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Exploiting an approach similar to theR-matrix theory, the diffusion Monte Carlo method is employed to
compute phase shifts and threshold cross sections for the elastic scattering of positronium off light atoms. We
briefly review the main ideas behind the use of quantum Monte Carlo techniques in scattering problems and,
as applications, we present results for Ps-H and Ps-He. We find scattering lengths of 4.375~34! and 2.228~50!
a.u. for the singlet and the triplet states of Ps-H, and of 1.4046~6! a.u. for Ps-He. A discussion of the agreement
with other recent estimates for the same quantities is included. In particular, the scattering length for the Ps-H
singlet agrees within 1% with the stochastic variational minimization~SVM! estimate by Ivanov, Varga, and
Mitroy @Phys. Rev. A65, 32703~2002!# and theR-matrix one by Blackwood, McAlinden, and Walter@Phys.
Rev. A65, 32517~2002!#. The Ps-H triplet scattering length, which still shows good agreement(1%) with the
SVM one, appears to be 10% larger than theR-matrix value. As far as Ps-He is concerned, the calculation has
been performed in a fully many-body framework. Comparison of the diffusion Monte Carlo scattering length
with other estimates allows us to qualitatively and quantitatively assess the degree of approximation involved
in other approaches.

DOI: 10.1103/PhysRevA.66.042502 PACS number~s!: 36.10.Dr, 34.10.1x
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I. INTRODUCTION

Positronium~Ps! scattering off atomic and molecular ta
gets has overwhelming importance for understanding the
teraction mechanism between an overthermal Ps and a
densed matter environment@1#. For instance, by means o
elastic and inelastic cross sections, it is possible to mo
energy transfers from Ps to the surroundings or to desc
the Ps trapping in a free volume cavity. Despite its lo
history @2–7#, and even in the case of light atoms, som
quantitative aspects of the process still remain controver
and have recently been addressed by a number of aut
both experimentally@8–11# and theoretically@12–16#. From
the computational point of view, the difficulties that almo
every method is faced with are related to the composite
ture of both target and projectile. As a consequence, sen
results can be obtained only if correlation and exchange
fects are properly treated. Moreover, when o-positronium
considered, the internal 2g decay is symmetry forbidden an
annihilation is likely to take place with one of the targ
electrons. This process, which is the dominant decay pro
when the system has an electronic closed shell, is ca
‘‘pick-off’’ annihilation. For an accurate estimate of its rat
the correct treatment of the electron-positron correlation
fundamental.

A sound treatment of exchange and correlation has o
recently been achieved for the case of positronium scatte
off hydrogen and positronium atoms@17,14,18,19#. How-
ever, the full ab initio treatment~i.e., without the use of
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exchange or correlation model potentials! of systems with
more than two electrons still represents a formidable ta
For instance Ps-He has not been treated in a fully many-b
framework. A glance at the recent literature on bound s
tems containing a positron reveals an essentially ident
situation with only a small number of electrons treated e
plicitly. In this context, our group has shown@20# that flex-
ible and accurate computational techniques for small
medium size systems are provided by the family of quant
Monte Carlo ~QMC! methods. Among them, the diffusio
Monte Carlo~DMC! scheme represents the most power
approach to studying strongly correlated systems thank
its ability to sample a distribution proportional to the exa
ground state wave function of a given Hamiltonian. For f
mionic systems, the antisymmetric nature of the wave fu
tion and its consequent nonpositiveness are usually man
within the fixed node approximation. This implies the intr
duction of a bias known as nodal error. As energye is con-
sidered, the nodal errorDe, which disappears if the noda
surfaces of the exact wave function are known, has a va
that commonly spans the rangeDe/eP@1025,1024# @21#.

In the first part of this paper we will focus on the ide
necessary to extract scattering information from a QM
simulation. In this respect this work can be regarded
complementary to Ref.@19#, where more emphasis was p
on the explanation of the QMC technique. After that we w
show the results of the application of the reviewed method
the elastic collision of Ps on H and He. We will end the pap
by discussing some technical topics concerning the com
tation of annihilation properties in a QMC framework an
applications to related area of physics.

