A terminating evaluation-driven variant of G3i

Mauro Ferrari ${ }^{1}$, Camillo Fiorentini ${ }^{2}$, Guido Fiorino ${ }^{3}$
${ }^{1}$ DiSTA, Univ. degli Studi dell’Insubria, Via Mazzini, 5, 21100, Varese, Italy
${ }^{2}$ DI, Univ. degli Studi di Milano, Via Comelico, 39, 20135 Milano, Italy
${ }^{3}$ DISCO, Univ. degli Studi di Milano-Bicocca, Viale Sarca, 336, 20126, Milano, Italy

Abstract

We present Gbu, a terminating variant of the sequent calculus G3i for intuitionistic propositional logic. Gbu modifies G3i by annotating the sequents so to distinguish rule applications into two phases: an unblocked phase where any rule can be backward applied, and a blocked phase where only right rules can be used. Derivations of Gbu have a trivial translation into G3i. Rules for right implication exploit an evaluation relation, defined on sequents; this is the key tool to avoid the generation of branches of infinite length in proof-search. To prove the completeness of $\mathbf{G b u}$, we introduce a refutation calculus $\mathbf{R b u}$ for unprovability dual to Gbu. We provide a proof-search procedure that, given a sequent as input, returns either a Rbu-derivation or a Gbu-derivation of it.

1 Introduction

It is well-known that $\mathbf{G 3 i}$ [10], the sequent calculus for intuitionistic propositional logic with weakening and contraction "absorbed" in the rules, is not suited for proof-search. Indeed, the naïve proof-search strategy, consisting in applying the rules of the calculus bottom-up until possible, is not terminating. This is because the rule for left implication retains the main formula $A \rightarrow B$ in the left-hand side premise, hence such a formula might be selected for application more and more times. A possible solution to this problem is to support the proofsearch procedure with a loop-checking mechanism [5-7]: whenever the "same" sequent occurs twice along a branch of the proof under construction, the search is cut. An efficient implementation of loop-checking exploits histories [6, 7]. In the construction of a branch, the formulas decomposed by right rules are stored in the history; loops are avoided by preventing the application of some right rules to formulas in the history.

In this paper we propose a different and original approach: we show that terminating proof-search for G3i can be accomplished only exploiting the information contained in the sequent to be proved by means of a suitable evaluation relation. Our proof-search strategy alternates two phases: an unblocked phase (u-phase), where all the rules of G3i can be backward applied, and a blocked phase (b-phase), where only right-rules can be used. To improve the presentation, we embed the strategy inside the calculus by annotating sequents with the label u (unblocked) or b (blocked); we call Gbu the resulting calculus (see Fig. 1). A Gbu-derivation can be straightforwardly mapped to a G3i-derivation
by erasing the labels and, possibly, by padding the left contexts; from this, the soundness of Gbu immediately follows. Unblocked sequents, characterizing an u-phase, behave as the ordinary sequents of G3i: any rule of Gbu can be (backward) applied to them. Instead, b-sequents resemble focused-right sequents (see, e.g., [2]): they only allow backward right-rule applications (thus, the left context is "blocked"). Proof-search starts from an u-sequent (u-phase); the transition to a b-phase is determined by the application of one of the rules for left implication or right disjunction. For instance, let $[A \rightarrow B, \Gamma \stackrel{\mathrm{u}}{\Rightarrow} H]$ be the u-sequent to be proved and suppose we apply the rule $\rightarrow L$ with main formula $A \rightarrow B$. The next goals are the b-sequent $[A \rightarrow B, \Gamma \stackrel{\mathrm{~b}}{\Rightarrow} A]$ and the u-sequent $[B, \Gamma \stackrel{\mathrm{u}}{\Rightarrow} H$], corresponding to the two premises of $\rightarrow L$. While the latter goal continues the u-phase, the former one starts a new b-phase, which focuses on A. Similarly, if we apply the rule $\vee R_{k}$ (with $k \in\{0,1\}$) to $\left[\Gamma \stackrel{\mathrm{u}}{\Rightarrow} H_{0} \vee H_{1}\right]$, the phase changes to b and the next goal is $\left[\Gamma \stackrel{\mathrm{b}}{\Rightarrow} H_{k}\right.$], the only premise of $\vee R_{k}$.

Rules for right implication have two possible outcomes determined by the evaluation relation. Indeed, let $[\Gamma \stackrel{l}{\Rightarrow} A \rightarrow B]$ be the current goal $(l \in\{\mathrm{u}, \mathrm{b}\})$ and let $A \rightarrow B$ be the selected main formula: if A is evaluated in Γ, then we continue the search with $[\Gamma \stackrel{l}{\Rightarrow} B]$ and the phase does not change (see rule $\rightarrow R_{1}$); note that the formula A is dropped out. If A is not evaluated in Γ the next goal is $[A, \Gamma \stackrel{\mathrm{u}}{\Rightarrow} B]$. Moreover, if $l=\mathrm{b}$, we switch from a b-phase to an u-phase and this is the only case where a b-sequent is "unblocked". The crucial point is that, due to the side conditions on the application of rules $\rightarrow R_{1}$ and $\rightarrow R_{2}$ (which rely on the evaluation relation), every branch of a Gbu-tree has finite length (Section 3); this implies that our proof-search strategy always terminates. We point out that we do not bound ourselves to a specific evaluation relation, but we admit any evaluation relation satisfying properties $(\mathcal{E} 1)-(\mathcal{E} 6)$ defined in Section 2.

The proof of completeness $([\Gamma \Rightarrow H]$ provable in G3i implies $[\Gamma \stackrel{\mathrm{u}}{\Rightarrow} H]$ provable in $\mathbf{G b u}$) involves non-trivial aspects. Following [3, 9], we introduce a refutation calculus Rbu for asserting intuitionistic unprovability (Section 4). From an Rbu-derivation of an u-sequent $\sigma^{\mathrm{u}}=[\Gamma \stackrel{\mathrm{u}}{\Rightarrow} H]$ we can extract a Kripke countermodel for σ^{u}, namely a Kripke model such that, at its root, all formulas in Γ are forced and H is not forced; from this, it follows that σ^{u} is not intuitionistically valid. In Section 5 we introduce the function F which implements the proofsearch strategy outlined above; if the search for a Gbu-derivation of $\sigma^{\mathbf{u}}$ fails, an $\mathbf{R b u}$-derivation of σ^{u} is built. To sum up, $\mathrm{F}\left(\sigma^{\mathrm{u}}\right)$ returns either a Gbu-derivation or an Rbu-derivation of σ^{u}; in the former case we get a G3i-derivation of the sequent $\sigma=[\Gamma \Rightarrow H]$, in the latter case we can build a countermodel for σ.

2 Preliminaries and evaluations

We consider the propositional language \mathcal{L} based on a denumerable set of propositional variables \mathcal{V}, the connectives $\wedge, \vee, \rightarrow$ and the logical constant \perp. We denote with $\mathcal{V}(A)$ the set of propositional variables occurring in A, with $|A|$ the size of A, that is the number of symbols occurring in A, and with $\operatorname{Sf}(A)$ the set of subformulas of A (including A itself).

A (finite) Kripke model for \mathcal{L} is a structure $\mathcal{K}=\langle P, \leq, \rho, V\rangle$, where $\langle P, \leq, \rho\rangle$ is a finite partially ordered set with minimum ρ and $V: P \rightarrow 2^{\mathcal{V}}$ is a function such that $\alpha \leq \beta$ implies $V(\alpha) \subseteq V(\beta)$. The forcing relation $\Vdash \subseteq P \times \mathcal{L}$ is defined as follows:
$-\mathcal{K}, \alpha \nVdash \perp$ and, for every $p \in \mathcal{V}, \mathcal{K}, \alpha \Vdash p$ iff $p \in V(\alpha)$;
$-\mathcal{K}, \alpha \Vdash A \wedge B$ iff $\mathcal{K}, \alpha \Vdash A$ and $\mathcal{K}, \alpha \Vdash B$;
$-\mathcal{K}, \alpha \Vdash A \vee B$ iff $\mathcal{K}, \alpha \Vdash A$ or $\mathcal{K}, \alpha \Vdash B$;
$-\mathcal{K}, \alpha \Vdash A \rightarrow B$ iff, for every $\beta \in P$ such that $\alpha \leq \beta, \mathcal{K}, \beta \nVdash A$ or $\mathcal{K}, \beta \Vdash B$.
Given a set Γ of formulas, $\mathcal{K}, \alpha \Vdash \Gamma$ iff $\mathcal{K}, \alpha \Vdash A$ for every $A \in \Gamma$. Monotonicity property holds for arbitrary formulas, i.e.: $\mathcal{K}, \alpha \Vdash A$ and $\alpha \leq \beta$ imply $\mathcal{K}, \beta \Vdash A$. A formula A is valid in \mathcal{K} iff $\mathcal{K}, \rho \Vdash A$. Intuitionistic propositional logic coincides with the set of the formulas valid in all (finite) Kripke models [1].

As motivated in the Introduction, we use (labelled) sequents of the form $\sigma=[\Gamma \stackrel{l}{\Rightarrow} H]$ where $l \in\{\mathrm{~b}, \mathrm{u}\}, \Gamma$ is a finite set of formulas and H is a formula. We adopt the usual notational conventions; e.g., $[A, \Gamma \stackrel{l}{\Rightarrow} H]$ stands for $[\{A\} \cup \Gamma \stackrel{l}{\Rightarrow} H]$. The size of σ is $|\sigma|=\sum_{A \in \Gamma}|A|+|H|$; the set of subformulas of σ is $\operatorname{Sf}(\sigma)=$ $\bigcup_{A \in \Gamma \cup\{H\}} \operatorname{Sf}(A)$.

