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Exploiting an approach similar to the-matrix theory, the diffusion Monte Carlo method is employed to
compute phase shifts and threshold cross sections for the elastic scattering of positronium off light atoms. We
briefly review the main ideas behind the use of quantum Monte Carlo techniques in scattering problems and,
as applications, we present results for Ps-H and Ps-He. We find scattering lengths (34).an8 2.2280)

a.u. for the singlet and the triplet states of Ps-H, and of 1.@)46u. for Ps-He. A discussion of the agreement
with other recent estimates for the same quantities is included. In particular, the scattering length for the Ps-H
singlet agrees within 1% with the stochastic variational minimizat®vM) estimate by Ivanov, Varga, and
Mitroy [Phys. Rev. A65, 32703(2002] and theR-matrix one by Blackwood, McAlinden, and WaltgPhys.

Rev. A65, 32517(2002]. The Ps-H triplet scattering length, which still shows good agreefiie¥t) with the

SVM one, appears to be 10% larger than Bamatrix value. As far as Ps-He is concerned, the calculation has
been performed in a fully many-body framework. Comparison of the diffusion Monte Carlo scattering length
with other estimates allows us to qualitatively and quantitatively assess the degree of approximation involved
in other approaches.
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[. INTRODUCTION exchange or correlation model potentjatsf systems with
more than two electrons still represents a formidable task.
Positronium(Ps scattering off atomic and molecular tar- For instance Ps-He has not been treated in a fully many-body
gets has overwhelming importance for understanding the inframework. A glance at the recent literature on bound sys-
teraction mechanism between an overthermal Ps and a cofgMS containing a positron reveals an essentially identical

densed matter environmeft]. For instance, by means of situation with only a small number of electrons treated ex-
elastic and inelastic cross sections, it is possible to mod licitly. In this context, our group has shov{(o] that flex-
ible and accurate computational techniques for small and

fhneergg ttrrzr;ﬂ?‘rgs ifrr]or; fFr)SetovctJTuemSeurégtJ/irSIn[%is%ritgo if{jseslg::g%edlum size systems are provided by the family of quantum
. . ; Monte Carlo(QMC) methods. Among them, the diffusion
history [2-7], and even in the case of light atoms, Som_ea[ronte Carlo(DMC) scheme represents the most powerful
guantitative aspects of the process still remain controversi pproach to studying strongly correlated systems thanks to
and have recently been addressed by a number of authorgs apjjity to sample a distribution proportional to the exact
both experimentally8—11] and theoreticallf12-18. From  ground state wave function of a given Hamiltonian. For fer-
the computational point of view, the difficulties that almost mionic systems, the antisymmetric nature of the wave func-
every method is faced with are related to the composite naion and its consequent nonpositiveness are usually managed
ture of both target and projectile. As a consequence, sensibigithin the fixed node approximation. This implies the intro-
results can be obtained only if correlation and exchange efduction of a bias known as nodal error. As enetgig con-
fects are properly treated. Moreover, when o-positronium issidered, the nodal errake, which disappears if the nodal
considered, the internalh2decay is symmetry forbidden and surfaces of the exact wave function are known, has a value
annihilation is likely to take place with one of the target that commonly spans the rande/e <[ 10 °,10 4] [21].
electrons. This process, which is the dominant decay process In the first part of this paper we will focus on the ideas
when the system has an electronic closed shell, is calledecessary to extract scattering information from a QMC
“pick-off” annihilation. For an accurate estimate of its rate, Simulation. In this respect this work can be regarded as
the correct treatment of the electron-positron correlation igomplementary to Ref19], where more emphasis was put
fundamental. on the explanation of the QMC technique. After that we will
A sound treatment of exchange and correlation has On%‘how the results of the application of the reviewed method to

recently been achieved for the case of positronium scattering'® €lastic collision of Ps on H and He. We will end the paper
y discussing some technical topics concerning the compu-

tation of annihilation properties in a QMC framework and
applications to related area of physics.

