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Abstract We address the solution of a very challenging (and previously un-
solved) instance of the quadratic 3-dimensional assignment problem, arising in
digital wireless communications. The paper describes the techniques developed
to solve this instance to optimality, from the choice of an appropriate mixed-
integer programming formulation, to cutting planes and symmetry handling.
Using these techniques we were able to solve the target instance with moder-
ate computational effort (2.5 million nodes and one week of computations on
a standard PC).
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1 Introduction

The axial quadratic 3-dimensional assignment problem (Q3AP) is a general-
ization of the standard quadratic assignment problem (QAP). In its general
form, the problem is defined by a 6-dimensional matrix of costs cijkpqr of n6
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coefficients, and can be formulated (non linearly) as

min

n∑
i=1

n∑
j=1

n∑
k=1

n∑
p=1

n∑
q=1

n∑
r=1

cijkpqrxijkxpqr (1)

n∑
i=1

n∑
j=1

xijk = 1 ∀k = 1, . . . , n (2)

n∑
i=1

n∑
k=1

xijk = 1 ∀j = 1, . . . , n (3)

n∑
j=1

n∑
k=1

xijk = 1 ∀i = 1, . . . , n (4)

xijk ∈ {0, 1} (5)

Equivalently, the objective is to minimize the quadratic objective function (1)
over the 3-dimensional assignment polytope defined by (2)−(5). Clearly, the
problem is NP-hard, being a generalization of QAP and of the 3-dimensional
linear assignment problem (3AP), both of which are NP-hard. Q3AP was intro-
duced almost 50 years ago in a technical memorandum later published in [16],
without further development in the literature, and it was recently rediscovered
as a tool to model symbol remapping in digital wireless communications [7].
In this context, binary data is mapped to symbols for transmission and, in
case of errors, some data packets are retransmitted, following an automatic
repeat request (ARQ) protocol. Recent works [20,21] have shown that during
retransmission a different encoding should be used, in order to improve the
probability of error detection. Intuitively, symbol mapping should be as di-
versified as possible between retransmissions. When only one retransmission
is needed, the problem is equivalent to the solution of a standard QAP. How-
ever, if two retransmission are needed, then the problem is a Q3AP (provided
that one wants to optimize the simultaneous assignment of binary strings to
symbols in all transmissions). In this case, the cost coefficients cijkpqr rep-
resent the costs of assigning to the strings i and p the symbols j and q in
the first retransmission and the symbols k and r in the second retransmis-
sion. These coefficients can be computed offline based on a probabilistic error
model, see [20,21] for details, and can lead to massive improvements in the
corresponding communication quality. Note that while a Q3AP of size n has
n!× n! feasible solutions, the optimization has no real time requirements, be-
cause the problem needs to be solved in the planning and design phase, and
not by the parties involved in the communication. Still, the Q3AP turns out
to be an extremely difficult problem to solve: indeed, the exact methods in [7]
can solve only instances of size up to 13, even allowing for massive computing
power.

The purpose of this paper is to describe our efforts in the solution of the
previously unsolved Q3AP real world instance of size 16. In order to success-
fully solve this instance, we developed a few interesting techniques, that may
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turn out to be instrumental for the solution of other Q3AP (or QAP) in-
stances as well. The proposed techniques yield a solution procedure which is
exact in nature: we decompose the original instance into subproblems based
on symmetry arguments (which are symbolic, and thus exact, in nature), and
then we formulate each subproblem as mixed-integer programming (MIP) pro-
gram, to be solved with a complete method such as branch-and-cut. However,
since each subproblem is solved by a state-of-the-art, but finite precision, MIP
solver, the implemented procedure can only guarantee an optimality proof up
to a given tolerance. In the following, by optimality proof we will refer to this
computational connotation, highlighting when needed all the precautions that
we took in order to increase the numerical precision and fault tolerance of our
procedure.

The outline of the paper is as follows: Section 2 describes the real world
instance that we wanted to solve, while sections 3 to 5 present the techniques
that we developed for the purpose, namely a lightweight mixed-integer pro-
gramming formulation (Section 3), symmetry handling (Section 4) and cutting
plane generation (Section 5). Section 6 reports the computational experiments.
Finally, conclusions are drawn in Section 7.