II. REVIEW OF THE METHOD

The first suggestions for the application of QMC metho
to scattering problems were independently made in two p
©2002 The American Physical Society02-1
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neering papers in the context of nuclear physics@22,23#. As
already mentioned, those ideas have been recently applie
the exciton-exciton scattering problem@19#, thus providing
the first accurate calculation for the Ps-Ps system. The m
point behind the approach, which closely resembles
R-matrix theory of Wigner and Eisenbud@24#, consists in
dividing the space around the target into two regions wh
the problem can be solved exactly~either analytically or
computationally!. Then the two solutions are matched, r
quiring the function to have the necessary continuity prop
ties at the boundary. In the following we will explain how
investigate the wave function in these regions and we
point out some issues arising when more particles and hig
energies are concerned. Atomic units are used through
paper.

A. Wave function in the external region

Although most of the concepts and equations presente
this section can be easily found in any scattering textbo
we report them here for completness and in order to set u
the definitions we need subsequently. To start, let us de
rAB5RA2RB as the relative position of the centers of ma
of the two composite fragmentsA and B, p as their
asymptotic relative momentum, andm5mAmB /(mA1mB)
as their reduced mass. We introduce a boundary surfac
r AB5R, where R satisfies the conditionV(R)!p2/2m,
V(r AB) being the interaction energy between the two fra
ments at large center of mass distances. The exact w
function in the regionr AB.R can then be written as

C5AFCA~sA!CB~sB!
F l~r AB!

r AB
YlmG ~1!

whereA is the antisymmetrization operator,sA and sB the
internal coordinates of the two separate fragments,CA and
CB their internal wave functions, andF l andYlm the radial
and angular functions describing the dynamics of the rela
motion of the two centers of mass (l and m are the usual
angular momentum quantum numbers!. The stationary form
of F l(r AB) can be expressed as

F l~rAB!5Il~prAB!1Sl~p!Ol~prAB! ~2!

whereIl andOl are Hankel functions, andSl(p) is the scat-
tering matrix. Here,p is connected to the total energy by

E5
p2

2m
1EA1EB, ~3!

whereEA andEB are the ground state internal energies oA
andB. Both of them can be computed employing the DM
method. Function~2! is the general solution of the radia
Schrödinger equation forr AB.R

F d2

dr2
2

l ~ l 11!

r 2
2p2GF l50 ~4!

which, being a linear second order differential equation,
mits a unique solution~apart from an unphysical multiplica
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tive constant! once the logarithmic derivative at a given poi
is specified. Imposing the condition

F l8~R!

F l~R!
5

1

B ~5!

one has, from Eq.~2!, the following expression for the sca
tering matrix:

Sl~p!52
BIl8~pR!2Il~pR!

BOl8~pR!2Ol~pR!
. ~6!

It is worth noticing that so far the value ofp ~and henceE)
has been completely arbitrary.

B. QMC solution in the internal region

When the boundary condition~5! is imposed on functions
in the interior of the sphere, the solution of the Schro¨dinger
equation is expected to be quantized.E is no longer arbitrary
and depends on the specific form of the interaction betw
the two fragments. TheNth energy level turns out to be
function ofB andR, i.e.,E(N,B,R), and its substitution in
Eq. ~3! yields a corresponding value for the momentu
p(N,B,R). This last quantity gives, thanks to Eq.~6!, the
desired value ofSl(p). Thus, given a method to computeE
in the interior, controlling the boundary condition, the sc
tering problem can be considered solved. Cast in this w
the problem involves the energy computation of a confin
system and is therefore suited for a QMC study. The po
bility of varying E by changingN, B, andR can be fully
exploited in a variational Monte Carlo simulation thanks
the ease of controlling the value ofB. Contrariwise, in DMC
simulations like those we have employed in this work, one
essentially forced to the choiceB50. From a physical point
of view, this corresponds to seeking for the eigenstates
system enclosed in a rigid sphere with radiusR centered on
the target. Thus, exploiting the definition of the phase s
d l(p), Sl5e2id l, recalling the relation between Bessel (j l),
Neumann (nl), and Hankel functions

Il5 j l1 inl ,

Ol5 j l2 inl , ~7!

and settingB50, one can easily rearrange Eq.~6! as

tand l~p!52
j l~pR!

nl~pR!
. ~8!