off hydrogen and positronium atonj47,14,18,19% How-
ever, the fullab initio treatment(i.e., without the use of
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neering papers in the context of nuclear phy$k%,23. As tive constantonce the logarithmic derivative at a given point
already mentioned, those ideas have been recently applied i® specified. Imposing the condition

the exciton-exciton scattering proble9], thus providing

the first accurate calculation for the Ps-Ps system. The main P(R) 1

point behind the approach, which closely resembles the D (R) B ®)
R-matrix theory of Wigner and EisenbuU@4], consists in

dividing the space around the target into two regions whergne has, from Eq(2), the following expression for the scat-
the problem can be solved exactigither analytically or tering matrix:

computationally. Then the two solutions are matched, re-

quiring the function to have the necessary continuity proper- BT (pR)—TL(pR)
ties at the boundary. In the following we will explain how to S(p)=—— . (6)
investigate the wave function in these regions and we will BO; (pR) = O|(pR)

point out some issues arising when more particles and higher

energies are concerned. Atomic units are used through tH& S Worth noticing that so far the value gf (and hence)
paper. has been completely arbitrary.

A. Wave function in the external region B. QMC solution in the internal region

Although most of the concepts and equations presented in When the boundary conditiof®) is imposed on functions
this section can be easily found in any scattering textbookin the interior of the sphere, the solution of the Scfinger
we report them here for completness and in order to set up afguation is expected to be quantiz&ds no longer arbitrary
the definitions we need subsequently. To start, let us defin@nd depends on the specific form of the interaction between
ras=Ra—Rg as the relative position of the centers of massthe two fragments. Thevth energy level turns out to be a
of the two Composite fragmentﬁ and B, p as their function OfB andR, I.e.,E(/\/,_B,R), and its substitution in
asymptotic relative momentum, angd=mamg/(mx+ mg) Eq. (3 ylelds_a correspondlng value for the momentum
as their reduced mass. We introduce a boundary surface Bf\.5,R). This last quantity gives, thanks to E(f), the
rag=R, Where R satisfies the conditionV(R)<p?2u,  desired value of(p). Thus, given a method to compuie
V(rAB) being the interaction energy between the two frag_|n the |nter|0r, Controlllng the boundal’y Condltlon_, the scat-
ments at large center of mass distances. The exact way@ring problem can be considered solved. Cast in this way,

function in the regior ,5>R can then be written as the problem involves the energy computation of a confined
system and is therefore suited for a QMC study. The possi-
D((rpap) bility of varying E by changingV, B, andR can be fully

V=AWa(sa)¥a(ss) Yim 1) exploited in a variational Monte Carlo simulation thanks to
the ease of controlling the value Bf Contrariwise, in DMC
where A is the antisymmetrization operat@, and sz the  simulations like those we have employed in this work, one is
internal coordinates of the two separate fragmeiitg,and  essentially forced to the choide=0. From a physical point
W4 their internal wave functions, anfl; andY,,, the radial  of view, this corresponds to seeking for the eigenstates of a
and angular functions describing the dynamics of the relativeystem enclosed in a rigid sphere with radiRisentered on
motion of the two centers of mas$ &nd m are the usual the target. Thus, exploiting the definition of the phase shift
angular momentum quantum numberBhe stationary form  8,(p), S=¢e??, recalling the relation between Bessg|)(

l'AB

of ®,(rg) can be expressed as Neumann f), and Hankel functions
D (rap) =Zi(prag) +S(P)Oi(Pras) 2 Zi=j+iny,
whereZ, and O, are Hankel functions, an§ (p) is the scat- O=j,—in, (7)

tering matrix. Herep is connected to the total energy by

) and setting8=0, one can easily rearrange E§) as
p

E=-—+E,+Eg, 3 .
2 AP ® iI1(PR)

tans(p) = — (PR (8)

whereE, andEg are the ground state internal energieshof '

andB. Both of them can be computed employing the DMC £qation(3) of Ref.[19] is a more approximate formula for
method. Function(2) is the general solution of the radial i, computation of, that coincides with ours only when