The semantics of formulas extends to sequents as follows. Given a Kripke model \mathcal{K} and a world α of \mathcal{K}, α refutes $\sigma=[\Gamma \stackrel{l}{\Rightarrow} H]$ in \mathcal{K}, written $\mathcal{K}, \alpha \triangleright \sigma$, iff $\mathcal{K}, \alpha \Vdash \Gamma$ and $\mathcal{K}, \alpha \nVdash H ; \sigma$ is refutable if there exists a Kripke model \mathcal{K} with root ρ such that $\mathcal{K}, \rho \triangleright \sigma$; in this case \mathcal{K} is a countermodel for σ. It is easy to check that σ is refutable iff the formula $\wedge \Gamma \rightarrow H$ is not intuitionistically valid iff, by soundness and completeness of G3i $[10],[\Gamma \Rightarrow H]$ is not provable in G3i.

Evaluations An evaluation relation $\vdash_{\mathcal{E}}$ is a relation between a set Γ of formulas and a formula A satisfying the following properties:
$(\mathcal{E} 1) \Gamma \vdash_{\mathcal{E}} A$ iff $\Gamma \cap \operatorname{Sf}(A) \vdash_{\mathcal{E}} A$.
$(\mathcal{E} 2) A, \Gamma \vdash_{\mathcal{E}} A$.
(E3) $\Gamma \vdash_{\mathcal{E}} A$ and $\Gamma \vdash_{\mathcal{E}} B$ implies $\Gamma \vdash_{\mathcal{E}} A \wedge B$.
$(\mathcal{E} 4) \Gamma \vdash_{\mathcal{E}} A_{k}$, with $k \in\{0,1\}$, implies $\Gamma \vdash_{\mathcal{E}} A_{0} \vee A_{1}$.
(EE) $\Gamma \vdash_{\mathcal{E}} B$ implies $\Gamma \vdash_{\mathcal{E}} A \rightarrow B$.
$(\mathcal{E} 6)$ Let $\mathcal{K}=\langle P, \leq, \rho, V\rangle$ and $\alpha \in P$; if $\mathcal{K}, \alpha \Vdash \Gamma$ and $\Gamma \vdash_{\mathcal{E}} A$, then $\mathcal{K}, \alpha \Vdash A$.
Conditions $(\mathcal{E} 1)-(\mathcal{E} 5)$ concern syntactical properties; note that, by $(\mathcal{E} 1)$, the evaluation of A w.r.t. Γ only depends on the subformulas in Γ which are subformulas of A. Intuitively, the role of an evaluation relation is to check if the "information contained" in A is semantically implied by Γ (see $(\mathcal{E} 6))$. In the sequel, we also write $[\Gamma \stackrel{l}{\Rightarrow} H] \vdash_{\mathcal{E}} A$ to mean $\Gamma \vdash_{\mathcal{E}} A$.

In the examples we use the evaluation relation $\vdash_{\tilde{\mathcal{E}}}$ defined below. Let \mathcal{L}_{\top} be the language extending \mathcal{L} with the constant $\top(\mathcal{K}, \alpha \Vdash \top$, for every \mathcal{K} and every α in $\mathcal{K})$. To define $\vdash_{\tilde{\mathcal{E}}}$, we introduce the function \mathcal{R} which simplifies a formula $A \in \mathcal{L}_{\top}$ w.r.t. a set Γ of formulas of \mathcal{L} (see [4]):

$$
\mathcal{R}(A, \Gamma)= \begin{cases}\top & A \in \Gamma \\ A & \text { if } A \notin \Gamma \text { and } A \in \mathcal{V} \cup\{\perp, \top\} \\ \mathcal{B}\left(\mathcal{R}\left(A_{0}, \Gamma\right) \cdot \mathcal{R}\left(A_{1}, \Gamma\right)\right) & \text { if } A \notin \Gamma \text { and } A=A_{0} \cdot A_{1} \text { with } \cdot \in\{\wedge, \vee, \rightarrow\}\end{cases}
$$

$\mathcal{B}(A)$ performs the boolean simplification of $A[4,8]$, consisting in applying the following reductions inside A :

$$
\begin{array}{llllll}
K \wedge \top \rightsquigarrow K & K \wedge \perp \rightsquigarrow \perp & K \vee \top \rightsquigarrow \top & K \vee \perp \rightsquigarrow K & K \rightarrow \top \rightsquigarrow T & K \rightarrow K \rightsquigarrow \top \\
\top \wedge K \rightsquigarrow K & \perp \wedge K \rightsquigarrow \perp & \top \vee K \rightsquigarrow \top & \perp \vee K \rightsquigarrow K & \top \rightarrow K \rightsquigarrow K & \perp \rightarrow K \rightsquigarrow \top
\end{array}
$$

We set $\Gamma \vdash_{\tilde{\mathcal{E}}} A$ iff $\mathcal{R}(A, \Gamma)=\top$.
Theorem 1. $\vdash_{\tilde{\mathcal{E}}}$ is an evaluation relation.
Proof. We have to prove that $\vdash_{\tilde{\mathcal{E}}}$ satisfies properties $(\mathcal{E} 1)-(\mathcal{E} 6)$ of Section 2.

- (E1) It is easy to prove, by induction on the structure of A, that $\mathcal{R}(A, \Gamma)=$ $\mathcal{R}(A, \Gamma \cap \operatorname{Sf}(A))$, thus $\Gamma \vdash_{\tilde{\mathcal{E}}} A$ iff $\Gamma \cap \operatorname{Sf}(A) \vdash_{\tilde{\mathcal{E}}} A$.
- $(\mathcal{E} 2)$ It immediately follows by the definition of $\vdash_{\tilde{\mathcal{E}}}$ and \mathcal{R}.
$-(\mathcal{E} 3)$ Let $\Gamma \vdash_{\tilde{\mathcal{E}}} A$ and $\Gamma \vdash_{\tilde{\mathcal{E}}} B$. By definition of $\vdash_{\tilde{\mathcal{E}}}, \mathcal{R}(A, \Gamma)=\mathcal{R}(B, \Gamma)=\mathrm{T}$. To prove $\Gamma \vdash_{\tilde{\mathcal{E}}} A \wedge B$, we must show that $\mathcal{R}(A \wedge B, \Gamma)=\top$. If $A \wedge B \in \Gamma$, this immediately follows. Otherwise: $\mathcal{R}(A \wedge B, \Gamma)=\mathcal{B}(\mathcal{R}(A, \Gamma) \wedge \mathcal{R}(B, \Gamma))=$ $\mathcal{B}(\top \wedge \top)=\top$. The proof of properties $(\mathcal{E} 4)$ and $(\mathcal{E} 5)$ is similar.
$-(\mathcal{E} 6)$ Let $\mathcal{K}=\langle P, \leq, \rho, V\rangle$ and $\alpha \in P$ such that $\mathcal{K}, \alpha \Vdash \Gamma$. It is easy to prove, by induction on A, that $\mathcal{K}, \alpha \Vdash A \leftrightarrow \mathcal{R}(A, \Gamma)$. Now, if $\Gamma \vdash_{\tilde{\mathcal{E}}} A$ then $\mathcal{R}(A, \Gamma)=$ T; hence by the above property $\mathcal{K}, \alpha \Vdash A \leftrightarrow \top$ and this implies $\mathcal{K}, \alpha \Vdash A$.

3 The sequent calculus Gbu

We present the G3-style [10] calculus Gbu for intuitionistic propositional logic. The calculus consists of the axiom rules (rules with zero premises) $\perp L$ and Id, and the left and right introduction rules in Fig. 1. The main formula of a rule is the one put in evidence in the conclusion of the rule. In the conclusion of a rule, when we write C, Γ we assume that $C \notin \Gamma$; e.g., in the rule $\wedge L$ it is assumed that $A \wedge B \notin \Gamma$, hence the formula $A \wedge B$ is not retained in the premise. The choice between $\rightarrow R_{1}$ and $\rightarrow R_{2}$ depends on the relation $\vdash_{\mathcal{E}}$. In the application of $\rightarrow L$ to $\sigma=[A \rightarrow B, \Gamma \stackrel{\mathrm{u}}{\Rightarrow} H]$, contraction of $A \rightarrow B$ is explicitly introduced in the leftmost premise σ_{A}; as a consequence we might have $\left|\sigma_{A}\right| \geq|\sigma|$. In all the other cases, passing from the conclusion to a premise of a rule, the size of the sequents strictly decreases. The rule $\rightarrow R_{2}$ is the only rule that, when applied backward, can turn a b-sequent into an u-sequent.

