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Abstract

Motivation: Sequencing technologies allow the sequencing of microbial communities directly

from the environment without prior culturing. Taxonomic analysis of microbial communities, a pro-

cess referred to as binning, is one of the most challenging tasks when analyzing metagenomic

reads data. The major problems are the lack of taxonomically related genomes in existing refer-

ence databases, the uneven abundance ratio of species and the limitations due to short read

lengths and sequencing errors.

Results: MetaProb is a novel assembly-assisted tool for unsupervised metagenomic binning. The

novelty of MetaProb derives from solving a few important problems: how to divide reads into groups

of independent reads, so that k-mer frequencies are not overestimated; how to convert k-mer counts

into probabilistic sequence signatures, that will correct for variable distribution of k-mers, and for

unbalanced groups of reads, in order to produce better estimates of the underlying genome statistic;

how to estimate the number of species in a dataset. We show that MetaProb is more accurate and ef-

ficient than other state-of-the-art tools in binning both short reads datasets (F-measure 0.87) and

long reads datasets (F-measure 0.97) for various abundance ratios. Also, the estimation of the num-

ber of species is more accurate than MetaCluster. On a real human stool dataset MetaProb identifies

the most predominant species, in line with previous human gut studies.

Availability and Implementation: https://bitbucket.org/samu661/metaprob

Contacts: cinzia.pizzi@dei.unipd.it or comin@dei.unipd.it

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Metagenomics is the study of genomic sequences obtained directly

from an environment. Characterizing the taxonomic diversity of mi-

crobial communities is one of the primary objectives in metagenomic

studies, and it has become an increasingly popular field of study in

the past decade (Mande et al., 2012). For example, the diversity of

microbes in humans is found to be associated with diseases such as

inflammatory bowel disease (IBD) (Qin et al., 2010) and colorectal

cancer (Zeller et al., 2014). In this field high-throughput next-gener-

ation sequencing (NGS) techniques enable researchers to directly se-

quence the genomes of multiple species without the need to isolate

and culture individual microbes.

The taxonomic analysis of microbial communities is usually car-

ried out by a process referred to as binning, in which reads from the

same species are grouped together. By binning reads, researchers can

identify the number and the abundance of species in the environ-

ment, and further understand what functional roles each species

play and how these species work together.

Many computational methods have been developed to classify

metagenomic reads. These methods can be broadly classified into

two categories. One category is reference-based (supervised), in

which one queries reads in reference databases and utilizes the origin

of the hit sequences in reference databases to classify reads. Among

the most important methods we can recall: Mega (Huson et al.,

2007), Kraken (Wood and Salzberg, 2014), Clark (Ounit et al.,

2015) and MetaPhlan (Segata et al., 2012). The other category of

methods is reference-free (unsupervised), BiMeta (Vinh et al., 2015),

MetaCluster (Wang et al., 2012; Yang et al., 2010), AbundanceBin

(Wu and Ye, 2011), CompostBin (Chatterji et al., 2008) in which

reads are grouped together without the need of reference sequences.

These methods are usually based on various definitions of similarity

between reads.

Reference-based methods require to index a database of target

genomes, e.g. the NCBI/RefSeq databases of bacterial genomes, that

is used to classify query reads. These methods are usually very de-

manding, requiring computing capabilities with large amounts of
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RAM and disk space. Yet, query sequences originating from the gen-

omes of most microbes in an environmental sample lack taxonomic-

ally related sequences in existing reference databases. Most bacteria

found in environmental samples are unknown and cannot be cul-

tured and separated in the laboratory (Eisen, 2007). For these rea-

sons, when using reference-based methods the number of unassigned

reads can be very high (Lindgreen et al., 2016). This might indicate

that reference-based methods can be of help only when all genomes

in the sample are known. Thus, the absence of a taxonomic context

makes binning a very challenging task.

On the other hand, reference-free methods do not require to

know all the genomes in the sample, but they try to divide the reads

into groups so that reads from the same species are clustered to-

gether. Reference-free binning tools are based on the observation

that the k-mer (length-k substrings of a fragment) distributions of

the DNA fragments from the same genome are more similar than

those from different genomes. Thus, without using any reference

genome (i.e. unsupervised), one can determine if two fragments are

from genomes of similar species based on their k-mer distributions.