2 Instance

The most common digital modulation techniques are

– phase-shift keying (PSK) using a finite number of phases
– frequency-shift keying (FSK) using a finite number of frequencies
– amplitude-shift keying (ASK) using a finite number of amplitudes
– quadrature amplitude modulation (QAM) using at least two phases and at

least two amplitudes

In the case of PSK, ASK or QAM, where the carrier frequency of the
modulated signal is constant, the modulation alphabet is often conveniently
represented in a constellation diagram. For an n symbol PSK or n-PSK that
would show n points equidistantly with respect to angle distributed on the unit
circle. This is a simple pattern and one that leads to a high degree of symmetry.
For QAM along the x-axis would be the inphase signal, for example a cosine
waveform, and along the y-axis the quadrature phase signal, for example a
sine waveform, both amplitude modulated.

The constellation points of the QAM modulation are thus better dis-
tributed, the distance between them is a factor of 1.62 in case of n=16 larger
than that of 16-PSK. This leads to 16-QAM requiring a 4.19dB lower signal-
to-noise ratio than 16-PSK. Consequently 8-PSK is commonly used in the
IEEE 802 standards for wireless communications and also n-QAM with n=16
and higher. An interesting challenge would thus also to solve to optimality the
Q3APs associated with the QAM methods. Here, however, we are attracted
by the high symmetry of the PSK method, which allows to apply and further
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refine symmetry exploiting methods that have lately been developed for gen-
eral mixed-integer programs. The data for this real world instance is available
in [6].

Regarding exact solution of the Q3APs associated with ARQ modulation
techniques, so far only the 8-PSK case has been solved. For n=16 cases only
the successive optimization of the symbol mappings, instead of the simultane-
ous one as done here, it leads to several standard QAPs, has been considered
in [21]. Originally the cost matrix for the 16-PSK case is real. As is custom-
ary, its elements were scaled by 1016 and rounded to integers: this introduces
an approximation error that is orders of magnitude smaller than the default
tolerances used by any commercial MIP solver, so it is absolutely safe in our
context. From now on, we will refer to this all-integer version as our instance
to solve. Table 1 lists some of its characteristics. While we show in the present
paper that it is possible to solve the Q3AP derived from 16-PSK, bigger in-
stances such as 32-QAM, 64-QAM, etc can only be treated with a reasonable
effort by heuristic methods to obtain feasible solutions, combined with lower-
bounding techniques to show which gap in objective value is present. For 2D
index assignment problems up to dimension 512 this was done in [23], based
on methods developed in [13,15]. The approach can be generalized to Q3AP
problems.

Table 1 Instance characteristics.

n 16
n3 4,096
n6 16,777,216
non-zero objective coefficients 12,755,712
objective sparsity 76.03%
objective dynamism 3.627 · 1012

symmetry group order 49,152
non-zero scaled objective coefficients 7,524,096
scaled objective sparsity 44.85%
scaled objective dynamism 3.627 · 106

3 MIP Model

In order to solve such a large Q3AP instance with MIP technology, a lightweight,
yet sufficiently strong, formulation is needed. A trivial way to linearize the
quadratic terms in the objective function is to introduce additional binary
variables ψijkpqr = xijkxpqr, and the corresponding linking constraints. How-
ever, in our case this amounts to introducing Θ(n6) variables and constraints,
which is hopeless for n = 16. To overcome this issue, we preferred to extend
the lightweight QAP Kaufman and Broeckx (KB) model [9] to the Q3AP case.
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The model requires only n3 artificial continuous variables, defined as

wijk =

(
n∑

p=1

n∑
q=1

n∑
r=1

cijkpqrxpqr

)
xijk

which can be easily linearized with big-M coefficients. The corresponding MIP
model reads

min

n∑
i=1

n∑
j=1

n∑
k=1

wijk (6)

n∑
i=1

n∑
j=1

xijk = 1 ∀k ∈ {1, . . . , n} (7)

n∑
i=1

n∑
k=1

xijk = 1 ∀j ∈ {1, . . . , n} (8)

n∑
j=1

n∑
k=1

xijk = 1 ∀i ∈ {1, . . . , n} (9)

wijk ≥
n∑

p=1

n∑
q=1

n∑
r=1

cijkpqrxpqr −M(1− xijk) ∀(i, j, k) ∈ {1, . . . , n}3 (10)

xijk ∈ {0, 1} (11)

wijk ≥ 0 (12)