Equation~3! of Ref. @19# is a more approximate formula fo
the computation ofd l that coincides with ours only whenl
50. In testing the DMC approach to the scattering calcu
tion of a positron off a model spherical potential and the
atom with l>0 @25#, we found Eq.~8! to be far more accu-
rate than the expression previously cited. For the casl
50, Eq. ~8! assumes the particularly simple form

tand0~p!52tanpR ~9!
2-2
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ORTHOPOSITRONIUM SCATTERING OFF H AND He PHYSICAL REVIEW A66, 042502 ~2002!
and hence

d05Mp2pR, ~10!

whereM can be any integer. Because of our interest in l
energy processes, we only performeds-wave simulations us-
ing Eq. ~10! for the computation of the phase shifts and
value ofp provided by Eq.~3!. As shown in Ref.@19#, if one
identifiesM with the label of the internal state under co
sideration~which we calledN ), d l becomes a continuou
function of p whose behavior in the limitp→0 agrees with
Levinson’s theorem.

C. Excited states and nodes

Before going on, it is worth stressing a few importa
points. First, while an upper limit to the sphere radiusR does
not exist, it cannot be chosen smaller than some unspec
threshold value. This is due to the required validity of Eq.~1!
everywhere outside the sphere and imposes an upper lim
the relative kinetic energy. In the case of Ps scattering
neutral atoms, the interaction potential between the ta
and the projectile decays as 1/r AB

6 , allowing the use of fairly
small radii, a possibility not necessarily available for diffe
ent colliding fragments. Second, since DMC is mainly
ground state technique, its straightforward application
situations where projectile and target can form a bound s
seems prevented. If it were used, the method would end
sampling the wave function of the global ground state, wh
does not carry information about scattering processes
tackle and overcome these issues, one has to employ a
thogonalization procedure able to retrieve information fro
the excited states. This gives the possibility of raising
energy while keeping the boundary constraint fixed and
principle, would allow the study of systems at any energy.
realize that, following the work previously done in Ref.@19#,
we employed the correlated function DMC~CFDMC!
method @26#, which combines the action of the projectio
operator typical of a normal DMC simulation with the use
a basis set ofN many-body wave functions. The algorithm
projects theseN functions on the firstN states of the Hamil-
tonian. An example of that is given in Fig. 1 which displa
the action of the projection operator on the first four states
the Ps-H singlet as energy decay in imaginary time. In t
specific case the system has an overall bound state,
therefore scattering information can be retrieved only fr
the second level on. For the sake of clarity we would like
specify that, in the following, results for Ps-He and Ps
triplets, which do not have any bound states, were compu
without employing the CFDMC method.