Schralinger equation for \g=>7R =0. In testing the DMC approach to the scattering calcula-
) tion of a positron off a model spherical potential and the H
d__ Ia+1) —02|®,=0 4) atom with1=0 [25], we found Eq.(8) to be far more accu-
dr? r2 ! rate than the expression previously cited. For the dase

=0, Eq.(8) assumes the particularly simple form
which, being a linear second order differential equation, ad-
mits a unique solutiofapart from an unphysical multiplica- tansy(p)= —tanpR 9
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and hence 3 -0.48
g — 0601(3) -0.52

-0.56
oo 06

where M can be any integer. Because of our interest in low  -0.675

energy processes, we only perfornedave simulations us- 0676 °
ing Eq. (10 for the computation of the phase shifts and a § -0677
value ofp provided by Eq(3). As shown in Ref[19], if one 5 0678 AP
identifies M with the label of the internal state under con- 3 L -0.7292
sideration(which we called\'), & becomes a continuous & L -0.7204
function of p whose behavior in the limip— 0 agrees with _ [ -0.7296
Levinson’s theorem. 0786 e ity 0200
-0.787 1%
C. Excited states and nodes 0.788 .,

Before going on, it is worth stressing a few important  -0.789 - ]
points. First, while an upper limit to the sphere radRisloes 0 ' ) ' i
not exist, it cannot be chosen smaller than some unspecifie Euclidian time (hartree )

threshold value. This is due to the required validity of Eg.
everywhere outside the sphere and imposes an upper Iimitft{i;_|
the relative kinetic energy. In the case of Ps scattering o

FIG. 1. Energy (hartre¢ decay versus the elapsed tinte
artree 1) for the first four states of the Ps-H system wik0

neutral atoms, the interaction potential between the tar ndR=15 a.u. Note the different energy scales on each plot and
’ P gq eir relative shifts. Also, note that the energy of the ground state is

and the p_r_OJeCt”e ‘?'e_c_ays asi,g, aIIovv_lng thef use of falrly correctly less than-0.75 and coincident with that of the bound
small radii, a possibility not necessarily available for differ- giate of ps-H. The numbers and thick lines in each plot represent the
ent colliding fragments. Second, since DMC is mainly aasymptotic value of the energy for that state as computed by aver-
ground state technique, its straightforward application toaging over the last 2—3 Hartrek of the decay curves.
situations where projectile and target can form a bound state
seems prevented. If it were used, the method would end uphase shifts. Second, there are “almost spherical” nodes in-
sampling the wave function of the global ground state, whichroduced intod(r 5g) to describe a Ps projectile with higher
does not carry information about scattering processes. Tkinetic energy in a state orthogonal to the ground state of the
tackle and overcome these issues, one has to employ an @nclosed target-projectile system. Third, there are nodal sur-
thogonalization procedure able to retrieve information fromfaces generated by the use of the appropriate antisymmetrizer
the excited states. This gives the possibility of raising theA (or the correct exchange operatdrin a spin-free formal-
energy while keeping the boundary constraint fixed and, irism). These are needed to prevent bosonic collapse of the Ps
principle, would allow the study of systems at any energy. Teelectron on the target and to correctly account for the target
realize that, following the work previously done in REf9],  state symmetry. On the basis of the Young’s tableau,(the
we employed the correlated function DM@CFDMC)  operator for theA-Ps system could be obtained by acting on
method[26], which combines the action of the projection the symmetry operato®, of the target withIl;(1—"Pips)
operator typical of a normal DMC simulation with the use of [28]. Here, P;p is the exchange operator between the Ps
a basis set oN many-body wave functions. The algorithm electron and the target electrbaf equal spin. This operation
projects thes& functions on the firsN states of the Hamil- changes the location of the nodal surfaésny is present
tonian. An example of that is given in Fig. 1 which displays in the “target” region by an extent that is somehow related to
the action of the projection operator on the first four states othe confining sphere radiudg8. If no overall bound state be-
the Ps-H singlet as energy decay in imaginary time. In thigween the target and the projectile exists, so that the CFDMC
specific case the system has an overall bound state, amdethod is not in principle needed to extract low energy re-
therefore scattering information can be retrieved only fromsults, the dependency dd comes simply from the fact that
the second level on. For the sake of clarity we would like toit implicitly defines the “localization” of the Ps around the
specify that, in the following, results for Ps-He and Ps-Htarget. The largeR the lower the Ps electron density in the
triplets, which do not have any bound states, were computethrget region. In an independent particle approach, the con-
without employing the CFDMC method. tribution of Pps from 1—Pip in defining the target nodes
Although a detailed description of this method is out of depends on the local Ps electron amplitude, a contribution
the scope of the present work and can be extensively founthat decreases upon increasing the sphere radius. In turn, this
in the literaturd 26,27], we would like to comment on a few indicates a vanishing effect on the energy, and hence on the
features connected to the presence of nodes. The source 8fp), of the exchange between the Ps electron and the target
nodal surfaces is threefold. First, a radial nodal surface loenes. These conclusions are identical for every one of\the
cated atr ,g="TR is introduced by the spherical confining po- projected states in the CFDMC procedure, and also if corre-
tential that allows the scattering problem to be recast into dation effects between the particles are introduced. In addi-
bound state one. This is always present in any ofNHmasis  tion, theIl;(1—P,p) exchange introduces a nodal surface
functions as well as in the projected states. As immediat®n the periphery of the target electron density that we expect
consequence of this, one can apply E#j0) to calculate to resemble a sphere for lar@e This is due to the decreas-
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ing importance of details in the Ps-interaction when the D\ (rap)