A Gbu-tree π is a tree of sequents such that: if σ is a node of π with $\sigma_{1}, \ldots, \sigma_{n}$ as children, then there exists a rule of $\mathbf{G b u}$ having premises $\sigma_{1}, \ldots, \sigma_{n}$ and conclusion σ. The root rule of π is the one having as conclusion the root sequent

$$
\begin{array}{rc}
\overline{[\perp, \Gamma \stackrel{l}{\Rightarrow} H]} \perp L & \overline{[H, \Gamma \stackrel{l}{\Rightarrow} H]} \text { Id } \\
\frac{[A, B, \Gamma \stackrel{\mathrm{a}}{\Rightarrow} H]}{[A \wedge B, \Gamma \stackrel{\mathrm{u}}{\Rightarrow} H]} \wedge L & \frac{[\Gamma \stackrel{l}{\Rightarrow} A][\Gamma \stackrel{l}{\Rightarrow} B]}{[\Gamma \stackrel{l}{\Rightarrow} A \wedge B]} \wedge R \\
\frac{[A, \Gamma \stackrel{\mathrm{u}}{\Rightarrow} H][B, \Gamma \stackrel{\mathrm{u}}{\Rightarrow} H]}{[A \vee B, \Gamma \stackrel{\mathrm{a}}{\Rightarrow} H]} \vee L & \frac{\left[\Gamma \stackrel{\mathrm{~b}}{\Rightarrow} H_{k}\right]}{\left[\Gamma \stackrel{l}{\Rightarrow} H_{0} \vee H_{1}\right]} \vee R_{k} \quad k \in\{0,1\} \\
\frac{[A \rightarrow B, \Gamma \stackrel{\mathrm{~b}}{\Rightarrow} A][B, \Gamma \stackrel{\mathrm{u}}{\Rightarrow} H]}{[A \rightarrow B, \Gamma \stackrel{\mathrm{u}}{\Rightarrow} H]} \rightarrow L & \frac{[\Gamma \stackrel{l}{\Rightarrow} B]}{[\Gamma \stackrel{l}{\Rightarrow} A \rightarrow B]} \rightarrow R_{1} \\
& \frac{[A, \Gamma \stackrel{\mathrm{l}}{\Rightarrow} B]}{[\Gamma \stackrel{l}{\Rightarrow} A \rightarrow B]} \rightarrow R_{2} \\
\text { if } \Gamma \vdash \mathcal{E} A & \text { if } \Gamma \nvdash \mathcal{E} A
\end{array}
$$

Fig. 1. The calculus Gbu.
of π. A Gbu-derivation of σ is a Gbu-tree π with root σ and having conclusions of an axiom rule as leaves. A sequent σ is provable in Gbu iff there exists a Gbuderivation of $\sigma ; H$ is provable in $\mathbf{G b u}$ iff $[\stackrel{\mathbf{u}}{\Rightarrow} H]$ is provable in $\mathbf{G b u}$. Note that Gbu has the subformula property: given a Gbu-tree π with root σ, for every sequent σ^{\prime} occurring in π it holds that $\operatorname{Sf}\left(\sigma^{\prime}\right) \subseteq \operatorname{Sf}(\sigma)$.

A Gbu-derivation π can be translated into a G3i-derivation $\tilde{\pi}$ applying the following steps: erase the labels from the sequents in π; when rule $\rightarrow R_{1}$ is applied, add the formula A to the left context; rename all occurrences of $\rightarrow R_{1}$ and $\rightarrow R_{2}$ to $\rightarrow R$. From this translation and the soundness of G3i [10] we get the soundness of Gbu. Semantically, this means that, if σ is provable in $\mathbf{G b u}$, then σ is not refutable.

Here we provide an example of a Gbu-derivation, then we prove that Gbu is terminating. The completeness of Gbu (Theorem 4) is proved in Section 5 as a consequence of the correctness of the proof-search procedure.

Example 1. Let $W=((((p \rightarrow q) \rightarrow p) \rightarrow p) \rightarrow q) \rightarrow q$ be an instance of the Weak Pierce Law [1]. In Fig. 2 we give a Gbu-derivation ${ }^{1} \pi_{1}$ of $\sigma_{1}=[\stackrel{\mathrm{u}}{\Rightarrow} W]$, using the evaluation $\vdash_{\tilde{\mathcal{E}}}$ of Section 2. Sequents are indexed by integers; by π_{i} we denote the subderivation of π_{1} with root σ_{i}. When ambiguities can arise, we underline the main formula of a rule application. Building the derivation bottom-up, the only choice points are in the (backward) application of rule $\rightarrow L$ to σ_{4} and σ_{7}, since we can select both A and B as main formula. If at sequent σ_{6} we choose B instead of A, we get the Gbu-tree with root σ_{6} sketched on the right. We have $\sigma_{7^{\prime}} \vdash_{\tilde{\mathcal{E}}} p$ (indeed, p occurs on the left in $\left.\sigma_{7^{\prime}}\right)$, hence the rule $\rightarrow R_{1}$ must be applied to $\sigma_{7^{\prime}}$, which

$$
\frac{[p, B, A \stackrel{\mathrm{~b}}{\Rightarrow} q]_{8^{\prime}}}{\left[\frac{[p, B, A \stackrel{\mathrm{~b}}{\Rightarrow} p \rightarrow q]_{7^{\prime}}}{\Rightarrow} \rightarrow R_{1} \frac{\vdots}{[p, A \stackrel{\mathrm{u}}{\Rightarrow} q]_{9^{\prime}}}\right.} \underset{B}{[p, \underbrace{(p \rightarrow q) \rightarrow p}_{B},} \rightarrow \stackrel{\text { un }}{\Rightarrow} q]_{6} \quad \rightarrow
$$

[^0]Fig. 2. Gbu-derivation of Weak Pierce Law
yields the b-sequent $\sigma_{8^{\prime}}$. Since $\sigma_{8^{\prime}}$ is blocked, we cannot decompose again left implications; thus the proof-search fails without entering an infinite loop.

Termination of Gbu We show that every Gbu-tree has finite depth. A Gbubranch is a sequence of sequents $\mathcal{B}=\left(\sigma_{1}, \sigma_{2}, \ldots\right)$ such that, for every $i \geq 1$, there exists a rule \mathcal{R} of $\mathbf{G b u}$ having σ_{i} as conclusion and σ_{i+1} among its premises. The length of \mathcal{B} is the number of sequents in it. Let $\gamma=\left(\sigma_{i}, \sigma_{i+1}\right)$ be a pair of successive sequents in \mathcal{B} with labels l_{i} and l_{i+1} respectively; γ is a bu-pair if $l_{i}=\mathrm{b}$ and $l_{i+1}=\mathrm{u} ; \gamma$ is an ub-pair if $l_{i}=\mathrm{u}$ and $l_{i+1}=\mathrm{b}$. $\operatorname{By} \operatorname{BU}(\mathcal{B})$ and $\operatorname{UB}(\mathcal{B})$ we denote the number of bu-pairs and ub-pairs occurring in \mathcal{B} respectively. Note that the only rule generating bu-pairs is $\rightarrow R_{2}$. Moreover, $\left|\sigma_{i+1}\right| \geq\left|\sigma_{i}\right|$ can happen only if (σ_{i}, σ_{i+1}) is an ub-pair generated by $\rightarrow L: \sigma_{i+1}$ is the leftmost premise of an application of $\rightarrow L$ with conclusion σ_{i}. As a consequence, every subbranch of \mathcal{B} not containing ub-pairs is finite. Hence, if we show that $\operatorname{UB}(\mathcal{B})$ is finite, we get that \mathcal{B} has finite length.

We prove a kind of persistence of $\vdash_{\mathcal{E}}$, namely: if A occurs in the left-hand side of a sequent σ occurring in \mathcal{B}, then $\sigma^{\prime} \vdash_{\mathcal{E}} A$ for every σ^{\prime} following σ in \mathcal{B}.

Lemma 1. Let $\mathcal{B}=\left(\sigma_{1}, \sigma_{2}, \ldots\right)$ be a Gbu-branch where, for every $i \geq 1, \sigma_{i}=$ $\left[\Gamma_{i}{ }_{i}^{l_{i}} H_{i}\right]$. Let $n \geq 1$ and $A \in \bigcup_{1 \leq i \leq n} \Gamma_{i}$. Then, $\Gamma_{n} \vdash_{\mathcal{E}} A$.
Proof. By induction on $|A|$. If $A \in \Gamma_{n}$, by $(\mathcal{E} 2)$ we immediately get $\Gamma_{n} \vdash_{\mathcal{E}} A$. If $A \notin \Gamma_{n}$, there exists $i: 1 \leq i<n$ such that $A \in \Gamma_{i}$ and $A \notin \Gamma_{i+1}$. This implies $A=B \cdot C$ with $\cdot \in\{\wedge, \vee, \rightarrow\}$. Let $=\wedge$; then σ_{i+1} is obtained from σ_{i} by an application of $\wedge L$ with main formula $B \wedge C$, hence $B \in \Gamma_{i+1}$ and $C \in \Gamma_{i+1}$. By induction hypothesis, $\Gamma_{n} \vdash_{\mathcal{E}} B$ and $\Gamma_{n} \vdash_{\mathcal{E}} C$; by $(\mathcal{E} 3), \Gamma_{n} \vdash_{\mathcal{E}} B \wedge C$. The cases $\cdot \in\{\vee, \rightarrow\}$ are similar and require properties $(\mathcal{E} 4)$ and $(\mathcal{E} 5)$.

Now, we provide a bound on $\mathrm{BU}(\mathcal{B})$.