Although a detailed description of this method is out
the scope of the present work and can be extensively fo
in the literature@26,27#, we would like to comment on a few
features connected to the presence of nodes. The sour
nodal surfaces is threefold. First, a radial nodal surface
cated atr AB5R is introduced by the spherical confining p
tential that allows the scattering problem to be recast int
bound state one. This is always present in any of theN basis
functions as well as in the projected states. As immed
consequence of this, one can apply Eq.~10! to calculate
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phase shifts. Second, there are ‘‘almost spherical’’ nodes
troduced intoF l(r AB) to describe a Ps projectile with highe
kinetic energy in a state orthogonal to the ground state of
enclosed target-projectile system. Third, there are nodal
faces generated by the use of the appropriate antisymmet
A ~or the correct exchange operatorO in a spin-free formal-
ism!. These are needed to prevent bosonic collapse of th
electron on the target and to correctly account for the tar
state symmetry. On the basis of the Young’s tableau, theO
operator for theA-Ps system could be obtained by acting
the symmetry operatorOA of the target withP i(12PiPs)
@28#. Here, PiPs is the exchange operator between the
electron and the target electroni of equal spin. This operation
changes the location of the nodal surfaces~if any is present!
in the ‘‘target’’ region by an extent that is somehow related
the confining sphere radiusR. If no overall bound state be
tween the target and the projectile exists, so that the CFD
method is not in principle needed to extract low energy
sults, the dependency onR comes simply from the fact tha
it implicitly defines the ‘‘localization’’ of the Ps around th
target. The largerR the lower the Ps electron density in th
target region. In an independent particle approach, the c
tribution of PiPs from 12PiPs in defining the target node
depends on the local Ps electron amplitude, a contribu
that decreases upon increasing the sphere radius. In turn
indicates a vanishing effect on the energy, and hence on
d(p), of the exchange between the Ps electron and the ta
ones. These conclusions are identical for every one of thN
projected states in the CFDMC procedure, and also if co
lation effects between the particles are introduced. In ad
tion, the P i(12PiPs) exchange introduces a nodal surfa
on the periphery of the target electron density that we exp
to resemble a sphere for largeR. This is due to the decreas

FIG. 1. Energy ~hartree! decay versus the elapsed timet
(Hartree21) for the first four states of the Ps-H system withS50
andR515 a.u. Note the different energy scales on each plot
their relative shifts. Also, note that the energy of the ground stat
correctly less than20.75 and coincident with that of the boun
state of Ps-H. The numbers and thick lines in each plot represen
asymptotic value of the energy for that state as computed by a
aging over the last 2–3 Hartree21 of the decay curves.
2-3
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CHIESA, MELLA, AND MOROSI PHYSICAL REVIEW A66, 042502 ~2002!
ing importance of details in the Ps-A interaction when the
sphere becomes larger. This is exactly the case for Ps-H
Ps-He scattering where no internal target nodes are pre
In the case of a global Ps-A bound state~e.g., Ps-Li, the
smallest system having a target with internal nodal surfa!,
this picture is complicated by the fact that the nodes in
ground state wave function may be quite different from
ones in the excited~scattering! states. However, the usage
a guiding function that has nonzero overlap with all theN
computed states in the CFDMC approach, and that prev
bosonic collapse of the sampled electron distribution, ass
the correctness of the procedure, allowing the correct mix
and projection of the startingN basis set functions. Never
theless, it should be stressed that the efficiency of suc
procedure may strongly depend on the quality of the cho
guide function. However, the fixed nodes approximation c
have dramatic effects when inelastic and reactive proce
are considered. In these cases the structure of the wave
tion changes abruptly in a way that must be similar to w
happens when, in a bound system, one considers two di
ent electronic states. As far as we know, little can be s
about the change of nodal structure on going from
ground state to an electronic excited state where more
two electrons are involved. We finally remark that the
thogonality between states with different global angular m
mentum ensures that every projected state will have the s
angular symmetry of the guiding function.

III. APPLICATIONS

In this work, we applied the presented technique to
S-wave scattering of positronium off hydrogen and helium
historical description of how calculations for these syste
have evolved so far can be found in reference@29# and@30#.
The dynamics of both systems was characterized by the
Hamiltonian

H52
1

2 (
i 51

Ne

¹ i
22

1

2
¹p

22(
i 51

Ne Z

r i
1

Z

r p
1(

i . j

1

r i j
2(

i

Ne 1

r ip
,

~11!

wherei andj refer to electrons,p to the positron, andZ to the
nuclear charge of the atom. In order to reduce the statis
error associated with our energy results, we importan
sampled using a guiding wave function whose spatial p
has the form

C5OFCA~sA!CPs~r 1p!
F~r PsA!

r PsA
fJ~sI !G , ~12!

wherecA , cPs, andF have the same meaning as in Eq.~1!.
fJ is a Jastrow factor for all the pairs of particles belongi
to different fragments,sI is the set of distances for thes
pairs, andO is the appropriate symmetry operator built a
cording to Young’s diagrams. To make the function vanis
ing on the sphere surface,F(r PsA)/r PsA was chosen to be a
linear combination of polynomials of the form
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F l~r AB!

