, we find
a predicted number of HVSswithV > 840 km s�1 at rinfNHVS ’
525 (1290) for q ¼ 1/729 and� ¼ 1:5 (1.75). This number roughly
doubles for q ¼ 1/243 and is fairly independent on e0. Our results
are consistent with Baumgardt et al. (2006), who estimateNHVS �
1700 forM2 ¼ 104 M� and NHVS � 900 forM2 ¼ 3 ; 103 M�.
A peak of ejection occurs after �1Y2 Myr. Levin (2006) finds a
comparable numbers of stars expelled and a similarly peaked
ejection rate.

7. SUMMARY

We have performed, for the first time, scattering experiments
between a MBHB and stars drawn from a cusp bound to the
primary hole. We have studied the dynamics of the pair and its
orbital decay by three-body interactions, the impact of the grav-
itational slingshot on the stellar density profile, and the properties
of the ejected stellar population, and we have scaled our results to
the case of Sgr A�. Our results can be quickly summarized as
follows.

1. The extraction of the cusp binding energy causes the binary
to shrink by a larger factor compared to the scattering of unbound
stars. The effect is more noticeable in the case of small mass
ratios q.
2. The binary orbital eccentricity increases much more rapidly

compared to the unbound case. The eccentricity growth is more
pronounced in small mass ratio binaries and for shallower stellar
cusps.
3. The combined effects of enhanced orbital decay and eccen-

tricity growth lead very unequal mass binaries to the gravitational

Fig. 13.—Mass ejected from the binary, scaled to the total binary mass, as a
function of q, for � ¼ 2 (left) and � ¼ 1:5 (right). Thick lines and thin lines denote
e0 ¼ 0:1 and 0.9, respectively. In each set of curves the lines refer, from top to
bottom, to all stars with kick velocities V > 0 (the total mass expelled by the
binary) and with log (V /Vc;0) > �1þ 0:5n for n ¼ 0, 1, 2, and 3.

Fig. 14.—Mass ejection rate for binarieswith e0 ¼ 0:1 and differentmass ratios
embedded in an SIS. Lines refer, from top to bottom, to all stars with kick velocities
V > 0 (the total mass expelled by the binary) and with log(V/Vc;0) > �1þ 0:5n
for n ¼ 0, 1, 2, and 3. Note that the time axis has a different scale in each panel.
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TABLE 2

Parameters of Two Different Models for the Stellar Cusp at the Galactic Center

�

r0
( pc)

�0
(M� pc�3) q

a0
( pc)

T0
(yr)

Vc;0

( km s�1)

1.5............................ 2.25 7.1 ; 104 1/243 5.8 ; 10�2 1344 510

2.25 7.1 ; 104 1/729 2.8 ; 10�2 448 735

1.75.......................... 1.88 105 1/243 2.3 ; 10�2 340 806

1.88 105 1/729 9.6 ; 10�3 91 1250

Notes.—The quantities �, r0, �0, q, a0, T0, and Vc;0 are, respectively, the cusp slope, the cusp characteristic radius,
the density at r0, the binary mass ratio, the binary separation at which gravitational slingshots start, the binary orbital
period at a0, and the binary circular velocity at a0.

Fig. 15.—Case of Sgr A�. Top: Time evolution of binary semimajor axis (solid lines, left axis scale) and eccentricity (dashed lines, right axis scale) for e0 ¼ 0:1. The
dotted lines mark the separation at which binaries can coalesce because of GWemission in<1 Gyr. Bottom: Evolution of the stellar density profile. In all panels, the thin
lines are for q ¼ 1/243, the thick lines for q ¼ 1/729.



wave coalescence phase. The detailed fate of the pair depends on
the absolute value of its mass.Moremassive binaries decay faster.

4. The stellar cusp is eroded, and the total mass removed by
strong three-body encounters is 2Y4 times the mass of the sec-
ondary hole. While the mass deficit caused by dynamical friction
in amerger event scaleswith the binarymass (and involvesmostly
distant stars), the mass of stars ejected from the inner cusp by
highly energetic interactions scales withM2. Ejection occurs in a
‘‘burst’’ lasting from few tenths to several thousands of binary
orbital periods, depending on q.

5. Scaled to the scattering of stars bound to Sgr A� by an
inspiraling IMBH, our results imply the formation of a core of
0.1 pc in 1Y10 Myr, as well as the ejection of 500Y2500 HVSs
moving with speeds sufficient to escape the gravitational field of
the MilkyWay. In Sesana et al. (2007b) we used the Brown et al.

(2007) sample of unbound and bound HVSs together with nu-
merical simulations of the propagation of HVSs in the Milky
Way halo to constrain this ejection mechanism, and we have
shown that it appears to produce a spectrum of ejection velocities
that is too flat compared to the observations. Future astrometric
(e.g.,Gaia) and deep wide-field (e.g., LSST) surveys should un-
ambiguously identify the ejectionmechanism of HVSs and probe
the Milky Way potential on scales as large as 200 kpc (Gnedin
et al. 2005; Yu & Madau 2007).

Support for this work was provided by NASA grant
NNG04GK85G (P. M.).
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