The major problem when processing metagenomic data is the fact

that the proportion of species in a sample, a.k.a. abundance rate,

can vary greatly. Most of the tools can only handle species with even

abundance ratios, and their binning performances degrade signifi-

cantly in real situations when the abundance ratios of the species are

different. To handle uneven abundance ratios some algorithms have

been recently developed (Vinh et al., 2015; Wang et al., 2012; Wu

and Ye, 2011). For example AbundanceBin (Wu and Ye, 2011)

works well for very different abundance ratios, but problems arise

when some species have similar abundance ratios. Other tools like

BiMeta (Vinh et al., 2015) and MetaCluster (Wang et al., 2012) try

to group the reads into many small clusters so that reads from mi-

nority species (with low abundance ratios) could exist as isolated

clusters. Both these methods use as means of comparison a simple

Euclidean distance between the vectors of k-mers counts on the

groups. However, it has been recently shown that the Euclidean dis-

tance of k-mers counts tends to be dominated by single-sequence

noise and it is not suited for this task (Song et al., 2014). The pair-

wise comparison of two sequences, or sets of sequences, can be per-

formed with more sophisticated similarity measures, derived from

research in alignment-free statistics (Comin et al., 2015; Kantorovitz

et al., 2007; Pizzi, 2016; Sims et al., 2009). Following the same para-

digm, here we propose a new self-standardized statistic, called prob-

abilistic sequence signature, that is not dominated by the noise in

the individual sequences, and that can compare groups of reads with

different abundance ratios.

In this paper, we describe a novel assembly-assisted method for

metagenomic binning, called MetaProb, that is based on the defin-

itions of independent reads set and of probabilistic sequence signa-

tures. Our contributions can be summarized as follows: (i) the

definition of a set of independent reads so that k-mers frequencies

are not over-counted because of overlapping reads; (ii) the introduc-

tion of a novel way to process k-mers counts into probabilistic se-

quence signatures, that will correct for variable distribution of k-

mers and for unbalanced groups of reads, in order to produce better

estimates of the underlying genome statistic; (iii) the proposal of a

probabilistic framework that can be easily adapted for different

sequencing technologies, in fact Metaprob is suited for current shot-

gun reads (100 bp), as well as long reads (700 bp or above), as

opposed to most methods; (iv) a novel and effective estimation of

the number of species in a sample based on probabilistic sequence

signatures.

We performed experiments on synthetic and real datasets, and

compared MetaProb with popular tools: AbundanceBin (Wu and

Ye, 2011), BiMeta (Vinh et al., 2015), MetaCluster (Wang et al.,

2012). MetaProb outperforms the other methods in its ability to cor-

rectly identify the species and their abundance levels.

2 Method: MetaProb

The composition of DNA, in terms of its constituent k-mers, is

known to be a feature of the genome. A number of studies (Chor

et al., 2009; Huson et al., 2007; Ounit et al., 2015; Wang et al.,

2012) are based on the assumption that the k-mer frequency distri-

butions of long fragments or whole genome sequences are unique to

each genome. However, most sequencing technologies cannot pro-

duce long fragments and thus these compositional distances cannot

be directly applied. In order to solve this issue, and to mimic the

availability of long fragments, MetaProb addresses the problem of

metagenomic binning in two phases. Figure 1 shows the processing

pipeline of MetaProb. We will now describe the main steps of the

processing, giving a brief explanation of the reasons why they were

undertaken. In the following subsections each step will be described

in details.

In Phase 1 reads are grouped together based on the extent of

their overlap. This is measured in terms of shared q-mers, a tech-

nique widely used in de-novo assembly. As a result the reads in a

group, because of their overlap, are likely to belong to the same spe-

cies. However, reads from a same species might be distributed in dif-

ferent groups. As our final aim is to group together all the reads

from a same species, further processing is needed to cluster the

groups obtained in Phase 1 based on their similarity.

The similarity between groups can be defined in terms of k-mers

frequency distribution within each group. However, by construc-

tion, the reads in a group must have a significant overlap. Because

such overlaps might artificially inflate the count of some k-mers, we

developed a strategy, based on independent sets of a graph, to select

a subset of reads from a group in order to reduce the redundancy

provided by large overlaps.

When entering Phase 2, each group is then represented by a set

of independent reads on which the k-mers frequency distribution is

computed. Because the straightforward application of the Euclidean

distance to pairs of vectors representing k-mers distributions of dif-

ferent groups can be biased by the stochastic noise in each sequence

(Lippert et al., 2002; Song et al., 2014), and by the possibly unbal-

anced size of the groups, we propose here a novel similarity measure

based on self-standardized probabilistic sequence signatures that ac-

counts for these issues.