r AB
5(

k
ak~r PsA

2 2R 2!2, ~13!

which allows one to reduce the cost of evaluating the guid
function. In the simulation reported in this work,R has been
varied from a minimum of 10 to a maximum of 50 boh
Also, as is common practice in DMC calculations, in a
simulations we chose the trial wave function coincident w
the guiding function, and we set the values of the parame
ak to avoid local energy divergencies on the sphere surfa
This is important in order to prevent population blowup a
to reduce the statistical error of the energies.

A. Hydrogen

In the Ps-H case, the exact internal wave function of b
fragments is known andO has the form

O511~21!SP12, ~14!

whereS is the electronic spin angular momentum of the st
~0 or 1! and P12 the permutation operator between the tw
electrons. The space part of theS50 ground state function is
everywhere positive, while the nodal surface for theS51
state is exactly provided by the action ofO. This comes from
the space symmetry of the state, which dictates that the w
function be dependent only on the interparticle distances,
by recognizing that the presence of the positron does
introduce any modification to the location of the nodal s
face for a two-electron system, namely,r 15r 2 @31#. Under
this condition the energy can be computed by DMC simu
tion without any nodal approximation.

All the simulations for the triplet state of Ps-H were ca
ried out using a time step of 0.01 Hartree21, 2000 walkers,
and a total of 100 blocks of 10 000 steps each.

The singlet state, which supports a bound state, has b
studied exploiting the CFDMC technique. It is worth reca
ing that the bound state energy for this system has alre
been computed using DMC simulation@32#. The obtained
value of 20.789 175(10) a.u. agrees well with the very a
curate estimate of20.789 196 714 7(42) a.u. computed b
Yan and Ho@33#. As trial functions for the excited states w
employed expressions identical to Eq.~12! with the choice

F~r Ps-H!5sinS npr Ps-H

R D . ~15!

The trial function for the ground state was instead chosen
be

CPs2H5OexpFa1r 11a2r 1
2

11a3r 1
1

b1r 21b2r 2
2

11b3r 2
1

g1r p1g2r p
2

11g3r p

1
z1r 12

11z2r 12
1

m1r 1p

11m2r 1p
1

n1r 2p

11n2r 2p
G , ~16!

a form already employed in the context of ground state c
culations@20#. Simulations for the singlet states were pe
2-4
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ORTHOPOSITRONIUM SCATTERING OFF H AND He PHYSICAL REVIEW A66, 042502 ~2002!
formed employing 2000 configurations, a time step
0.01 Hartree21, and a grand total of 10 000 decorrelated E
clidean time evolutions.

Low energy phase shifts for bothS50 andS51 systems
are shown in Fig. 2 where they are directly compared to
fitting results from stochastic variational minimizatio
~SVM! @14# and R-matrix @17# calculations. A summary o
other estimates is reported in Table I. The scattering leng
as were calculated by fitting the effective range formula

p cotd~p!52
1

as
1

1

2
rp2 ~17!

to the computed phase shifts. A fitting of the five poin
obtained for the singlet leads toas54.357(28) a.u. andr
52.259(39) a.u. However, because the phase shift ass
ated with the highest momentum lies in a region that co
be outside the range of applicability of Eq.~17!, we consider
the valueas54.375(34) a.u. a more reliable estimate. Th
value ~to which we will refer in the following, if not other-
wise specified! was obtained by excluding the highest m
mentum point from the fitting procedure. The effective ran
for this fit is r 52.228(50) a.u. Our value differs equal
from those proposed by Ivanov, Mitroy, and Varga@14#
~hereafter cited as IMV! and Blackwood, McAlinden, and
Walters@17# ~cited as BAW! by about 0.8%. In their pape
BAW suggest that the SVM value of IMV was probab
closer to the correct one. Unfortunately, the standard de

TABLE I. Scattering length~a.u.! for the Ps-H scattering system
with total spinS50 andS51.