sphere becomes larger. This is exactly the case for Ps-H and

Ps-He scattering where no internal target nodes are present.

In the case of a global P&-bound state(e.g., Ps-Li, the

S s . ek e o U, In e Smulation epore n 15 ork nas e

ground state wave function may be quite different from the aried from a minimum Of.lo fo a maximum qf S0 pohr.

ones in the excite@scattering states. However, the usage of A-ISO’ as Is common practice in DMC anCUIa-“OnS’ n ‘5.‘”

a guiding function that has nonzer.o overlaplwith all tie 5|mula_t|(_)ns we C_hose the trial wave function coincident with

co?nputed states in the CFDMC approach, and that preven he gwdmg function, and we set thg values of the parameters

bosonic collapse of the sampled electron d’istribution assureﬁ.to.a\(md local energy divergencies on the_ sphere surface.

the correctness of the procedure, allowing the correét mixing | > > Important in prder to prevent popul_atlon blowup and
S : o . % reduce the statistical error of the energies.

and projection of the startinyl basis set functions. Never-

theless, it should be stressed that the efficiency of such a

procedure may strongly depend on the quality of the chosen A. Hydrogen

guide function. However, the fixed nodes approximation can |n the Ps-H case, the exact internal wave function of both

have dramatic effects when inelastic and reactive process@ggments is known and has the form

are considered. In these cases the structure of the wave func-

tion changes abruptly in a way that must be similar to what O=1+(—1)5P,, (14

happens when, in a bound system, one considers two differ-

ent electronic states. As far as we know, little can be saidvhereSis the electronic spin angular momentum of the state

about the change of nodal structure on going from thg0 or 1) and P,, the permutation operator between the two

ground state to an electronic excited state where more thaglectrons. The space part of tBe=0 ground state function is

two electrons are involved. We finally remark that the or-everywhere positive, while the nodal surface for e 1

thogonality between states with different global angular mostate is exactly provided by the action®f This comes from

mentum ensures that every projected state will have the samge space symmetry of the state, which dictates that the wave

T2 Al R (13

which allows one to reduce the cost of evaluating the guiding

angular symmetry of the guiding function. function be dependent only on the interparticle distances, and
by recognizing that the presence of the positron does not
I1l. APPLICATIONS introduce any modification to the location of the nodal sur-

face for a two-electron system, namely=r, [31]. Under

In this Work', we appl'ied t.he presented technique'to thethis condition the energy can be computed by DMC simula-
Swave scattering of positronium off hydrogen and helium. Ation without any nodal approximation.