$$
\begin{aligned}
& \overline{\left[\Gamma^{\rightarrow}, \Gamma^{\mathrm{At}} \stackrel{l}{\Rightarrow} H\right]} \text { Irr } \quad \text { if }\left[\Gamma^{\rightarrow}, \Gamma^{\mathrm{At}} \stackrel{l}{\Rightarrow} H\right] \text { is irreducible }\left\{\begin{array}{l}
H=\perp \text { or } H \in \mathcal{V} \backslash \Gamma^{\mathrm{At}} \\
l=\mathrm{b} \text { or } \Gamma^{\rightarrow}=\emptyset
\end{array}\right. \\
& \frac{[A, B, \Gamma \stackrel{\mathrm{u}}{\Rightarrow} H]}{[A \wedge B, \Gamma \stackrel{\mathrm{u}}{\Rightarrow} H]} \wedge L \quad \frac{\left[\Gamma \stackrel{l}{\Rightarrow} H_{k}\right]}{\left[\Gamma \stackrel{l}{\Rightarrow} H_{0} \wedge H_{1}\right]} \wedge R_{k} \quad k \in\{0,1\} \\
& \frac{\left[A_{k}, \Gamma \stackrel{\mathrm{u}}{\Rightarrow} H\right]}{\left[A_{0} \vee A_{1}, \Gamma \stackrel{\mathrm{u}}{\Rightarrow} H\right]} \vee L_{k} \quad k \in\{0,1\} \quad \frac{\left[\Gamma \stackrel{\mathrm{b}}{\Rightarrow} H_{0}\right] \quad\left[\Gamma \stackrel{\mathrm{b}}{\Rightarrow} H_{1}\right]}{\left[\Gamma \stackrel{\mathrm{b}}{\Rightarrow} H_{0} \vee H_{1}\right]} \vee R \\
& \frac{[B, \Gamma \stackrel{\mathrm{u}}{\Rightarrow} H]}{[A \rightarrow B, \Gamma \stackrel{\mathrm{u}}{\Rightarrow} H]} \rightarrow L \quad \frac{[\Gamma \stackrel{l}{\Rightarrow} B]}{[\Gamma \stackrel{l}{\Rightarrow} A \rightarrow B]} \rightarrow R_{1} \quad \frac{[A, \Gamma \stackrel{\mathrm{u}}{\Rightarrow} B]}{[\Gamma \stackrel{l}{\Rightarrow} A \rightarrow B]} \rightarrow R_{2} \\
& \text { if } \Gamma \vdash_{\mathcal{E}} A \\
& \text { if } \Gamma \nvdash \mathcal{E} A \\
& \frac{\left\{\left[\Gamma^{\rightarrow}, \Gamma^{\mathrm{At}} \stackrel{\mathrm{~b}}{\Rightarrow} A\right]\right\}_{A \rightarrow B \in \Gamma^{\rightarrow}}}{\left[\Gamma^{\rightarrow}, \Gamma^{\mathrm{At}} \stackrel{\mathrm{u}}{\Rightarrow} H\right]} \mathrm{S}_{u}^{\mathrm{At}} \quad \text { where } \Gamma^{\rightarrow} \neq \emptyset \text { and }\left(H=\perp \text { or } H \in \mathcal{V} \backslash \Gamma^{\mathrm{At}}\right) \\
& \frac{\left\{\left[\Gamma^{\rightarrow}, \Gamma^{\mathrm{At}} \stackrel{\mathrm{~b}}{\Rightarrow} A\right]\right\}_{A \rightarrow B \in \Gamma^{\rightarrow}} \quad\left[\Gamma^{\rightarrow}, \Gamma^{\mathrm{At}} \stackrel{\mathrm{~b}}{\Rightarrow} H_{0}\right] \quad\left[\Gamma^{\rightarrow}, \Gamma^{\mathrm{At}} \stackrel{\mathrm{~b}}{\Rightarrow} H_{1}\right]}{\left[\Gamma^{\rightarrow}, \Gamma^{\mathrm{At}} \stackrel{\mathrm{u}}{\Rightarrow} H_{0} \vee H_{1}\right]} \mathrm{S}_{u}^{\vee}
\end{aligned}
$$

Fig. 3. The refutation calculus Rbu.

Lemma 2. Let $\mathcal{B}=\left(\sigma_{1}, \sigma_{2}, \ldots\right)$ be a Gbu-branch. Then, $\operatorname{BU}(\mathcal{B}) \leq\left|\sigma_{1}\right|$.
Proof. Let $\left(\sigma_{i}^{\mathrm{b}}, \sigma_{i+1}^{\mathrm{u}}\right)$ be a bu-pair in \mathcal{B}. Since bu-pairs are generated by applications of $\rightarrow R_{2}$, we have: $\sigma_{i}^{\mathrm{b}}=[\Gamma \stackrel{\mathrm{b}}{\Rightarrow} A \rightarrow B], \sigma_{i+1}^{\mathrm{u}}=[A, \Gamma \stackrel{\mathrm{u}}{\Rightarrow} B]$ and $\Gamma \nvdash \mathcal{E} A$. By Lemma 1, for every $j \geq i+1$ it holds that $\Gamma_{j} \vdash_{\mathcal{E}} A$. Thus, any bu-pair following $\left(\sigma_{i}^{\mathrm{b}}, \sigma_{i+1}^{\mathrm{u}}\right)$ must treat an implication $C \rightarrow D$ with $C \neq A$. Since $\mathbf{G b u}$ has the subformula property, the main formulas of $\rightarrow R_{2}$ applications belong to $\operatorname{Sf}\left(\sigma_{1}\right)$. Thus, $\mathrm{BU}(\mathcal{B})$ is bounded by the number $\# \operatorname{Sf}\left(\sigma_{1}\right)$ of subformulas of σ_{1}. Since $\# \operatorname{Sf}\left(\sigma_{1}\right) \leq\left|\sigma_{1}\right|$, we get $\operatorname{BU}(\mathcal{B}) \leq\left|\sigma_{1}\right|$.

Since between two ub-pairs of \mathcal{B} a bu-pair must occur, $\mathrm{UB}(\mathcal{B}) \leq \mathrm{BU}(\mathcal{B})+1$; by Lemma $2, \operatorname{UB}(\mathcal{B})$ is finite. We can conclude:

Proposition 1. Every Gbu-branch has finite length.
As a consequence, every Gbu-tree has finite depth and Gbu is terminating.

4 The refutation calculus Rbu

In this section, following the ideas of [3, 9], we introduce the refutation calculus Rbu for deriving intuitionistic unprovability. Intuitively, an Rbu-derivation π of a sequent σ^{u} is a sort of "constructive proof" of refutability of σ^{u} in the sense that from π we can extract a countermodel $\operatorname{Mod}(\pi)$ for σ^{u}.

We denote with Γ^{At} a finite set of propositional variables and with $\Gamma^{\rightarrow} \mathrm{a}$ finite set of implicative formulas. A sequent σ is irreducible iff $\sigma=\left[\Gamma^{\rightarrow}, \Gamma^{\mathrm{At}} \stackrel{l}{\Rightarrow} H\right]$
with $H \in\{\perp\} \cup\left(\mathcal{V} \backslash \Gamma^{\mathrm{At}}\right)$ and $\left(l=\mathrm{b}\right.$ or $\left.\Gamma^{\rightarrow}=\emptyset\right)$. The rules of Rbu are given in Fig. 3. As in Gbu, writing C, Γ in the conclusion of a rule, we assume that $C \notin \Gamma$. The notions of Rbu-tree, Rbu-derivation and Rbu-branch are defined analogously to those for $\mathbf{G b u}$.

The rule $\mathrm{S}_{u}^{\mathrm{At}}$ has a premise $\left[\Gamma^{\rightarrow}, \Gamma^{\mathrm{At}} \stackrel{\mathrm{b}}{\Rightarrow} A\right.$] for every A such that $A \rightarrow B \in$ Γ^{\rightarrow}; since $\Gamma^{\rightarrow} \neq \emptyset$, there exists at least one premise. The rule S_{u}^{\vee} is similar and has at least two premises. All the premises of $S_{u}^{A t}$ and S_{u}^{\vee} are b-sequents.

It is easy to check that an Rbu-branch is also a Gbu-branch ${ }^{2}$. Accordingly, Proposition 1 implies that the calculus Rbu is terminating. In the following we prove that Rbu is sound in the following sense:

Theorem 2 (Soundness of Rbu). If an u-sequent σ^{u} is provable in $\mathbf{R b u}$, then σ^{u} is refutable.

Example 2. Let $S=((\neg \neg p \rightarrow p) \rightarrow(\neg p \vee p)) \rightarrow(\neg \neg p \vee \neg p)$ be an instance of the Scott principle [1], where $\neg Z=Z \rightarrow \perp$. We show the Rbu-derivation π_{1} of $[\stackrel{\text { u }}{\Rightarrow} S]$.

$$
S=A \rightarrow(\neg \neg p \vee \neg p) \quad A=(\neg \neg p \rightarrow p) \rightarrow(\neg p \vee p)
$$

Soundness of Rbu Let π be an Rbu-derivation with root $\sigma^{\mathbf{b}}=\left[\Gamma^{\rightarrow}, \Gamma^{\mathrm{At}} \stackrel{\mathrm{b}}{\Rightarrow} H\right]$. By $\Pi\left(\pi, \sigma^{\mathrm{b}}\right)$ we denote the maximal subtree of π having root σ^{b} and only containing b-sequents (that is, any subtree of π with root σ^{b} extending $\Pi\left(\pi, \sigma^{\mathrm{b}}\right)$ contains at least one u-sequent). Since only the rules $\wedge R_{k}, \vee R$ and $\rightarrow R_{1}$ can be applied in $\Pi\left(\pi, \sigma^{\mathrm{b}}\right)$, every leaf σ^{\prime} of $\Pi\left(\pi, \sigma^{\mathrm{b}}\right)$ has the form $\left[\Gamma^{\rightarrow}, \Gamma^{\mathrm{At}} \stackrel{\mathrm{b}}{\Rightarrow} H^{\prime}\right]$, where $H^{\prime} \in \operatorname{Sf}(H)$; moreover, σ^{\prime} is either an irreducible sequent (hence a leaf of π) or the conclusion of an application of $\rightarrow R_{2}$ (the only rule of Rbu which, read bottom-up, "unblocks" a b-sequent). Thus, π can be displayed as in Fig. 4. The sequents $\sigma_{1}^{\mathrm{u}}, \ldots, \sigma_{n}^{\mathrm{u}}(n \geq 0)$ are called the u-successors of σ^{b} in π, while the sequents $\tau_{1}^{\mathrm{b}}, \ldots, \tau_{m}^{\mathrm{b}}(m \geq 0)$ are the i-successors (irreducible successors) of σ^{b} in π. Let $\mathrm{d}(\pi)$ be the depth of π; if $\mathrm{d}(\pi)=0$, then σ^{b} coincides with τ_{1}^{b}, hence σ^{b} has no u-successors and has itself as only i-successor.