The final step of MetaProb consists in the clustering of groups

based on their signatures with the k-means algorithm. This algo-

rithm requires in input the number of clusters, that in our case coin-

cides with the number of species in the input dataset, a knowledge

that in many real metagenomic samples is unknown. To address

such cases MetaProb will use a novel estimator for the number of

species that will provide the input parameter for the k-means

algorithm.

2.1 Phase 1: merging reads into groups
In Phase 1, each read is considered as a group, and groups are

progressively merged until a stopping criteria is met. Two groups

are merged if they share at least m common q-mers. This is one

of the most efficient way to measure the sequence overlap infor-

mation between reads, and it has been used in a number of
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studies (Vinh et al., 2015; Wang et al., 2012; Yang et al., 2010).

These methods are based on the assumption that most q-mers

are not shared by different genomes when q is sufficiently large.

For example, as reported in (Vinh et al., 2015), on 100 pairs of

bacterial genomes the average ratio of common q-mers between

the genomes is less than 1.02% when q>30. Thus there is great

probability that the reads having common q-mers, with q suffi-

ciently large, are overlapping reads.

In this step, we indirectly build a graph of adjacent reads, based

on the above criteria. However, since in the second phase we need to

compute the distribution of k-mers, to avoid the over-counting intro-

duced by overlaps, here we need to identify within each group a set of

reads that minimizes this bias. Given the reads in a group, it is possible

to consider the subset of reads that do not overlap with each others. If

we consider a group as a graph of reads, we can use the well-known

definition of independent set or stable set on graphs. An independent

set defined on a graph is a set of vertices which does not contain adja-

cent vertices. Unfortunately the maximum independent set problem is

known to be NP-hard, so we need to explore a tractable solution. The

identification of the maximum independent set of reads, I(G), can be

performed on-line while computing group G. In the proposed algo-

rithm groups are extended in a greedy fashion by considering first the

reads x, x 62 G, with the largest number of common q-mers with some

reads in G. If the read x is not adjacent to any read in I(G), then this

is a new independent read and we add x to I(G).

The effect of sequencing errors and of erroneous q-mers may

lead to include in a group reads from different organisms. In some

studies, prior to the assembly step, a q-mers correction can be

applied (Kelley et al., 2010). Instead, to reduce the likelihood to in-

sert in a group a read not belonging to that species we limit the size

of groups by imposing a threshold T. Groups are extended until the

size of I(G), computed as the sum of lengths of the reads in I(G),

does not exceed the threshold T. Finally, when all groups are cre-

ated, the probabilistic sequence signature of each group will be cal-

culated based on the sets of independent reads I(G).

2.2 Phase 2: probabilistic sequence signatures
Once the groups are constructed we need to define a suitable dis-

tance measure to compare and cluster groups into candidate species.

We recall that the simple Euclidean distance between k-mer fre-

quency distributions, used by almost all methods, can be dominated

by single-sequence noise (Lippert et al., 2002; Song et al., 2014). To

address this issue a number of sequence signatures, based on k-mer

counts statistics, have been proposed (Apostolico et al., 2016;

Comin et al., 2015; Fernandes et al., 2009; Kantorovitz et al., 2007;

Pizzi, 2016; Sims et al., 2009).

Sequence signatures, a.k.a. alignment-free statistics, are receiving

increasing attention because they are computationally efficient and can

provide attractive alternatives when alignment-based approaches are

unfeasible. For example, alignment-free techniques proved to be very

efficient in the study of evolution of organisms based on whole genomes

analysis (Apostolico and Denas, 2008; Apostolico et al., 2014; Comin

and Verzotto, 2012; Pizzi, 2016; Sims et al., 2009; Ulitsky et al., 2006).

Some alignment-free measures use the patterns distribution to study the

identification of cis-regulatory modules (CRM) (Apostolico et al.,

2011; Comin and Verzotto, 2014; Kantorovitz et al., 2007; Parida

et al., 2014b) and also of entropic profiles (Comin and Antonello,

2013, 2014, 2016; Fernandes et al., 2009; Parida et al., 2014a).

Inspired by the recent developments in the field of alignment-free

statistics we propose here a novel similarity measure based on prob-

abilistic sequence signatures for the comparison of groups of reads.