QMC Other

S50 4.375~34! 4.34a, 3.49b, 4.41c, 4.5d

S51 2.246~21! 2.22a, 2.46b, 2.06c

aReference@14#, stochastic variational minimization.
bReference@13#, Kohn variational method.
cReference@17#, 14Ps14HR-matrix calculation.
dReferences@2,3#, stabilization calculations.

FIG. 2. S-wave elastic phase shift for H with total electron sp
S51 andS50. The momentum is expressed in atomic units.
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tion associated with our value ofas makes it impossible to
single out which of these two estimates is the more accur
Moreover, the overall agreement between these three t
niques seems to definetely rule out the value proposed
@13#. Indeed, it was already suggested@17,14# that truncation
in the expansion used to evaluate the matrix elements in
@13# could have led to erroneous results in the Kohn var
tional approach@34#.

The corresponding values for the triplet state areas

52.246(21) a.u. andr 51.425(43) a.u. The agreement b
tween this value ofas and the value of IMV is of the order o
1% whereas that of BAW lies 10% lower than ours. At t
moment we do not understand the origin of this fairly lar
difference. In principle, the DMC method applied to this sy
tem has virtually no errors. Nodal surfaces are exactly p
vided and the time step bias is negligible because of
smallness of the step size. The large value of box rad
employed for points at low energy~50, 40, and 30 bohr!
makes us confident about the validity of approximation~1!
and the correctness of the fit from which we determineas .
Finally, the statistical accuracy we reached excludes poss
differences due to the uncertainty in the location of our ph
shift. On the other hand, the values computed by BAW c
be affected by the truncation of the basis set and the Bu
correction approximation consequently introduced. Valu
seems to be well converged but it is well known that t
inclusion of certain configurations or of a different kind
basis function can have dramatic effects on many phys
properties@35#.

Before discussing the results for Ps-He, we would like
stress that the observed agreement between completely
ferent computational techniques, like the QMC, SVM, an
even if to lower extent,R-matrix methods, can be considere
as strong evidence for the correctness of the results propo
as well as a strong proof of the reliability of the metho
Also, it is interesting to notice that, although quite dated,
results by Drachman and Houston@2,3# were very close to
the DMC and SVM results.

B. Helium

With this premise, we now address the more deba
problem of positronium scattering off helium. Before di
cussing our computed quantities for this process, it is wo
noting that the experimental measurements of the thres
value of the cross section span almost an entire orde
magnitude@8,11#. The most recent theoretical estimates, o
tained by different computational schemes and reported
Table II, do not single out one of these experimental res
as the correct one. The primary reason for this failure is
small size of the cross section and the consequent large
tional error associated with any approximation.

In the present study, the system is treated with a genuin
many-body technique and no physical approximations h
been made prior to the numerical simulation. The abso
freedom one has in choosing the analytical form of the wa
function in QMC methods allows us to employ the followin
explicitly correlated form forCHe:
2-5
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CHe5expS a1r 11a2r 1
2

11a3r 1
1

b1r 21b2r 2
2

11b3r 2

1
g1r 12

11g2r 12
D , ~18!

which gives a statistically exact DMC energy. Here, w
forceda15b1522 andg151/2 to exactly satisfy the cus
conditions of the ground state wave function. This cho
helps in reducing the stochastic noise of our results, an
preventing explosions in the walker population during t
simulations. Using this trial wave function to guide the sim
lations and to compute the total energy, we found the DM
energy to be statistically equal to the exact va
2.903 724 377 0 a.u.@36# for time steps ranging from
0.001 Hartree21 to 0.03 Hartree21.

Moreover, the only Young diagram compatible with th
choice of a helium atom in its ground state (S50) gives the
following form for O:

O5~11P12!~12P13!. ~19!

Simulations for this system were characterized by a time s
of 0.005 Hartree21, 4000 walkers, and a total of 130 block
of 25 000 steps each.