[^1]\[

\left.$$
\begin{array}{c}
\vdots \pi_{i} \\
\ldots
\end{array}
$$ $$
\begin{array}{c}
\frac{\sigma_{i}^{\mathrm{u}}=\left[\Gamma^{\rightarrow}, \Gamma^{\mathrm{At}}, A_{i} \stackrel{\mathrm{u}}{\Rightarrow} B_{i}\right]}{\sigma_{i}^{\mathrm{b}}=\left[\Gamma^{\rightarrow}, \Gamma^{\mathrm{At}} \stackrel{\mathrm{~b}}{\Rightarrow} A_{i} \rightarrow B_{i}\right]} \rightarrow R_{2} \\
\\
\vdots \\
\vdots \\
\\
\sigma^{\mathrm{b}}=\left[\Gamma^{\rightarrow}, \Gamma^{\mathrm{At}} \stackrel{\tau_{j}^{\mathrm{b}}=\left[\sigma^{\mathrm{b}}\right)}{\Rightarrow} H\right]
\end{array}
$$\right]
\]

where $i \in\{1, \ldots, n\}, j \in\{1, \ldots, m\}, n \geq 0, m \geq 0, n+m \geq 1$ and:

- the Rbu-tree $\Pi\left(\pi, \sigma^{\mathrm{b}}\right)$ only contains b-sequents;
- π_{i} is an Rbu-derivation of σ_{i}^{u}.

Fig. 4. Structure of an Rbu-derivation π of $\sigma^{\mathrm{b}}=\left[\Gamma^{\rightarrow}, \Gamma^{\mathrm{At}} \stackrel{\mathrm{b}}{\Rightarrow} H\right]$.

Now, let us consider an Rbu-derivation π of an u-sequent σ^{u} having root rule $\mathcal{R}=\mathrm{S}_{u}^{\mathrm{At}}$ or $\mathcal{R}=\mathrm{S}_{u}^{\vee}$. Every premise σ^{\prime} of \mathcal{R} is a b-sequent and the subderivation of π with root σ^{\prime} has the structure shown in Fig. 4. The set of the u-successors of σ^{u} in π is the union of the sets of u-successors in π of the premises of \mathcal{R}; the set of the i-successors of σ^{u} in π is defined analogously. To display a proof π of this kind we use the concise notation of Fig. 5.

Example 3. Let us consider the Rbu-derivation π_{1} in Ex. 2. The u-successors and i-successors are defined as follows:

u-sequent	u-successors	i-successors
σ_{2}	$\sigma_{4}, \sigma_{14}, \sigma_{19}$	
σ_{4}	σ_{6}	σ_{12}
σ_{8}		σ_{10}
σ_{16}		σ_{17}

Now we describe how to extract from an Rbu-derivation of an u-sequent σ^{u} a Kripke countermodel $\operatorname{Mod}(\pi)$ for $\sigma^{\mathrm{u}} . \operatorname{Mod}(\pi)$ is defined by induction on $\mathrm{d}(\pi)$. By $\mathcal{K}^{1}\left(\rho, \Gamma^{\mathrm{At}}\right)$ we denote the Kripke model $\mathcal{K}=\langle\{\rho\},\{(\rho, \rho)\}, \rho, V\rangle$ consisting of only one world ρ such that $V(\rho)=\Gamma^{\text {At }}$. Let \mathcal{R} be the root rule of π.
(K1) If $\mathcal{R}=$ Irr, then $\mathrm{d}(\pi)=0$ and $\sigma^{\mathrm{u}}=\left[\Gamma^{\mathrm{At}} \stackrel{\mathrm{u}}{\Rightarrow} H\right]$ (being σ^{u} irreducible, $\left.\Gamma^{\rightarrow}=\emptyset\right)$. We set $\operatorname{Mod}(\pi)=\mathcal{K}^{1}\left(\rho, \Gamma^{\mathrm{At}}\right)$, with ρ any element.
(K2) Let \mathcal{R} be different from $\operatorname{Irr}, \mathrm{S}_{u}^{\mathrm{At}}, \mathrm{S}_{u}^{\vee}$ and let π^{\prime} be the only immediate subderivation of π. Then, $\operatorname{Mod}(\pi)=\operatorname{Mod}\left(\pi^{\prime}\right)$.
(K3) Let \mathcal{R} be $\mathrm{S}_{u}^{\mathrm{At}}$ or S_{u}^{\vee} and let π be displayed as in Fig. 5 .
If $n=0$, then \mathcal{K} is the model $\mathcal{K}^{1}\left(\rho, \Gamma^{\text {At }}\right)$, with ρ any element.
Let $n>0$ and, for every $i \in\{1, \ldots, n\}$, let $\operatorname{Mod}\left(\pi_{i}\right)=\left\langle P_{i}, \leq_{i}, \rho_{i}, V_{i}\right\rangle$. Without loss of generality, we can assume that the P_{i} 's are pairwise disjoint. Let ρ be an element not in $\bigcup_{i \in\{1, \ldots, n\}} P_{i}$ and let $\mathcal{K}=\langle P, \leq, \rho, V\rangle$ be the model such that:
$-P=\{\rho\} \cup \bigcup_{i \in\{1, \ldots, n\}} P_{i} ;$

Fig. 5. An Rbu-derivation π with root rule $S_{u}^{A t}$ or S_{u}^{\vee} and the $\operatorname{model} \operatorname{Mod}(\pi)$.
$-\leq=\{(\rho, \alpha) \mid \alpha \in P\} \cup \bigcup_{i \in\{1, \ldots, n\}} \leq_{i} ;$
$-V(\rho)=\Gamma^{\text {At }}$ and, for every $i \in\{1, \ldots, n\}$ and $\alpha \in P_{i}, V(\alpha)=V_{i}(\alpha)$.
Then $\operatorname{Mod}(\pi)=\mathcal{K}$. The $\operatorname{model} \operatorname{Mod}(\pi)$ is represented in Fig. 5 .

Example 4. We show the Kripke model $\operatorname{Mod}\left(\pi_{1}\right)$ extracted from the $\mathbf{R b u}$-derivation π_{1} of Ex. 2. The model is displayed as a tree with the convention that $w<w^{\prime}$ if the world w is drawn below w^{\prime}. For each w_{i}, we list the propositional variables in $V\left(w_{i}\right)$. We inductively define the models $\operatorname{Mod}\left(\pi_{i}\right)$ for every
 i such that $\sigma_{i}=\left[\Gamma_{i} \stackrel{\mathrm{u}}{\Rightarrow} H_{i}\right]$ is an u-sequent. At each step one can check that $\operatorname{Mod}\left(\pi_{i}\right), \rho_{i} \triangleright \sigma_{i}$, where ρ_{i} is the root of $\operatorname{Mod}\left(\pi_{i}\right)$. Hence, $\operatorname{Mod}\left(\pi_{1}\right), w_{2} \nVdash S$ $\left(\operatorname{Mod}\left(\pi_{1}\right)\right.$ is a countermodel for $\left.S\right)$.

- By Point (K3), since σ_{8} has no u-successors (see Ex. 3), $\operatorname{Mod}\left(\pi_{8}\right)=\mathcal{K}^{1}\left(w_{8},\{p\}\right)$. Similarly, $\operatorname{Mod}\left(\pi_{16}\right)=\mathcal{K}^{1}\left(w_{16}, \emptyset\right)$.
- Since σ_{21} is irreducible, by Point $(\mathrm{K} 1) \operatorname{Mod}\left(\pi_{21}\right)=\mathcal{K}^{1}\left(w_{21},\{p\}\right)$.
$-\operatorname{By}$ Point $(\mathrm{K} 2), \operatorname{Mod}\left(\pi_{6}\right)=\operatorname{Mod}\left(\pi_{7}\right)=\operatorname{Mod}\left(\pi_{8}\right)$. Similarly,
$\operatorname{Mod}\left(\pi_{14}\right)=\operatorname{Mod}\left(\pi_{15}\right)=\operatorname{Mod}\left(\pi_{16}\right)$ and $\operatorname{Mod}\left(\pi_{19}\right)=\operatorname{Mod}\left(\pi_{20}\right)=\operatorname{Mod}\left(\pi_{21}\right)$.
- By Point $(\mathrm{K} 3), \operatorname{Mod}\left(\pi_{4}\right)$ is obtained by extending with w_{4} the model $\operatorname{Mod}\left(\pi_{6}\right)$ (indeed, σ_{6} is the only u-successor of σ_{4}) and $V\left(w_{4}\right)=\Gamma_{4} \cap \mathcal{V}=\emptyset$. Similarly, $\operatorname{Mod}\left(\pi_{2}\right)$ is obtained by gluing on w_{2} the models generated by the u-successors σ_{4}, σ_{14} and σ_{19} of σ_{2} and $V\left(w_{2}\right)=\Gamma_{2} \cap \mathcal{V}=\emptyset$.
- Finally, $\operatorname{Mod}\left(\pi_{1}\right)=\operatorname{Mod}\left(\pi_{2}\right)$ by Point (K2).

We prove the soundness of Rbu. Given an Rbu-tree π with root $\left[\Gamma^{\rightarrow}, \Gamma^{\mathrm{At}} \stackrel{\mathrm{b}}{\Rightarrow} H\right.$] and only containing b-sequents, every leaf of π has the form $\left[\Gamma^{\rightarrow}, \Gamma^{\text {At }} \stackrel{\mathrm{b}}{\Rightarrow} H^{\prime}\right]$.