Note that if all cost coefficients are integer, as in our case, articifial variables
wijk could be declared integer as well, yielding a pure integer formulation. This
model is known (in its QAP version) to be of little use in practice because of the
big-M constraints (10). In particular, it can be proved [24] that the root-node
bound is always zero. However, a much stronger formulation can be obtained
by adding to (6)−(12) the (polynomial) family of cutting planes

wijk ≥ Lijkxijk (13)
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where each Lijk is defined as the optimal value of the 3AP

min

n∑
p=1

n∑
q=1

n∑
r=1

cijkpqrxpqr (14)

n∑
p=1

n∑
q=1

xpqr = 1 ∀r ∈ {1, . . . , n} (15)

n∑
p=1

n∑
r=1

xpqr = 1 ∀q ∈ {1, . . . , n} (16)

n∑
q=1

n∑
r=1

xpqr = 1 ∀p ∈ {1, . . . , n} (17)

xijk = 1 (18)

xpqr ∈ {0, 1} (19)

Note that, contrary to the QAP case [3,24], in order to compute the coefficients
of this family of cutting planes, we need to solve a 3AP for each cut, which
is by itself an NP-hard problem. Still, for the instance at hand, those 3AP
instances were straightforward to solve with state-of-the-art MIP technology.
In addition, the symmetry of the instance can be exploited to solve much less
than n3 3APs (see Section 4). The KB model, together with the family of
cutting planes (13), was used recently in [3] to solve highly symmetric QAP
instances, for the same reasons. Finally, we note that the big-M coefficients
in constraints (10) can also be computed by solving 3APs akin to the model
just described, with the only differences that maximization is used instead of
minimization, and the fixing xijk = 1 is replaced with xijk = 0. While these
3APs turn out to be no harder to solve in practice than those needed to com-
pute coefficients Lijk, and the same symmetry trick applies, their computation
is not even needed if constraints (10) are modeled as indicator constraints, a
feature implemented in most commercial MIP solvers.

4 Symmetry Handling

We applied a standard symmetry detection algorithm (such as, e.g., Nauty [12])
to the model (6)−(12), and found a non trivial symmetry group of order 49,152.
While not an extreme case of symmetry by any measure, this group is still big
enough to slow down the search significantly, in particular given that each
branch-and-cut node is quite expensive in our case. According to the symme-
try group, the set of binary variables xijk can be partitioned into 6 orbits (the
same applies to the artificial variables w), whose main figures are reported in
Table 2. As anticipated in the previous section, we can exploit this knowledge
to significantly reduce the effort needed to compute coefficients Lijk and the
big-Ms in the model, given that they will clearly be the same for all the vari-
ables in the same orbit. This reduces the number of 3APs to solve from 8,192
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down to 12. Note that there is no chicken-and-egg problem here, because the
symmetry group of the model can be computed before knowing the values of
the coefficients (cuts (13) are not yet in the model, and all big-Ms can be set
to the same value).

Table 2 Orbit characteristics.

Orbit Size L bigM

0 256 0 6.4325e+06
1 1,024 2 6.8216e+06
2 512 1,199 6.8349e+06
3 1,024 30 9.2371e+06
4 1,024 3,544 9.6247e+06
5 256 46,465 1.2042e+07

Symmetry has long been recognized as a curse for the traditional enumer-
ation approaches used in many optimization communities—we refer to [11,
5] for recent surveys on the subject. Various techniques for dealing with sym-
metric problems have been studied, with isomorphism pruning [10] and orbital
branching [14] being the most popular and effective strategies deployed within
MIP solvers. In a preliminary computational study, we implemented both sym-
metry breaking techniques: however, their effect was still not sufficient to solve
our instance to optimality.

A different approach to symmetry management has been proposed recently
and is called orbital shrinking [2]: the main idea is to aggregate variables along
orbits, in order to obtain a smaller (and symmetry free) reformulation. While
this approach can yield an exact reformulation in some cases, in general it
provides only a relaxation of the original problem: however, orbital shrinking
has been turned into a complete method in [18]. The algorithm in [18] is
a decomposition scheme, where a master problem is used to enumerate the
feasible solutions of the orbital shrinking reformulation of the model, and a
slave problem is solved for each such solution to check if it can indeed be
turned into a solution of the original problem (see [18] for details). Orbital
shrinking has been shown to be a successful approach in solving symmetric
optimization problems with a medium amount of symmetry [18,19]: intuitively,
for the method to be effective, the shrunken reformulation must be sufficiently
easy to solve, yet retain enough of the structure of the original model. As such,
it is a natural candidate for our case, where the amount of symmetry is not
extreme.