historical description of how calculations for these systems All the simulations for the triplet state of Ps-H were car-

have evolved so far can be found in referefiz@] and[30]. ied out using a time step of 0.01 Hartrde 2000 walkers
The dynamics of both systems was characterized by the fu nd a total of 100 blocks of 10000 steps each '

Hamiltonian The singlet state, which supports a bound state, has been

studied exploiting the CFDMC technique. It is worth recall-

1 Ne , 1, Ne 7 7 1 Ne q ing that the bound state energy for this system has already
H=-5 IE Vi— Evp_lzl -t r—+i>j 7—2 - been computed using DMC simulatigB2]. The obtained
= =1fi fp ] ip

value of —0.789175(10) a.u. agrees well with the very ac-
(11 curate estimate of-0.789196 714 7(42) a.u. computed by
Yan and Hq[33]. As trial functions for the excited states we

wherei andj refer to electrong to the positron, and tothe  employed expressions identical to E42) with the choice
nuclear charge of the atom. In order to reduce the statistical

error associated with our energy results, we importance- N7l pen
sampled using a guiding wave function whose spatial part d)(rpS_H):sin( R ) (15
has the form

The trial function for the ground state was instead chosen to
D(rpga) be

v=0 q’A(SA)\I,PS(rlp)Kd’J(SI) , (12
v _0 F{011r1+012ri+,31r2+,32"§ Yirpt valy
wherey,, ¥ps, and® have the same meaning as in Eg. Ps—H= L1EX 1+ agry 1+ Bar, 1+ ysrp
¢, is a Jastrow factor for all the pairs of particles belonging
to different fragmentss, is the set of distances for these {al2 Mal1p V1l2p (16
pairs, and® is the appropriate symmetry operator built ac- 1+8or1p Idporyy 1+warp)

cording to Young's diagrams. To make the function vanish-
ing on the sphere surfac®,(rps)/rps Was chosen to be a a form already employed in the context of ground state cal-
linear combination of polynomials of the form culations[20]. Simulations for the singlet states were per-
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0 - — T T T T T T T " tion associated with our value af; makes it impossible to
. Triplet o QMC | single out which of these two estimates is the more accurate.
mn QMG Moreover, the overall agreement between these three tech-
051 - R Matrix - niqgues seems to definetely rule out the value proposed in

[13]. Indeed, it was already suggestédd,14] that truncation

in the expansion used to evaluate the matrix elements in Ref.
[13] could have led to erroneous results in the Kohn varia-
tional approach34].

The corresponding values for the triplet state are
=2.246(21) a.u. and=1.425(43) a.u. The agreement be-
tween this value o0& and the value of IMV is of the order of
1% whereas that of BAW lies 10% lower than ours. At the

B N R T E R R moment we do not understand the origin of this fairly large
0 0.1 02 0.3 0.4 0.5 difference. In principle, the DMC method applied to this sys-
i) tem has virtually no errors. Nodal surfaces are exactly pro-
FIG. 2. Swave elastic phase shift for H with total electron spin Vided and the time step bias is negligible because of the
S=1 andS=0. The momentum is expressed in atomic units. smallness of the step size. The large value of box radius
employed for points at low energfp0, 40, and 30 bohr
formed employing 2000 configurations, a time step ofmakes us confident about the validity of approximati@n
0.01 Hartree?, and a grand total of 10 000 decorrelated Eu-and the correctness of the fit from which we deternmage
clidean time evolutions. Finally, the statistical accuracy we reached excludes possible

Low energy phase shifts for bo®=0 andS=1 systems differences due to the uncertainty in the location of our phase
are shown in Fig. 2 where they are directly compared to thehift. On the other hand, the values computed by BAW can
fitting results from stochastic variational minimization be affected by the truncation of the basis set and the Buttle
(SVM) [14] and R-matrix [17] calculations. A summary of correction approximation consequently introduced. Values
other estimates is reported in Table I. The scattering lenghtseems to be well converged but it is well known that the
as were calculated by fitting the effective range formula  inclusion of certain configurations or of a different kind of
basis function can have dramatic effects on many physical
propertied 35].