The idea is to account for the different distribution of k-mers counts

and to remove the bias of unbalanced groups in a probabilistic

framework with a self-standardized statistic.

Let us define a read Xi as a sequence of characters from the al-

phabet R ¼ fA;C;G;Tg, with i ¼ 1::jMj, where M is our input set

of metagenomic reads. We call Xi
w the frequency of the k-mer w in

the read Xi. Given that reads are sequenced from both strands of a

genome, Xi
w will include also the contribution of the reversed com-

plement of w. We can consider the variables Xi
w as Bernoulli, if the

length of k-mers is smaller w.r.t. the length of reads, k < < jXij.
Similarly to the other methods (Vinh et al., 2015; Wang et al.,

2012), we will use k¼4, thus this approximation holds. Given a

group of independent reads I(G), computed from the previous step,

we can define the variable XG
w , that represents the number of times

the k-mer w appears in the group I(G): XG
w ¼

Xg

i¼1

Xi
w, where g is the

number of independent reads in the group.

To account for the different probability of appearance of k-mers,

the variables XG
w need to be standardized. If we define the probabil-

ity of a k-mer w to appear in the group I(G) as PG
w , and we recall

that Xi
w is a Bernoulli, we can compute mean and variance of XG

w as:

E½XG
w � ¼ lG

w ¼ PG
w

Xg

i¼1

ðjXij � kþ 1Þ ¼ PG
w jGj (1)

VarðXG
wÞ ¼ ðrG

wÞ
2 ¼ PG

wð1� PG
wÞjGj (2)

where jGj ¼
Xg

i¼1

ðjXij � kþ 1Þ. Thus the variable XG
w can be standar-

dized as follows:

Fig. 1. Binning process of MetaProb. Phase 1 groups overlapping reads into groups. Phase 2 builds the probabilistic sequence signatures of independent reads

and merges the groups into clusters
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~X
G

w ¼
XG

w � lG
w

rG
w

(3)

As already observed the frequency of k-mers in different gen-

omes can greatly vary. Similarly, it is difficult to estimate the prob-

ability PG
w , as it does not follow the same model for different

genomes. Thus we need to estimate PG
w from the set of reads in

input.

Long Read: For long reads datasets, the size of groups can be suf-

ficiently large to be able to estimate the probability of PG
w , for every

group G. We define nG
b , with b 2 fA;C;G;Tg, as the number of

times the nucleotide b occurs within the group G, and the probabil-

ity of the symbol b in the group G is:

pG
b ¼

nG
bX

i2G

jXij
(4)

Finally, if we consider the symbols independent and equally dis-

tributed within a group, the probability PG
w can be computed as the

product PG
w ¼ pG

w1
� pG

w2
� pG

w3
� pG

w4
, for a k-mer w ¼ w1w2w3w4.

Short Reads: For short reads datasets, the size of groups cannot

be large enough to have good estimate. To this end we devise a dif-

ferent way to estimate these probabilities, independently from the

groups, so that PG
w ¼ Pw, for all groups. We compute the distribu-

tion of all k-mers in the input dataset, by scanning all independent

reads in the collection M. Thus, for short reads PG
w ¼ Pw ¼ XM

w

jMj.

Probabilistic sequence signature: The abundance ratios of species

in a real metagenomic sample can be highly unbalanced. This may

produce groups of different sizes. In order to be able to cluster them

we need to remove this bias. Thus, we normalize the vector ~X
G

w so

that its module is unitary, and define the probabilistic sequence sig-

nature of a group G as:

f G
w ¼

~X
G

wffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
w2Rk

ð ~X
G

wÞ
2

2

s (5)

The vectors of probabilistic sequence signatures, f G
w , are used to

compare two groups by means of their correlation. The standard k-

means clustering is applied to these vectors until the groups are

merged into C clusters, where C is either given or estimated, as will

discuss in the next section.