The exact method in [18] can, in principle, be applied to pure-integer as
well as mixed-integer problems: however, in the mixed-integer case, one should
enumerate, in the master, all possible values also for the continuous variables,
which makes the method impractical. Even in our case, where as noted we
could declare variables wijk as integer, the number of solutions to check would
be enormous. Thus, in order to apply orbital shrinking, we had to modify
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the method in the following way. Given the orbital shrinking reformulation of
the model (which is obtained by aggregating variables and constraints along
orbits, and, by definition, has one variable for each variable orbit and one
constraint for each constraint orbit), we removed the aggregated constraints
corresponding to (10), the aggregated continuous variables, and the objective
function. The final model (which by construction is still a relaxation) reads:

y0 + y1 + y2 + y3 + y4 + y5 = 16 (20)

y1 + 2y3 + y4 = 16 (21)

y2 + y4 + 2y5 = 8 (22)

2y0 + y1 + y2 = 8 (23)

yi ∈ {0, . . . , |Oi| − 1} ∀i ∈ {0, . . . , 5} (24)

where we denoted with yi the sum of all the binary variables xijk in orbit
Oi, i.e.

yi =
∑

(i,j,k)∈Oi

xijk

Model (20)-(24) is of no use as far as the bound is concerned; however, it can
be used to enumerate all possible 6-tuples of y variables. Each 6-tuple yt can
then be used to construct a subproblem in which the sums of the variables
along the orbits are fixed to yt. It is easy to see that this is a partition of the
feasible space of the original problem. Luckily enough, in our case there are
only 85 different 6-tuples (reported in Table 3), which implies that we need to
solve only 85 subproblems.

It is important to note that each subproblem, by construction, has the
same symmetry group as the original problem, a property shared with the
exact algorithm in [18]. Usually, it is possible to get around this issue by
exploiting ad-hoc symmetry breaking procedures for the subproblem at hand:
however, in our case, we just resorted to traditional general purpose techniques
such as orbital branching and isomorphism pruning. To sum up, the proposed
strategy exploits the symmetry group of the original model twice:

1. computation of the orbital shrinking inspired model (20)-(24)
2. solution of each subproblem with isomorphism pruning

Finally, we note that the constraints used to fix the values of the orbits in
each subproblem can be taken into account when computing the coefficients
Lijk, resulting in an additional strengthening of the formulation.

5 Cutting Planes

Cutting planes (13) turn out to be crucial for the strength of the KB formu-
lation at the root node. Still, the resulting formulation is not strong enough
for a pure branch-and-bound to succeed. If we dig deeper into the structure
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of this family of cutting planes, we can clearly see the weak spot: each Lijk is
obtained by solving, independently, a linear 3AP problem, thus the correspond-
ing assignments are not synchronized among the n3 subproblems. Indeed, if
all assignments were the same, then the KB model would give the value of
the optimal solution: unfortunately, this is, by far, not case. A possible way
to (partially) fix this issue is to keep on separating local versions of cuts (13)
throughout the search tree, using the current domain of the variables for the
3APs. This is beneficial because, at a given node of the tree, all the assign-
ments must at least agree on the variables that are fixed at that node. Of
course, this also means that all cutting planes generated this way are only
locally valid, so some bookkeeping is needed in order to guarantee correctness.
The same strategy was also exploited in [3], where, however, each cut could be
separated much faster by an ad-hoc polynomial procedure, much in the spirit
of the classical Gilmore-Lawler bound computations [1], while in our case each
3AP is solved by a black box MIP solver.

While computational experiments show that separating local cuts of the
family (13) is indeed very beneficial for the resulting enumerative search, still
this is not enough to solve our instance. This is easily explained by the fact
that we need to dive deep into the tree for the local domains to significantly
constrain the separation problems. Intuitively, fixing a few variables does not
yield sufficiently strong cuts, and the dual bound is still too weak to prune
nodes early on.