Lemma 3. Let π be an Rbu-tree with root $\sigma^{\mathrm{b}}=\left[\Gamma^{\rightarrow}, \Gamma^{\mathrm{At}} \stackrel{\mathrm{b}}{\Rightarrow} H\right]$ and only containing b-sequents, let $\sigma_{1}^{\mathrm{b}}=\left[\Gamma^{\rightarrow}, \Gamma^{\mathrm{At}} \stackrel{\mathrm{b}}{\Rightarrow} H_{1}\right], \ldots, \sigma_{n}^{\mathrm{b}}=\left[\Gamma^{\rightarrow}, \Gamma^{\mathrm{At}} \stackrel{\mathrm{b}}{\Rightarrow} H_{n}\right]$ be the leaves of π. Let $\mathcal{K}=\langle P, \leq, \rho, V\rangle$ be a Kripke model and $\alpha \in P$ such that:
(H1) $\mathcal{K}, \alpha \nVdash H_{i}$, for every $i \in\{1, \ldots, n\}$;
(H2) $\mathcal{K}, \alpha \Vdash Z$, for every $Z \in \Gamma \rightarrow \cap \operatorname{Sf}(H)$;
(H3) $V(\alpha)=\Gamma^{\mathrm{At}}$.
Then, $\mathcal{K}, \alpha \nVdash H$.
Proof. By induction on $\mathrm{d}(\pi)$. If $\mathrm{d}(\pi)=0$, then $\sigma^{\mathrm{b}}=\sigma_{1}^{\mathrm{b}}$ and the assertion immediately follows by (H1). Let us assume that $\mathrm{d}(\pi)>0$ and let \mathcal{R} be the root rule of π. Since both the conclusion and the premises of \mathcal{R} are b-sequents, \mathcal{R} is one of the rules $\wedge R_{k}, \vee R$ and $\rightarrow R_{1}$. The proof proceeds by cases on \mathcal{R}. The cases $\mathcal{R} \in\left\{\wedge R_{k}, \vee R\right\}$ immediately follow by the induction hypothesis.

If \mathcal{R} is $\rightarrow R_{1}$, then $\sigma^{\mathrm{b}}=\left[\Gamma^{\rightarrow}, \Gamma^{\mathrm{At}} \stackrel{\mathrm{b}}{\Rightarrow} A \rightarrow B\right]$, the premise of \mathcal{R} is $\sigma^{\prime}=$ $\left[\Gamma^{\rightarrow}, \Gamma^{\mathrm{At}} \stackrel{\mathrm{b}}{\Rightarrow} B\right]$ and, by the side condition, $\Gamma^{\rightarrow}, \Gamma^{\mathrm{At}} \vdash_{\mathcal{E}} A$. By induction hypothesis on the subderivation of π having root σ^{\prime}, we get $\mathcal{K}, \alpha \nVdash B$. We show that $\mathcal{K}, \alpha \Vdash A$. Let $\Gamma_{A}=\left(\Gamma^{\rightarrow} \cap \operatorname{Sf}(A)\right) \cup \Gamma^{\mathrm{At}}$. Since $\Gamma_{A} \cap \operatorname{Sf}(A)=\left(\Gamma^{\rightarrow} \cup \Gamma^{\mathrm{At}}\right) \cap \operatorname{Sf}(A)$ and $\Gamma^{\rightarrow}, \Gamma^{\text {At }} \vdash_{\mathcal{E}} A$, by $(\mathcal{E} 1)$ we get $\Gamma_{A} \vdash_{\mathcal{E}} A$. By the hypothesis (H2) and (H3) of the lemma, it holds that $\mathcal{K}, \alpha \Vdash \Gamma_{A}$; by $(\mathcal{E} 6)$, we deduce $\mathcal{K}, \alpha \Vdash A$. Thus $\mathcal{K}, \alpha \Vdash A$ and $\mathcal{K}, \alpha \nVdash B$, which implies $\mathcal{K}, \alpha \nVdash A \rightarrow B$.

Now, we show that the model $\operatorname{Mod}(\pi)$ is a countermodel for σ^{u}.
Theorem 3. Let π be an Rbu-derivation of an u-sequent σ^{u} and let ρ be the root of $\operatorname{Mod}(\pi)$. Then $\operatorname{Mod}(\pi), \rho \triangleright \sigma^{u}$.

Proof. By induction on $\mathrm{d}(\pi)$. If $\mathrm{d}(\pi)=0$, then $\operatorname{Mod}(\pi)$ is defined as in (K1) and the assertion immediately follows.

Let $\mathrm{d}(\pi)>0$ and let \mathcal{R} be the root rule of π. If $\mathcal{R} \notin\left\{\mathrm{S}_{u}^{\mathrm{At}}, \mathrm{S}_{u}^{\vee}\right\}$, the assertion immediately follows by induction hypothesis (the case $\mathcal{R}=\rightarrow R_{1}$ requires ($\left.\mathcal{E} 6\right)$).

Let $\mathcal{R}=\mathrm{S}_{u}^{\vee}$ (the case $\mathcal{R}=\mathrm{S}_{u}^{\mathrm{At}}$ is similar). Let $\sigma^{\mathrm{u}}=\left[\Gamma^{\rightarrow}, \Gamma^{\mathrm{At}} \Rightarrow H_{0} \vee H_{1}\right]$ and let $\mathcal{K}=\langle P, \leq, \rho, V\rangle$ be the model $\operatorname{Mod}(\pi)$. By a secondary induction hypothesis on the structure of formulas, we prove that:
(B1) $\mathcal{K}, \rho \nVdash A$, for every $A \rightarrow B \in \Gamma^{\rightarrow}$;
(B2) $\mathcal{K}, \rho \Vdash A \rightarrow B$, for every $A \rightarrow B \in \Gamma^{\rightarrow}$;
(B3) $\mathcal{K}, \rho \nVdash H_{0}$ and $\mathcal{K}, \rho \nVdash H_{1}$.
To prove Point (B1), let $A \rightarrow B \in \Gamma^{\rightarrow}$. By definition of S_{u}^{\vee}, π has an immediate subderivation π_{A} of $\sigma_{A}^{\mathrm{b}}=\left[\Gamma^{\rightarrow}, \Gamma^{\mathrm{At}} \stackrel{\mathrm{b}}{\Rightarrow} A\right]$ of the form (see Fig. 4):

$$
\begin{aligned}
& \vdots \Pi\left(\pi_{A}, \sigma_{A}^{\mathrm{b}}\right) \\
& \sigma_{A}^{\mathrm{b}}=\left[\Gamma^{\rightarrow}, \Gamma^{\mathrm{At}} \stackrel{\mathrm{~b}}{\Rightarrow} A\right]
\end{aligned}
$$

We show that $\Pi\left(\pi_{A}, \sigma_{A}^{\mathrm{b}}\right)$ meets the hypothesis (H1)-(H3) of Lemma 3 w.r.t. the root ρ of \mathcal{K}, so that we can apply the lemma to infer $\mathcal{K}, \rho \nVdash A$. We prove (H1). Let us assume $n \geq 1$ and let $i \in\{1, \ldots, n\}$; we must show that $\mathcal{K}, \rho \nVdash A_{i} \rightarrow B_{i}$.

Since σ_{i}^{u} is an u-successor of σ^{u}, the root ρ_{i} of $\operatorname{Mod}\left(\pi_{i}\right)$ is an immediate successor of ρ in \mathcal{K}. By the main induction hypothesis $\operatorname{Mod}\left(\pi_{i}\right), \rho_{i} \triangleright \sigma_{i}^{u}$; this implies that $\operatorname{Mod}\left(\pi_{i}\right), \rho_{i} \Vdash A_{i}$ and $\operatorname{Mod}\left(\pi_{i}\right), \rho_{i} \nVdash B_{i}$. Since $\operatorname{Mod}\left(\pi_{i}\right)$ is a submodel of \mathcal{K}, we get $\mathcal{K}, \rho_{i} \Vdash A_{i}$ and $\mathcal{K}, \rho_{i} \nVdash B_{i}$, which implies $\mathcal{K}, \rho \nVdash A_{i} \rightarrow B_{i}$. Let $m \geq 1$ and $j \in\{1, \ldots, m\}$. By definition of τ_{j}^{b}, either $H_{j}=\perp$ or $H_{j} \in \mathcal{V} \backslash \Gamma^{\text {At }}$; in both cases $\mathcal{K}, \rho \nVdash H_{j}$. This proves that hypothesis (H1) of Lemma 3 holds. To prove hypothesis (H2), let $Z \in \Gamma \rightarrow \cap \operatorname{Sf}(A)$. Since $|Z|<|A \rightarrow B|$, by the secondary induction hypothesis on Point (B2) we get $\mathcal{K}, \rho \Vdash Z$. The hypothesis (H3) follows by the definition of V in \mathcal{K}. We can apply Lemma 3 to deduce $\mathcal{K}, \rho \nVdash A$, and this proves Point (B1).

We prove Point (B2). Let π and $\operatorname{Mod}(\pi)$ be as in Fig. 5 (with $H=H_{0} \vee H_{1}$). Let $A \rightarrow B \in \Gamma^{\rightarrow}$ and let α be a world of \mathcal{K} such that $\mathcal{K}, \alpha \Vdash A$; we show that $\mathcal{K}, \alpha \Vdash B$. By Point (B1), α is different from ρ. Thus, $n \geq 1$ and, for some $i \in\{1, \ldots, n\}, \alpha$ belongs to $\operatorname{Mod}\left(\pi_{i}\right)$. Let ρ_{i} be the root of $\operatorname{Mod}\left(\pi_{i}\right)$. By the main induction hypothesis, $\operatorname{Mod}\left(\pi_{i}\right), \rho_{i} \triangleright \sigma_{i}^{\mathrm{u}}$; since $A \rightarrow B$ belongs to the left-hand side of σ_{i}^{u}, we get $\operatorname{Mod}\left(\pi_{i}\right), \rho_{i} \Vdash A \rightarrow B$, which implies $\mathcal{K}, \rho_{i} \Vdash A \rightarrow B$. Since $\rho_{i} \leq \alpha$ and $\mathcal{K}, \alpha \Vdash A$, we get $\mathcal{K}, \alpha \Vdash B$; thus $\mathcal{K}, \rho \Vdash A \rightarrow B$ and Point (B2) holds.