Before discussing the results for Ps-He, we would like to
stress that the observed agreement between completely dif-
to the computed phase shifts. A fitting of the five pointsferent computational techniques, like the QMC, SVM, and,
obtained for the singlet leads tm,=4.357(28) a.u. and even if to lower extentR-matrix methods, can be considered
=2.259(39) a.u. However, because the phase shift asso@s strong evidence for the correctness of the results proposed,
ated with the highest momentum lies in a region that coulcas well as a strong proof of the reliability of the method.
be outside the range of applicability of E4.7), we consider Also, it is interesting to notice that, although quite dated, the
the valueag=4.375(34) a.u. a more reliable estimate. Thisresults by Drachman and Houstp2,3] were very close to
value (to which we will refer in the following, if not other- the DMC and SVM results.
wise specifiefl was obtained by excluding the highest mo-
mentum point from the fitting procedure. The effective range
for this fit is r=2.228(50) a.u. Our value differs equally B. Helium
from those proposed by Ivanov, Mitroy, and Vargad] With this premise, we now address the more debated
(hereafter cited as IM¥and Blackwood, McAlinden, and rohlem of positronium scattering off helium. Before dis-
Walters[17] (cited as BAW by about 0.8%. In their paper cssing our computed quantities for this process, it is worth
BAW suggest that the SVM value of IMV was probably n4iing that the experimental measurements of the threshold
closer to the correct one. Unfortunately, the standard deviaz5jue of the cross section span almost an entire order of
magnitude[8,11]. The most recent theoretical estimates, ob-
tained by different computational schemes and reported in
Table I, do not single out one of these experimental results
as the correct one. The primary reason for this failure is the

Singlet

phase shift (rad)
T
L

S(0)— 11, 1
p cot (p)——a—s+§rp (17)

TABLE I. Scattering lengtia.u) for the Ps-H scattering system
with total spinS=0 andS=1.

QMme Other small size of the cross section and the consequent large frac-
S=0 4.37534) 4.342 3.49° 4.41° 459 tional error associated with any approximation.
s=1 2.24621) 2.222 2462 2.06° In the present study, the system is treated with a genuinely
many-body technique and no physical approximations have
aReferencd 14], stochastic variational minimization. been made prior to the numerical simulation. The absolute
bReferencd 13], Kohn variational method. freedom one has in choosing the analytical form of the wave
‘Referencd17], 14Ps14HR-matrix calculation. function in QMC methods allows us to employ the following
dReference$2,3], stabilization calculations. explicitly correlated form for¥ :
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TABLE Il. Scattering threshold cross sectiom @.u.) for the 0 T T T ' T :
Ps-He scattering system. M Y Olic
| . QMC fit
QmMC Experiment Other RN . Riatix
7.891667) 8.49) % 8(1)° 10.56', 9.83' T2 7
13(4) €, 9.0¢ 8.79', 3.109 ot
2.65)° 13.2" 11.91, 7.40’ §
(2]
3Referencd 7], Canteret al. (1975. g_ 04 _
bReferencd37], Rytsda et al(1984).
‘Referencd8], Nagashimaet al(1998. )
dreferencd 9], Colemanet al(1994. 5
‘Referencd11], Skalseyet al(1998. . | ‘ | . LN
Referencd 18], frozen-core stochastic variational minimization. 0 0.1 0.2 03 0.4
9Referencd 15], three-state close coupling with model exchange. p(au.)
"Referencg 16], 22-stateR-matrix calculation. FIG. 3. Swave elastic phase shift for He with total electron spin

fReference{4], Kohn variational method with model exchange. S=1/2. The momentum is expressed in atomic units.
JReferencd39], 2Ps3HeT-matrix calculation.
quality of our results, a discussion of the other computational
2 2 i _ i - -
v _eX'{ aif+asr?  Barp+ Bors methods is mandatory. In Refl16], an R-matrix 22-Ps
He™