Thus, we devised a new family of cutting planes, which is a generalization
of (13). While a given cutting plane of the form (13) provides a lower bound
on the value of a variable wijk, given the current domains of variables x and
assuming that xijk = 1, the new family gives lower bounds on the sums of the
form wijk +wpqr, assuming that xijk = 1 and xpqr = 1. The resulting cuts are
all of the form:

wijk + wpqr ≥ Tijkpqr(xijk + xpqr − 1) (25)
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and the coefficient Tijkpqr can be obtained as the optimal value of the following
MIP:

min wijk + wpqr (26)
n∑

s=1

n∑
t=1

xpqr = 1 ∀u ∈ {1, . . . , n} (27)

n∑
s=1

n∑
u=1

xpqr = 1 ∀t ∈ {1, . . . , n} (28)

n∑
t=1

n∑
u=1

xpqr = 1 ∀s ∈ {1, . . . , n} (29)

wijk ≥
n∑

s=1

n∑
t=1

n∑
u=1

cijkstuxstu (30)

wpqr ≥
n∑

s=1

n∑
t=1

n∑
u=1

cpqrstuxstu (31)

xijk = 1 (32)

xpqr = 1 (33)

xstu ∈ {0, 1} (34)

Note that by construction Tijkpqr ≥ Lijk +Lpqr. In our computational experi-
ence, each cut of the family (25) is not significantly harder to separate than a
cut (13), yet care must be taken because the number of possible cuts at each
node is n6, which, although polynomial, could make an exact separation too
slow in practice. Finally, note that, as in the previous section, the constraints
used to fix the values of the orbits in each subproblem can be taken into ac-
count when computing the coefficients of cuts (13) and (25), both globally and
locally.

6 Computations

A lot of tuning was needed to perfect the techniques presented in the previous
sections, that we will describe in the next subsections.

6.1 Primal Heuristics

After the first runs on the complete model (6)−(12), we realized that even a
state-of-the-art solver such as CPLEX has lots of trouble in finding a good
quality (hopefully optimal) feasible solution early on in the search. This is
of course affecting negatively performance in general, and the more so in our
case where the LP relaxation is quite weak. In addition, this is a huge issue
for the decomposition scheme: not knowing the globally optimal solution may
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turn some easy subproblems into very difficult ones, and carrying over the best
solution from one subproblem to the next is not an option (we would not be
able to process subproblems in parallel, and in any case the sequential order
would be arbitrary).

In order to overcome this issue, we implemented an ad-hoc primal heuristic
for the Q3AP, along the lines of the ILS method described in [7,22]. Surpris-
ingly, even a very simple implementation was able to consistently find the
(later proven) optimal solution of value 207, 462, 238, 240 in a matter of min-
utes. As such, we can, for practical purposes, assume that we know the optimal
solution in advance, and concentrate on the task of proving its optimality. For
reference, we provide the optimal solution below:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1 2 3 4 6 5 7 8 10 9 11 12 13 14 15

6 14 2 10 8 12 0 4 11 15 3 7 5 13 1 9

6.2 MIP Model

A first issue is given by model (6)−(12) itself: because the objective 6-dimensional
matrix is quite dense, the corresponding constraints (10) are dense as well. In
addition, the dynamism of these coefficients is so high (values range from 1
to 3.627 · 1012) that the LP relaxation is not only very slow to solve but also
numerically unstable. Thus, we decided to scale (and round down) all objec-
tive coefficients by a factor of 106. This proved to be quite beneficial, with
the objective density going from 76% to 45% and the final dynamism being
3.627 · 106. Still, rounding may change the set of optimal solutions to our
problem, in particular if we demand strict tolerances (for example, the opti-
mal objective of 207, 462, 238, 240 is mapped to 207, 392 and not to 207, 462).
In order to maintain the correctness of the method regardless of scaling, we
implemented the following strategy:

– each subproblem is solved with an objective cutoff of 208, 000.
– feasible solutions are collected but not reported as feasible to the underlying

MIP solver, thus forcing the enumeration of all feasible solutions of (scaled)
value less than 208, 000, barring symmetry.

– all collected solutions are evaluated with the original objective function
and the best one is marked as the optimal solution.

Finally, constraints (10) are not added to the initial formulation, but imple-
mented as indicator constraints, resulting in orders of magnitude savings in
the LP solution times.