Each value ofp has been computed by subtracting fro
the DMC energy the Ps internal energy and the helium
ergy specified above. This last quantity is far more accu
than our error bars. The value of the scattering length,
tained by linear fittingd(p) versusp ~Fig. 3!, is 1.4046~6!
a.u. with a corresponding threshold cross section
7.8916(67)p a.u.

The best agreement with experimental data is found w
the scattering threshold cross section of8(1)p a.u. proposed
by Rytsölä et al. @37# and the measure of 8.4(9)p a.u. per-
formed by Canteret al. @7#. These values are reported
Table II with a list of other experimental values. As w
already pointed out in Ref.@18#, the estimate of Skalse
et al. @11# (2.5p a.u.) was performed at an energy too hi
to be relevant to this work. In order to thoroughly assess

TABLE II. Scattering threshold cross section (p a.u.) for the
Ps-He scattering system.

QMC Experiment Other

7.8916~67! 8.4~9! a, 8~1! b 10.56f, 9.83f

13~4! c, 9.0d 8.79f, 3.10g

2.6~5! e 13.2h, 11.9i, 7.40j

aReference@7#, Canteret al. ~1975!.
bReference@37#, Rytsölä et al.~1984!.
cReference@8#, Nagashimaet al.~1998!.
dReference@9#, Colemanet al.~1994!.
eReference@11#, Skalseyet al.~1998!.
fReference@18#, frozen-core stochastic variational minimization.
gReference@15#, three-state close coupling with model exchange
hReference@16#, 22-stateR-matrix calculation.
iReference@4#, Kohn variational method with model exchange.
jReference@39#, 2Ps3HeT-matrix calculation.
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quality of our results, a discussion of the other computatio
methods is mandatory. In Ref.@16#, an R-matrix 22-Ps-
pseudostate calculation gave 13.2p a.u., employing a single
state to represent He~see Fig. 3!. This was chosen to be th
Hartree-Fock quality wave function by Clementi and Roe
@38#, hence not containing intraatomic correlation. While t
22-Ps-pseudostate basis set could be regarded as accur
dealing with Ps excitation and distortion, the lack of exci
tions in the He target, which are expected to ‘‘soften’’ th
Ps-He interaction analogously to what happens in Ps-H
probably the reason for the larger cross section with resp
to the QMC one. As to the results from Refs.@14# and @18#,
they were obtained by means of a frozen-core variant of
SVM method, the unique difference being the parametri
tion of the core polarization potential. When no polarizati
was used, the resulting cross section (13.56p a.u.) is in ac-
curate agreement with theR-matrix 22-Ps-pseudostate calc
lation, indicating the consistency of the two procedur
Upon introducing the polarization potential, a decrease of
cross section is obtained, as expected from the less repu
Ps-He interaction. The extent of the decrease was also fo
to be dependent on the way the parametrization of the po
ization potential was carried out. More specifically, Mitro
and Ivanov@18# found a Ps-He threshold cross section
10.56p a.u. when this potential was tuned to reproduce
electron-He phase shift, whereas a value of 8.79p a.u. was
obtained when the parametrization was chosen to coin
with the positron-He case. As expected, using a parametr
tion that averages between the two potentials gave a c
section of 9.83p a.u. This value, which we consider the fai
est estimate in the theoretical framework of Ref.@18#, has
been used to represent the SVM curve in Fig. 3. Although
extent of the changes is relatively small, in our view the
results highlight some sensitivity of the threshold cross s
tion with respect to the correlation between the inter
structure of the two fragments. TheK-matrix approach of
Basuet al. @39# is, to the best of our knowledge, the on
calculation explicitly dealing with excitations of He. Passin
from a 3Ps1He basis set to a 2Ps3He one, they observ
decrease in the threshold cross section from 14.75p a.u. ~in
good agreement with the 22Ps1HeR-matrix calculation and

FIG. 3. S-wave elastic phase shift for He with total electron sp
S51/2. The momentum is expressed in atomic units.
2-6
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the frozen-core SVM calculation without polarization pote
tial! to 7.40p a.u. Although these basis sets are rather inco
plete and some~not assessed! approximation was introduce
@18#, this drop may testify the importance of a correct d
scription of He and how this systematically drives the cro
section toward a lower value. As to the result from Ref.@15#,
this was obtained using a model exchange potential wh
parametrization was carried out using a rather incomp
basis set to reproduce the electron phase shift. Also, as
viously found for Ps-H, the result by Drachman and Hous
@4#, 7.73p a.u., obtained by means of a Kohn variation
approach with fixed exchange, shows an uncannily g
agreement with the DMC estimate, being the closest am
all the other values.