pseudostate calculation gave 18.4.u., employing a single

state to represent Hsee Fig. 3. This was chosen to be the

Y1l 10 Hartree-Fock quality .vvgve.function py Clemepti and Roetti

1+—) (18  [38], hence not containing intraatomic correlation. While the
Y212 22-Ps-pseudostate basis set could be regarded as accurate in

which gives a statistically exact DMC energy. Here wedealing with Ps excitation and distortion, the lack of excita-
forced ay= B, = — 2 andy, = 1/2 to exactly satisfy the cusp tions in_ the Hg target, which are expected to “spften“ the_
conditions of the ground state wave function. This choice”S"H€ intéraction analogously to what happens in Ps-H, is

helps in reducing the stochastic noise of our results, and jRrobably the reason for the larger cross section with respect

preventing explosions in the walker population during thel® theé QMC one. As to the results from Reff$4] and[18],

simulations. Using this trial wave function to guide the simu- 1€y were obtained by means of a frozen-core variant of the

lations and to compute the total energy, we found the DMCSYM method, the unique difference being the parametriza-
energy to be statistically equal to the exact valuetion of the core polarization potential. When no polarization

2.9037243770 a.u[36] for time steps ranging from Was used, the resulting cross section (1&:%6u.) is in ac-
0.001 Hartree! to 0.03 Hartresl. curate agreement with tHematrix 22-Ps-pseudostate calcu-

Moreover, the only Young diagram compatible with the Iation,_ indicati_ng the congist(_ency of the two procedures.
choice of a helium atom in its ground sta®<0) gives the Upon mtro'duc.lng the. polarization potential, a decrease of the
following form for O cross section is obtained, as expected from the less repulsive

Ps-He interaction. The extent of the decrease was also found
O=(1+P1)(1-Pyy). (190  to be dependent on the way the parametrization of the polar-
ization potential was carried out. More specifically, Mitroy
Simulations for this system were characterized by a time stepnd Ivanov[18] found a Ps-He threshold cross section of
of 0.005 Hartreg?, 4000 walkers, and a total of 130 blocks 10.56m a.u. when this potential was tuned to reproduce the
of 25000 steps each. electron-He phase shift, whereas a value of 8.2%u. was

Each value ofp has been computed by subtracting from obtained when the parametrization was chosen to coincide
the DMC energy the Ps internal energy and the helium enwith the positron-He case. As expected, using a parametriza-
ergy specified above. This last quantity is far more accuratéon that averages between the two potentials gave a cross
than our error bars. The value of the scattering length, obsection of 9.83 a.u. This value, which we consider the fair-
tained by linear fittingd(p) versusp (Fig. 3), is 1.40466)  est estimate in the theoretical framework of Rgfg], has
a.u. with a corresponding threshold cross section obeen used to represent the SVM curve in Fig. 3. Although the
7.8916(67)r a.u. extent of the changes is relatively small, in our view these

The best agreement with experimental data is found withresults highlight some sensitivity of the threshold cross sec-
the scattering threshold cross sectior8¢1 ) a.u. proposed tion with respect to the correlation between the internal
by Rytsda et al. [37] and the measure of 8.4(8)a.u. per-  structure of the two fragments. Thématrix approach of
formed by Canteret al. [7]. These values are reported in Basuet al. [39] is, to the best of our knowledge, the only
Table II with a list of other experimental values. As was calculation explicitly dealing with excitations of He. Passing
already pointed out in Refl18], the estimate of Skalsey from a 3PslHe basis set to a 2Ps3He one, they observed a
et al. [11] (2.5 a.u.) was performed at an energy too highdecrease in the threshold cross section from 1#4.&5u. (in
to be relevant to this work. In order to thoroughly assess thgood agreement with the 22Ps1Rematrix calculation and