6.3 Symmetry Breaking

A preliminary comparison between orbital shrinking and isomorphism pruning
showed that the latter is more effective in pruning the search tree, provided



12

that the right branching strategy is used. After some tuning, we found out
that a good strategy is to rank the variables xijk by decreasing values of Lijk,
using the variable index to break ties. The rationale behind this choice is that
in this way we improve the bound quite quickly, because the variables with
higher priority are the more expensive ones, but at the same time those whose
contribution is more underestimated by the linear relaxation.

6.4 Cutting Planes

We separate local versions of both cutting planes (13) and (25) throughout the
tree. However, care must be taken in order to limit the separation overhead,
which can be quite substantial (even orders of magnitude in node throughput).
We implemented the following strategy:

– the separation procedure for cuts (13) is called at the current node only if
the number of variables fixed to 1 is between 2 and 12, and only for those
x variables that are fractional in the LP relaxation

– cuts (13) are added only if a sufficient number (say 10) of them is violated
at the current node. This is to spare the bookkeeping overhead needed by
local cuts when only a few can be added. We consider a cut violated if the
new coefficient Lijk is greater than 1.1w∗ijk/x

∗
ijk, i.e., it must improve upon

the current (implied) coefficient by at least 10%.
– the separation procedure for cuts (25) is called at the current node only if

the number of variables fixed to 1 is between 2 and 12 and even. In addition,
the first variable xijk must be fixed to 1, while the second variable xpqr
must be fractional in the LP relaxation. Notice that, given this assumption,
we can simplify the cut as

wijk + wpqr ≥ Tijkpqrxpqr

– also cuts (25) are added only if a sufficient number of them is violated at
the current node. We consider a cut violated if the new coefficient Tijkpqr
is such that

Tijkpqrx
∗
pqr > 1.1(w∗ijk + w∗pqr)

– only the LP relaxations of the sub-MIPs needed to compute the coefficients
of cuts (13) and (25) are solved, without resorting to enumeration. This
has several benefits: (i) an occasionally challenging sub-MIP will not slow
down the overall procedure and (ii) the coefficients are weaker and thus
the chances of generating a (slightly) invalid cut because of numerics and
tolerances are lower.

6.5 Results

We implemented our codes in C++, using IBM ILOG CPLEX 12.5.1 [8] as
black box MIP solver through the CPLEX callable library APIs and Permlib [17]
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to implement the group operations needed by isomorphism pruning. All tests
have been performed on a cluster of 24 identical machines, each equipped with
an Intel Xeon E3-1220v2 running at 3.10GHz and with 16GB of RAM.

Computing the symmetry group, as well as enumerating the 85 solutions
of model (20)-(24), was done in less than one minute (using the constraint
programming solver Gecode [4]), and thus can be considered negligible. All
sub-MIPs (to be more precise, their LP relaxations) are always solved with
default CPLEX tolerances. As far as the subproblem resolution is concerned,
we used again default tolerances and disabled all CPLEX cut separators, in
order to speedup node throughtput (CPLEX cuts were in any case not effec-
tive because of symmetry) and improve numerical safety. Detailed results are
reported in Table 3.

Table 3: Subproblems characteristics.

Subproblem Time (s) Nodes

0,0,8,8,0,0 52,545 599,725
0,1,7,7,1,0 54,943 351,345
0,2,6,6,2,0 45,635 227,453
0,2,6,7,0,1 6,813 22,543
0,3,5,5,3,0 22,055 118,927
0,3,5,6,1,1 13,970 35,419
0,4,4,4,4,0 24,246 133,046
0,4,4,5,2,1 4,150 15,256
0,4,4,6,0,2 89 163
0,5,3,3,5,0 24,977 104,091
0,5,3,4,3,1 1,471 9,025
0,5,3,5,1,2 88 15
0,6,2,2,6,0 18,261 72,035
0,6,2,3,4,1 758 3,099
0,6,2,4,2,2 76 15
0,6,2,5,0,3 20 0
0,7,1,1,7,0 7,398 35,643
0,7,1,2,5,1 245 569
0,7,1,3,3,2 78 15
0,7,1,4,1,3 45 0
0,8,0,0,8,0 452 3,944
0,8,0,1,6,1 103 41
0,8,0,2,4,2 62 15
0,8,0,3,2,3 31 0
0,8,0,4,0,4 14 0
1,0,6,7,2,0 1,843 10,676
1,0,6,8,0,1 818 6,593
1,1,5,6,3,0 6,430 30,187
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Table 3 continued

