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Abstract 

This letter shows some counter-intuitive simulation results that the symbolic 

sequences and the state variables of a digital filter with two’s complement arithmetic 

and arbitrary initial conditions and order will be eventually zero when all the filter 

parameters are even numbers, no matter the system matrix of the filter is stable or not. 

 

1.  Introduction 

It is well known that chaotic behavior may occur in both a second-order digital 

filter [Chua, 1988, 1990b; Galias, 1992; Kocarev, 1993, 1996; Wu, 1993; Yu, 2001] 

and a third-order digital filter [Chua, 1990a] with two’s complement arithmetic. 

Similar results are found in a second-order digital filter with other nonlinearities, such 

as a saturation-type nonlinearity [Galias, 1990] and a quantization-type nonlinearity 

[Lin, 1991]. 

However, it is found in this letter that chaotic behavior does not occur when all 

the filter parameters are even numbers, no matter what the initial conditions, the order 

and the stability of digital filter are. The main results are shown in section 2, and a 

conclusion is summarized in section 3. 

 

2.  Simulation Results 

Consider the following Nth order digital filter with two’s complement arithmetic: 

   kxkx jj 11   for 1,,2,1  Nj   and 0k  (1) 
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where 

  nf  2  such that   11  f  and Zn  (3) 

ja  for Nj ,,2,1   (4) 

  11  kx j  for Nj ,,2,1   and 0k  (5) 

and    mmks ,,1,0,1,,    for 0k  (6) 

in which m is the minimum integer satisfying 
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According to our intensive simulations, we have the following observation: 

Observation. 

If ja  is an even number and   10 jx  for Nj ,,2,1  , then  00  Zk  such 

that   0kx j  and   0ks  for 0kk   and Nj ,,2,1  . 

If  Nj ,,2,1   such that ja  is not an even number, and the system matrix of the 

digital filter is unstable, then chaotic behavior may occur.  

To understand this phenomenon, we model the filtering process as a sum of 

Bernoulli shift operations. Since, for practical implementation, any number is 

represented by only a finite number of bits, the initial condition can be represented in a 

binary form as follows: 
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where  1,0, jnp  for Nj ,,2,1   (9) 

and P  is the number of bits, not including the sign bit, for representing the state 

variables. 

Since ja  are even numbers, we can let: 





M

n

n
jnja

1
, 2  (10) 

where  1,0, jn  for Nj ,,2,1   (11) 

and M  is the number of bits, not including the sign bit, for representing the filter 

coefficients. We have 
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where  0 Zjs  (14) 

Since the summation in 

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, 2
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i
ji  is from 1i  to 1 Pi , the most 

significant bit is absorbed in js  after the first iteration, and all the bits will vanish after 

P  iterations. Therefore, the state trajectories will eventually converge to some origin. 

To demonstrate the observation, a third-order and a fourth-order digital filter 

with two’s complement arithmetic is shown. Results of higher order digital filter with 

two’s complement arithmetic can be obtained similarly. 

Figure 1 shows the state variables and symbolic sequence of a third-order 

digital filter with two’s complement arithmetic when the filter parameters and the initial 

conditions are randomly generated from a set of even numbers and the set  1,1 , 

respectively. It can be seen from the figure that when the filter parameters are even 

numbers, though the system matrix is unstable, the values of the symbolic sequence 

and the state variables will be eventually zero. Similarly, figure 2 shows the cases with 

the same initial condition as that in figure 1, but the filter parameters are deviated 

slightly from those in figure 1. In this case, chaotic behavior occurs. Similar results for 

the fourth-order cases are shown in figure 3 and figure 4, respectively. 

 

3.  Conclusion 

In this letter, we report some counter-intuitive simulation results that the 

symbolic sequences and the state variables of a digital filter with two’s complement 

arithmetic and arbitrary initial conditions and order will be eventually zero when all the 

filter parameters are even numbers, no matter the system matrix of the filter is stable or 

not. 
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Fig. 1. State variables and symbolic sequences of a third-order digital filter with two’s 

complement arithmetic,    T0.6475-0.47640.84360 x , 21 a , 42 a  and 

63 a . (a) State variable  kx1 . (b) State variable  kx2 . (c) State variable  kx3 . (d) 

Symbolic sequence  ks . 
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Fig. 2. State variables, symbolic sequences and phase portrait of a third-order digital 

filter with two’s complement arithmetic,    T0.6475-0.47640.84360 x , 

99.11 a , 01.42 a  and 99.53 a . (a) State variable  kx1 . (b) State variable 

 kx2 . (c) State variable  kx3 . (d) Symbolic sequence  ks . (e) Phase portrait. 

                                                        
 



 7 

 

 
Fig. 3. State variables and symbolic sequences of a fourth-order digital filter with two’s 

complement arithmetic,    T0.58390.23090.1106-0.64280 x , 21 a , 42 a , 

63 a  and 84 a . (a) State variable  kx1 . (b) State variable  kx2 . (c) State 

variable  kx3 . (d) State variable  kx4 . (e) Symbolic sequence  ks . 
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Fig. 4. State variables and symbolic sequences of a fourth-order digital filter with two’s 

complement arithmetic,    T0.58390.23090.1106-0.64280 x , 01.21 a , 

01.42 a , 01.63 a  and 01.84 a . (a) State variable  kx1 . (b) State variable  kx2 . 

(c) State variable  kx3 . (d) State variable  kx4 . (e) Symbolic sequence  ks . 