l+a3r1 l+ﬁ3l’2
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the frozen-core SVM calculation without polarization poten-we would like to emphasize that the possibility of sampling
tial) to 7.40r a.u. Although these basis sets are rather incomthe exact particle distributions in configurational spéee-
plete and soménot assessedpproximation was introduced ploying, for example, the forward walking algorithi#1] or
[18], this drop may testify the importance of a correct de-the reptation metho@42]) could allow one to obtain an ef-
scription of He and how this systematically drives the crosdective interaction potential between Ps and a given atom or
section toward a lower value. As to the result from R&b], = molecule. This potential, where all the physical effects are
this was obtained using a model exchange potential whoseorrectly accounted for, could be subsequently used to simu-
parametrization was carried out using a rather incompletéate Ps in condensed phases such as molecular crystals and
basis set to reproduce the electron phase shift. Also, as préquids, relying on the pair approximation to define the total
viously found for Ps-H, the result by Drachman and Houstorinteraction potential. Moreover, this study could also help in
[4], 7.737 a.u., obtained by means of a Kohn variational defining preferential spatial locations where the Ps positron
approach with fixed exchange, shows an uncannily goodavould annihilate during a “pick-off” annihilation event. So
agreement with the DMC estimate, being the closest amonthe interplay between the theoretical and the experimental
all the other values. results may enhance the diagnostic role played by Ps in con-
At this time, the nodal error, being the only approximationdensed matter science. As already pointed out in the Intro-
introduced, deserves some comments. As a consequence difction, one of the issues in the positron field is the compu-
the fixed node approximation, the energy is an upper bounthtion of annihilation properties of the target. In the context
to the exact one, their difference being dependent on thef positron scattering the central quantity is the effective
quality of the chosen nodal surfaces. General consideratiorshargeZ 4. This quantity is expressed by
[40] show this bias in the phase shift to be always negative
and proportional toR ~1. As a result of this, our scattering
length might be slightly lower than the exact one. More Zeﬁ:<‘1’2 o(rip)
guantitatively, one can observe that in the interaction region '
(which one can define as a sphere of radRi9 the em- ) ) _ _
ployed function closely resembles the functional form usedVN€rerip is the distance between the positron and itie
in bound state calculations on similar systems, for which thé&!€ctron, andV is the scattering wave function normalized in
nodal error roughly equala eg=1x 104 Hartree[20]. In order to describe a unitary flux of incident positrons. We

the rest of the simulation volume the nodes of the trial wavd €cently proposed an algorith@3] to deal formally with the

function are essentially exact because of the validity of EqS@Me integral, but in the case of a bound sysfemthat

(1). For this reason we expect a bias on the eng4gyof the ~ COntext the integral20) is proportional to the annihilation
order of Ae=AegR, /R. If so, the nodal error would turn rate]. In those circumstances, the wave function needed to be

out to be of the same order of magnitude as the statisticdlo'malized, as in any bound state, in order to describe a
fluctuations of our energy values, roughlika0~5 Hartree. ~ Probability density. The same technique of RéB] can thus
These considerations thus indicate the statistical exactnef€ @Pplied provided one introduces a correction of the value

(between 2 or 3 times the statistical error)bairour results. °Ptained for a proper normalization integfah]. The exten-
sion of this procedure to estimat&.4 should be straightfor-

ward, at least for closed shell targ¢#ss]. We conclude by
remarking again that the extension to reactive processes is
The DMC and CFDMC methods have been used to obtaifieasible (the formalism has been known since the seminal
scattering lengths and threshold cross sections for Ps scattavorks of Alhassid and Koonif22], and Carlsoret al. [23]),
ing off H and He. As to the H target, our results for both thebut it seems to contain uncontrolled approximations when
singlet and triplet states are found to be close to coincidencthe use of the fixed node CFDMC method is required.
with the SVM ones by Ivanoet al.[14], and really close to
the R-matrix 14Ps14H pseudostate of&g]. As far as He is
concerned, the fixed node DMC value for the cross section is
found in fair agreement with the frozen-core SVM ones The authors are indebted to Dr. Jim Mitroy for many use-
when polarization potentials are used, and is proposed as ttiel comments and discussions on methodological issues and
most accurate estimate of this quantity. positronium physics. Financial support from the University
Among the results directly derivable from this method, of Milano is also acknowledged.

‘If> , (20)

IV. CONCLUSION AND FUTURE DEVELOPMENTS
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