Subproblem Time (s) Nodes

1,1,5,7,1,1 3,258 12,047
1,2,4,5,4,0 20,217 108,980
1,2,4,6,2,1 1,688 5,940
1,2,4,7,0,2 102 81
1,3,3,4,5,0 33,871 121,652
1,3,3,5,3,1 1,398 6,070
1,3,3,6,1,2 116 17
1,4,2,3,6,0 27,664 87,038
1,4,2,4,4,1 775 2,697
1,4,2,5,2,2 99 15
1,4,2,6,0,3 24 0
1,5,1,2,7,0 12,675 46,127
1,5,1,3,5,1 266 433
1,5,1,4,3,2 107 21
1,5,1,5,1,3 47 0
1,6,0,1,8,0 2,464 10,909
1,6,0,2,6,1 154 55
1,6,0,3,4,2 87 19
1,6,0,4,2,3 33 0
1,6,0,5,0,4 17 0
2,0,4,6,4,0 2,494 14,946
2,0,4,7,2,1 226 623
2,0,4,8,0,2 32 25
2,1,3,5,5,0 16,951 92,512
2,1,3,6,3,1 614 1,653
2,1,3,7,1,2 109 15
2,2,2,4,6,0 20,930 94,663
2,2,2,5,4,1 502 1,493
2,2,2,6,2,2 99 15
2,2,2,7,0,3 23 0
2,3,1,3,7,0 11,955 45,794
2,3,1,4,5,1 238 333
2,3,1,5,3,2 101 15
2,3,1,6,1,3 46 0
2,4,0,2,8,0 2,748 10,899
2,4,0,3,6,1 114 43
2,4,0,4,4,2 91 15
2,4,0,5,2,3 34 0
2,4,0,6,0,4 17 0
3,0,2,5,6,0 1,753 10,368
3,0,2,6,4,1 78 49
3,0,2,7,2,2 56 13
3,0,2,8,0,3 11 0
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Table 3 continued

Subproblem Time (s) Nodes

3,1,1,4,7,0 3,627 16,384
3,1,1,5,5,1 111 39
3,1,1,6,3,2 84 13
3,1,1,7,1,3 48 0
3,2,0,3,8,0 1,152 4,732
3,2,0,4,6,1 83 31
3,2,0,5,4,2 69 13
3,2,0,6,2,3 34 0
3,2,0,7,0,4 17 0
4,0,0,4,8,0 101 177
4,0,0,5,6,1 43 15
4,0,0,6,4,2 21 0
4,0,0,7,2,3 21 0
4,0,0,8,0,4 6 0

Total 457,312 2,476,819

According to the table, all subproblems required a total of 457, 312 seconds
(less than a week) if performed on a serial machine with the same speed. The
total number of nodes turned out to be just a little below 2.5 million, sur-
prisingly low given the difficulty of the instance, proving that the techniques
developed in the paper were very successful in pruning the enumeration tree.
We note that the results refer to the case in which each CPLEX run was given 4
threads and the search mode was set to CPX PARALLEL OPPORTUNISTIC,
resulting in a nondeterministic run. This choice is motivated by the fact that
because of our expensive separation procedures, the default load balancing
policy of CPLEX resulted in a severe underuse of the available cores. Indeed,
forcing deterministic search results in a very similar outcome as far as the
number of nodes is concerned, but with a doubled running time.

For reference, we report that a default CPLEX run on model (6)−(12),
without all the techniques described here, but with the global cutting planes
(13) added at the very beginning and the optimal solution provided as incum-
bent, yields a dual bound of only 11, 934 (a depressing relative gap of 94.25%
left to close) after 3 days of computations, more than 35 millions of enumerated
nodes and 120GB of memory occupied.

7 Conclusions

We addressed the solution of a very challenging (and previously unsolved)
instance of the quadratic 3-dimensional assignment problem, arising in dig-
ital wireless communications. In order to solve this instance to optimality,
we developed novel techniques, such as a new family of cutting planes and a
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two-level symmetry handling strategy based on orbital shrinking. These tech-
niques, among others, proved to be instrumental in the successful solution of
this Q3AP instance. More importantly, they are general purpose in nature and
can be easily extended to different Q3AP or even QAP instances with similar
properties.
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