At this time, the nodal error, being the only approximati
introduced, deserves some comments. As a consequen
the fixed node approximation, the energy is an upper bo
to the exact one, their difference being dependent on
quality of the chosen nodal surfaces. General considerat
@40# show this bias in the phase shift to be always nega
and proportional toR 21. As a result of this, our scatterin
length might be slightly lower than the exact one. Mo
quantitatively, one can observe that in the interaction reg
~which one can define as a sphere of radiusRI) the em-
ployed function closely resembles the functional form us
in bound state calculations on similar systems, for which
nodal error roughly equalsDeB5131024 Hartree@20#. In
the rest of the simulation volume the nodes of the trial wa
function are essentially exact because of the validity of
~1!. For this reason we expect a bias on the energy@40# of the
order of De5DeBRI /R. If so, the nodal error would turn
out to be of the same order of magnitude as the statis
fluctuations of our energy values, roughly 331025 Hartree.
These considerations thus indicate the statistical exact
~between 2 or 3 times the statistical error bar! of our results.

IV. CONCLUSION AND FUTURE DEVELOPMENTS

The DMC and CFDMC methods have been used to ob
scattering lengths and threshold cross sections for Ps sca
ing off H and He. As to the H target, our results for both t
singlet and triplet states are found to be close to coincide
with the SVM ones by Ivanovet al. @14#, and really close to
theR-matrix 14Ps14H pseudostate ones@12#. As far as He is
concerned, the fixed node DMC value for the cross sectio
found in fair agreement with the frozen-core SVM on
when polarization potentials are used, and is proposed a
most accurate estimate of this quantity.

Among the results directly derivable from this metho
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we would like to emphasize that the possibility of sampli
the exact particle distributions in configurational space~em-
ploying, for example, the forward walking algorithm@41# or
the reptation method@42#! could allow one to obtain an ef
fective interaction potential between Ps and a given atom
molecule. This potential, where all the physical effects
correctly accounted for, could be subsequently used to si
late Ps in condensed phases such as molecular crystals
liquids, relying on the pair approximation to define the to
interaction potential. Moreover, this study could also help
defining preferential spatial locations where the Ps posit
would annihilate during a ‘‘pick-off’’ annihilation event. So
the interplay between the theoretical and the experime
results may enhance the diagnostic role played by Ps in c
densed matter science. As already pointed out in the In
duction, one of the issues in the positron field is the com
tation of annihilation properties of the target. In the conte
of positron scattering the central quantity is the effect
chargeZeff . This quantity is expressed by

Zeff5K CU(
i

d~r ip!UCL , ~20!

where r ip is the distance between the positron and thei th
electron, andC is the scattering wave function normalized
order to describe a unitary flux of incident positrons. W
recently proposed an algorithm@43# to deal formally with the
same integral, but in the case of a bound system@in that
context the integral~20! is proportional to the annihilation
rate#. In those circumstances, the wave function needed to
normalized, as in any bound state, in order to describ
probability density. The same technique of Ref.@43# can thus
be applied provided one introduces a correction of the va
obtained for a proper normalization integral@44#. The exten-
sion of this procedure to estimate1Zeff should be straightfor-
ward, at least for closed shell targets@45#. We conclude by
remarking again that the extension to reactive processe
feasible ~the formalism has been known since the semi
works of Alhassid and Koonin@22#, and Carlsonet al. @23#!,
but it seems to contain uncontrolled approximations wh
the use of the fixed node CFDMC method is required.
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