The proof of Point (B3) is similar to the proof of Point (B1), considering the immediate subderivations of π with root sequents $\left[\Gamma^{\rightarrow}, \Gamma^{\text {Atb }} \stackrel{\Rightarrow}{\Rightarrow} H_{0}\right.$] and $\left[\Gamma^{\rightarrow}, \Gamma^{\mathrm{At}} \stackrel{\mathrm{b}}{\Rightarrow} H_{1}\right]$. By Points (B2) and (B3) we conclude $\mathcal{K}, \rho \triangleright \sigma^{\mathrm{u}}$.

By Theorem 3, we get the soundness of $\mathbf{R b u}$ stated in Theorem 2.

5 The proof-search procedure

We show that, given an u-sequent $\sigma^{\text {u }}$, either a Gbu-derivation or an Rbuderivation of σ^{u} can be built; from this, the completeness of $\mathbf{G b u}$ follows. To this aim, we introduce the function F of Fig. 6 . A sequent $[\Gamma \stackrel{l}{\Rightarrow} H]$ is in normal form if $l=\mathrm{b}$ implies $\Gamma=\Gamma^{\rightarrow}, \Gamma^{\mathrm{At}}$; given a sequent σ in normal form, $\mathrm{F}(\sigma)$ returns either a Gbu-derivation or an Rbu-derivation of σ. To construct a derivation, we use the auxiliary function B: given a calculus $\mathcal{C} \in\{\mathbf{G b u}, \mathbf{R b u}\}$, a sequent σ, a set \mathcal{P} of \mathcal{C}-trees and a rule \mathcal{R} of $\mathcal{C}, \mathrm{B}(\mathcal{C}, \sigma, \mathcal{P}, \mathcal{R})$ is the \mathcal{C}-tree having root sequent σ, root rule \mathcal{R}, and all the \mathcal{C}-trees in \mathcal{P} as immediate subtrees.

Proof-search is performed by applying backward the rules of Gbu. For instance, the recursive call $\mathrm{F}\left(\left[A, B, \Gamma^{\prime} \Rightarrow H\right]\right)$ at line 3 corresponds to the backward application of the rule $\wedge L$ to $\sigma=\left[A \wedge B, \Gamma^{\prime} \stackrel{\mathrm{u}}{\Rightarrow} H\right]$; according to the outcome, at lines 4-5 a Gbu-derivation or an Rbu-derivation of σ with root rule $\wedge L$ is built. We remark that the input sequent of F must be in normal form; to guarantee that the recursive invocations are sound, the rules $\vee R_{k}$ and $\rightarrow L$, generating b-sequents, can be backward applied to $[\Gamma \stackrel{\mathrm{u}}{\Rightarrow} H]$ only if Γ has the form $\Gamma^{\rightarrow}, \Gamma^{\mathrm{At}}$.

To save space, some instructions are written in a high-level compact form (see, e.g., line 8); the rules used in lines 1 and 32 are defined as follows:

$$
\mathcal{R}_{\mathrm{ax}}([\Gamma \stackrel{l}{l} H])=\left\{\begin{array}{ll}
\perp L & \text { if } \perp \in \Gamma \\
\mathrm{Id} & \text { otherwise }
\end{array} \quad \mathcal{R}_{\mathrm{s}}([\Gamma \stackrel{l}{\Rightarrow} H])= \begin{cases}\vee R & \text { if } l=\mathrm{b} \\
\mathrm{~S}_{u}^{\mathrm{At}} & \text { if } l=\mathrm{u} \text { and } H \in \mathcal{V} \\
\mathrm{~S}_{u}^{v} & \text { otherwise }\end{cases}\right.
$$

```
Precondition : }\sigma\mathrm{ is in normal form ( l= b implies }\Gamma=\mp@subsup{\Gamma}{}{->},\mp@subsup{\Gamma}{}{\textrm{At}}
if }\perp\in\Gamma\mathrm{ or }H\in\Gamma\mathrm{ then return }\textrm{B}(\mathbf{Gbu},\sigma,\emptyset,\mp@subsup{\mathcal{R}}{\textrm{ax}}{}(\sigma))// \mp@subsup{\mathcal{R}}{\textrm{ax}}{}(\sigma)\mathrm{ is }\perpL\mathrm{ or Id
else if \sigma=[A\wedgeB, 片品H] where }\mp@subsup{\Gamma}{}{\prime}=\Gamma\{A\wedgeB} the
    \mp@subsup{\pi}{}{\prime}}\leftarrow\textrm{F}([A,B,\mp@subsup{\Gamma}{}{\prime}\vec{=>}H]
    if \mp@subsup{\pi}{}{\prime}}\mathrm{ is a Gbu-tree then return }\textrm{B}(\mathbf{Gbu},\sigma,{\mp@subsup{\pi}{}{\prime}},\wedgeL
    else return }\textrm{B}(\mathbf{Rbu},\sigma,{\mp@subsup{\pi}{}{\prime}},\wedgeL
else if }\sigma=[\mp@subsup{A}{0}{}\vee\mp@subsup{A}{1}{},\mp@subsup{\Gamma}{}{\prime}\stackrel{M}{=>}H]\mathrm{ where }\mp@subsup{\Gamma}{}{\prime}=\Gamma\{\mp@subsup{A}{0}{}\vee\mp@subsup{A}{1}{}}\mathrm{ then
    \pi
    if }\existsk\in{0,1}\mathrm{ s.t. }\mp@subsup{\pi}{k}{}\mathrm{ is an Rbu-tree then return B(Rbu, }\sigma,{\mp@subsup{\pi}{k}{}},\vee\mp@subsup{L}{k}{}
    else return }\textrm{B}(\mathbf{Gbu},\sigma,{\mp@subsup{\pi}{0}{},\mp@subsup{\pi}{1}{}},\veeL
else if }\sigma=[\Gamma\stackrel{l}{=>}A->B]\mathrm{ then
    if }\Gamma\mp@subsup{\vdash}{\mathcal{E}}{}A\mathrm{ then }\mp@subsup{\pi}{}{\prime}\leftarrow\textrm{F}([\Gamma\stackrel{l}{=>}B]),\quadk\leftarrow
    else }\mp@subsup{\pi}{}{\prime}\leftarrow\textrm{F}([A,\Gamma\stackrel{\textrm{u}}{=>}B]),\quadk\leftarrow
    if \mp@subsup{\pi}{}{\prime}}\mathrm{ is a Gbu-tree then return }\textrm{B}(\mathbf{Gbu},\sigma,{\mp@subsup{\pi}{}{\prime}},->\mp@subsup{R}{k}{}
    else return }\textrm{B}(\mathbf{Rbu},\sigma,{\mp@subsup{\pi}{}{\prime}},->\mp@subsup{R}{k}{\prime}
else if }\sigma=[\Gamma\stackrel{l}{=>}\mp@subsup{H}{0}{}\wedge\mp@subsup{H}{1}{}]\mathrm{ then
    \pi
    if }\existsk\in{0,1}\mathrm{ s.t. }\mp@subsup{\pi}{k}{}\mathrm{ is an Rbu-tree then return }\textrm{B}(\mathbf{Rbu},\sigma,{\mp@subsup{\pi}{k}{}},\wedge\mp@subsup{R}{k}{}
    else return }\textrm{B}(\mathbf{Gbu},\sigma,{\mp@subsup{\pi}{0}{},\mp@subsup{\pi}{1}{}},\wedgeR
```



```
else if (l=u and }\mp@subsup{\Gamma}{}{->}\not=\emptyset)\mathrm{ )or H=H0
    Refs }\leftarrow\emptyset// set of Rbu-tree
    if H=H0}\mp@subsup{|}{0}{}\vee\mp@subsup{H}{1}{}\mathrm{ then
        \pi
        if }\existsk\in{0,1} s.t. \mp@subsup{\pi}{k}{}\mathrm{ is a Gbu-tree then return B(Gbu, }\sigma,{\mp@subsup{\pi}{k}{}},\vee\mp@subsup{R}{k}{}
        else Refs }\leftarrow\mathrm{ Refs }\cup{\mp@subsup{\pi}{0}{},\mp@subsup{\pi}{1}{}
    if l=u then
        foreach A->B\in\Gamma->}\mathrm{ do
            \mp@subsup{\pi}{A}{}\leftarrow\textrm{F}([\mp@subsup{\Gamma}{}{->},\mp@subsup{\Gamma}{}{\textrm{At}}\stackrel{\textrm{b}}{=>}A]),\mp@subsup{\pi}{B}{}\leftarrow\textrm{F}([B,\mp@subsup{\Gamma}{}{->}\{A->B},\mp@subsup{\Gamma}{}{\textrm{At}}\stackrel{\textrm{u}}{=>}H])
            if \mp@subsup{\pi}{B}{}}\mathrm{ is an Rbu-tree then return }\textrm{B}(\mathbf{Rbu},\sigma,{\mp@subsup{\pi}{B}{}},->L
            else if \mp@subsup{\pi}{A}{}}\mathrm{ is a Gbu-tree then return }\textrm{B}(\mathbf{Gbu},\sigma,{\mp@subsup{\pi}{A}{},\mp@subsup{\pi}{B}{}},->L
            else Refs }\leftarrow\operatorname{Refs}\cup{\mp@subsup{\pi}{A}{}
    return B(Rbu, \sigma, Refs, }\mp@subsup{\mathcal{R}}{\textrm{s}}{(}(\sigma))// \mp@subsup{\mathcal{R}}{\textrm{s}}{}(\sigma)\mathrm{ is }VR\mathrm{ or }\mp@subsup{\textrm{S}}{u}{\textrm{At}}\mathrm{ or }\mp@subsup{\textrm{S}}{u}{\vee
// Here ( }H=\perp\mathrm{ or }H\in\mathcal{V}\\mp@subsup{\Gamma}{}{\textrm{At}})\mathrm{ and ( l=b or }\Gamma->=\emptyset
else return B(Rbu,\sigma,\emptyset, Irr)
```

Fig. 6. $\mathrm{F}(\sigma=[\Gamma \stackrel{l}{\Rightarrow} H])$

By $\|\sigma\|$ we denote the maximal length of a Gbu-branch starting from σ (by Prop. $1,\|\sigma\|$ is finite). Note that, whenever a recursive call $\mathrm{F}\left(\sigma^{\prime}\right)$ occurs along the computation of $\mathrm{F}(\sigma)$, it holds that $\left\|\sigma^{\prime}\right\|<\|\sigma\|$.

In the next lemma we prove the correctness of F.
Lemma 4. Let σ be a sequent in normal form. Then, $\mathrm{F}(\sigma)$ returns either a Gbu-derivation or an Rbu-derivation of σ.

Proof. By induction on $\|\sigma\|$. If $\|\sigma\|=1, \mathrm{~F}(\sigma)$ does not execute any recursive invocation and the computation ends at line 1 or at line 34 . In the former case, a Gbu-derivation of σ is returned. In the latter case, since σ is in normal form and none of the conditions at lines $1,2,6,1015,20$ holds, the sequent σ is irreducible and the tree built at line 34 is an Rbu-derivation of σ.

Let $\|\sigma\|>1$. Whenever a recursive call $\mathrm{F}\left(\sigma^{\prime}\right)$ occurs, we have that $\left\|\sigma^{\prime}\right\|<$ $\|\sigma\|$ and σ^{\prime} is in normal form, hence the induction hypothesis applies to $\mathrm{F}\left(\sigma^{\prime}\right)$. Using this, one can easily show that the arguments of function B are correctly instantiated. We only analyse some cases.

Let us assume that one of the return instructions at lines 8-9 is executed. By induction hypothesis, for every $k \in\{0,1\}, \pi_{k}$ is either a Gbu-proof or an Rbu-derivation of $\sigma_{k}=\left[A_{k}, \Gamma^{\prime} \stackrel{\mathbf{u}}{\Rightarrow} H\right]$. If, for some k, π_{k} is an Rbu-derivation of σ_{k}, then the Rbu-tree returned at line 8 is an Rbu-derivation of σ. Otherwise, both π_{0} and π_{1} are Gbu-derivations, hence the value returned at line 9 is a Gbu-derivation of σ.

Let us assume that $\mathrm{F}(\sigma)$ ends at line 32 ; in this case σ satisfies the conditions at lines 19 and 20. If $l=\mathrm{b}$, then $H=H_{0} \vee H_{1}$. Since the condition at line 24 is false, we have Refs $=\left\{\pi_{0}, \pi_{1}\right\}$ and, by induction hypothesis, both π_{0} and π_{1} are Rbu-derivations. Accordingly, the value returned at line 32 is an $\mathbf{R b u}$-derivation of σ with root rule $\mathcal{R}_{\mathrm{s}}(\sigma)=\vee R$. Let $l=\mathrm{u}$ and let us assume that $H=\perp$ or $H \in \mathcal{V} \backslash \Gamma$. In this case $\sigma=\left[\Gamma^{\rightarrow}, \Gamma^{\text {At }} \Rightarrow H\right]$ and the set Refs contains an Rbu-tree π_{A} of $\sigma_{A}=\left[\Gamma^{\rightarrow}, \Gamma^{\mathrm{At}} \stackrel{\mathrm{b}}{\Rightarrow} A\right]$ for every $A \rightarrow B \in \Gamma^{\rightarrow}$. By induction hypothesis, π_{A} is an $\mathbf{R b u}$-derivation of σ_{A}, hence line 32 returns an $\mathbf{R b u}$-derivation of σ with root rule $\mathcal{R}_{\mathrm{s}}(\sigma)=\mathrm{S}_{u}^{\mathrm{At}}$. The subcase $\left(l=\mathrm{u}\right.$ and $\left.H=H_{0} \vee H_{1}\right)$ is similar.

Finally, we get the completeness of Gbu:
Theorem 4. An u-sequent σ^{u} is provable in $\mathbf{G b u}$ iff σ^{u} is not refutable.
Proof. The \Rightarrow-statement follows by the soundness of Gbu. Conversely, let σ^{u} be not refutable. Then, there is no Rbu-derivation π of σ^{u}; otherwise, by Theorem 3 , from π we could extract a countermodel for σ^{u}. Since σ^{u} is in normal form, by Lemma 4 the call $\mathrm{F}\left(\sigma^{\mathrm{u}}\right)$ returns a Gbu-derivation of σ^{u}.

6 Conclusions and future works

We have presented Gbu, a terminating sequent calculus for intuitionistic propositional logic. Gbu is a notational variant of G3i, where sequents are labelled to mark the right-focused phase. Note that focusing techniques reduce the search space limiting the use of contraction, but they do not guarantee termination of proof-search (see, e.g., the right-focused calculus $L J Q[2]$). To get this, one has to introduce extra machinery. An efficient solution is loop-checking implemented by history mechanisms $[6,7]$. Here we propose a different approach, based on an evaluation relation defined on sequents. Histories require space to store the right formulas already used so to direct and possibly stop the proof-search. Instead, we have to compute evaluation relations when right-implication is treated. We remark that, with an appropriate implementation of the involved data structures (see [4]), the evaluation relation $\vdash_{\tilde{\mathcal{E}}}$ defined in Section 2 can be computed in time linear in the size of the arguments. Hence, we get by means of computation what history mechanisms get using memory. Although a strict comparison
is hard, to stress the difference between the two approaches we provide an example where Gbu outperforms history-based calculi. Let $\sigma=\left[\Gamma^{\rightarrow} \stackrel{\mu}{\Rightarrow} \perp\right]$, where $\Gamma^{\rightarrow}=\left\{p_{1} \rightarrow \perp, \ldots, p_{n} \rightarrow \perp\right\}$ and the p_{i} 's are distinct propositional variables. The only rule that can be used to derive σ is $\rightarrow L$. For every $p_{i} \rightarrow \perp$ chosen as main formula, the right-hand premise is provable in Gbu, while the left-hand premise $\sigma_{i}^{\mathrm{b}}=\left[\Gamma \rightarrow \stackrel{\mathrm{b}}{\Rightarrow} p_{i}\right]$ is not. Thus, we have a backtrack point which forces the application of $\rightarrow L$ in all possible ways. Being σ_{i}^{b} blocked, the unprovability of σ_{i}^{b} is immediately certified. With the calculi in [7], the search process is similar, but to assert the unprovability of $\left[\Gamma^{\rightarrow} \Rightarrow p_{i}\right]$ one has to chain up to n applications of $\rightarrow L$ and build an history set containing all the p_{i} 's.

Differently from the history mechanisms, Gbu only exploits the information in the left-hand side of a sequent. We are investigating the use of more expressive evaluation relations to better grasp the information conveyed by a sequent and further reduce the search space. Finally, we aim to extend the use of these techniques to other logics having a Kripke semantics.

References

1. A. Chagrov and M. Zakharyaschev. Modal Logic. Oxford University Press, 1997.
2. R. Dyckhoff and S. Lengrand. LJQ: A Strongly Focused Calculus for Intuitionistic Logic. In A. Beckmann et al., editor, $C i E$, volume 3988 of $L N C S$, pages 173-185. Springer, 2006.
3. M. Ferrari, C. Fiorentini, and G. Fiorino. Contraction-free linear depth sequent calculi for intuitionistic propositional logic with the subformula property and minimal depth counter-models. Journal of Automated Reasoning, 2012. doi:10.1007/s10817-012-9252-7.
4. M. Ferrari, C. Fiorentini, and G. Fiorino. Simplification rules for intuitionistic propositional tableaux. ACM Transactions on Computational Logic (TOCL), $13(2): 14: 1-14: 23,2012$.
5. D.M. Gabbay and N. Olivetti. Goal-Directed Proof Theory. Springer, 2000.
6. A. Heuerding, M. Seyfried, and H. Zimmermann. Efficient loop-check for backward proof search in some non-classical propositional logics. In P. Miglioli et al., editor, TABLEAUX 96, volume 1071 of $L N C S$, pages 210-225. Springer, 1996.
7. J. M. Howe. Two loop detection mechanisms: A comparision. In D. Galmiche, editor, TABLEAUX 97, volume 1227 of $L N C S$, pages 188-200. Springer, 1997.
8. F. Massacci. Simplification: A general constraint propagation technique for propositional and modal tableaux. In H.C.M. de Swart, editor, TABLEAUX 98, volume 1397 of $L N C S$, pages 217-231. Springer, 1998.
9. L. Pinto and R. Dyckhoff. Loop-free construction of counter-models for intuitionistic propositional logic. In M. Behara et al., editor, Symposia Gaussiana, Conference A, pages 225-232. Walter de Gruyter, Berlin, 1995.
10. A.S. Troelstra and H. Schwichtenberg. Basic Proof Theory, volume 43 of Cambridge Tracts in Theoretical Computer Science. Cambridge University Press, 1996.

[^0]: ${ }^{1}$ The derivations and their $\mathrm{IAT}_{\mathrm{E}} \mathrm{X}$ rendering are generated with g3ibu, an implementation of Gbu and Rbu available at http://www.dista.uninsubria.it/~ferram/.

[^1]: ${ }^{2}$ The converse in general does not hold since the rule $V R$ of $\mathbf{R b u}$ requires a b-sequent as conclusion.