2.3 Estimation of the species number
K-means is an algorithm that groups a set of data into C clusters.

As many other similar algorithms, it requires that the number of

clusters C must be known in advance. The automatic estimation of

the number of clusters C is a very hard problem and it is made

more difficult when the data has many dimensions, even when clus-

ters are well-separated. Most methods that seek to estimate the

number of species, like MetaCluster (Wang et al., 2012), use often

prior knowledge, other assumptions, or practical experience. One

popular algorithm for this problem is G-means (Hamerly and

Elkan, 2003), which is based on a statistical test for the hypothesis

that a subset of data follows a Gaussian distribution. Unfortunately

this test does not work well when applied to genomic data, because

the assumption that the reads form clusters that are distributed as a

Gaussian can be unrealistic. Instead, we develop an novel method

to estimate the number of species, inspired by G-means, but with a

different statistical test. G-means uses the Anderson-Darling statis-

tic, that is meant to test the normality of the data, whereas we use

the two-sample Kolmogorov–Smirnov test. We applied this test on

two vectors: one vector is the cumulative distribution function

(CDF) computed on the data, normalized with mean 0 and variance

1; the other vector is the expected cumulative distribution function

(ECDF) of the same data. We called this estimator SpeciesNumber.

In general G-means runs k-means increasing the number of clus-

ters C in a hierarchical fashion until the test accepts the hypothesis

that the data assigned to each k-means center are Gaussian, however

for every iteration k-means is run on the entire dataset. Instead, our

estimator SpeciesNumber at each iteration saves the clusters that

passes the Kolmogorov–Smirnov test, and removes the correspond-

ing reads, so that future iterations will no longer consider those clus-

ters. If a cluster does not pass the test, then it is a good candidate to

be splitted. The process is repeated until all data pass the test and

consequently there are no more clusters to be created.

The SpeciesNumber algorithm starts with a small number of k-

means centers, and grows the number of centers. At each iteration

the algorithm can do only one of the followings two steps: 1) splits

one center into two, only for those centers whose data does not pass

the Kolmogorov–Smirnov test; or 2) saves those centers whose data

pass the test and eliminate the reads that belong to these clusters

from the input. After each round of splitting, we run k-means on the

remaining reads and all the remaining centers to refine the current

solution. The initial number of species can be initialized to C¼1, or

we can choose a larger value of C if we have some prior knowledge

about its range. The input parameters of the SpeciesNumber estima-

tor are the set of reads and a confidence level a for which we used

the standard value of 0.95.

3 Results and discussion

In this section we discuss the results of the comparison between

MetaProb and several other state-of-the-art reference-free binning

algorithms: MetaCluster 5.0.1 (Yang et al., 2010), AbundanceBin

(Wu and Ye, 2011) and BiMeta (Vinh et al., 2015).

3.1 Datasets description
We considered 28 different datasets: 25 of these datasets were al-

ready used in (Vinh et al., 2015), and include several simulated bac-

terial metagenomes built with MetaSim (Richter et al., 2008); 2

Algorithm 1: Pseudocode of the SpeciesNumber estimator.

Input: Set of reads X, confidence level a

Output: C clusters SpeciesNumber(X, a)

1. Let Csave be the clusters saved at each iteration;

2. Let C be the initial set of centers;

3. C¼kmeans(C, X);

4. Let fxijclassðxiÞ ¼ jg be the set of data-points assigned to

the center cj;

5. Compute the CDF(cj) vector for each cluster cj;

6. Use the Kolmogorov–Smirnov statistical test, on CDF(cj),

to detect if each fxijclassðxiÞ ¼ jg follows the expected dis-

tribution (ECDF) (at confidence level a);

7. If the cluster cj pass the test, save cj in Csave and update X

¼ X=fxijclassðxiÞ ¼ jg and C ¼ C=fcjg. Otherwise replace

cj with two clusters;

8. Repeat from step 3 until no more centers are added;

9. Return Csave;
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datasets contain synthetic metagenomes based on real reads; and

one real metagenomic sample from the Human Microbiome Project.

The set of 25 datasets used in (Vinh et al., 2015) can be parti-

tioned in three groups: S, L and R, depending on their main charac-

teristics. Each dataset in S or L comprises paired-end short reads

(length of approximately 80 bp) generated according to the Illumina

error profile with an error rate of 1%. The datasets in L are built

over the genomes of two species, Eubacterium eligens and

Lactobacillus amylovorus. Such datasets are used to evaluate bin-

ning algorithms on set of reads with different abundance ratio be-

tween the two species. The datasets in S are much more varied in

terms of number of species (up to 30), abundance ratio (balanced/

unbalanced), and phylogenetic distance. The datasets in R contain

Roche 454 single-end long reads of length approximately 700 bp,

and sequencing error rate of 1%.

We also include in our tests two metagenomes that are con-

structed from real sequencing data. We use the dataset of short-reads

Illumina MiSeq from Kraken (Wood and Salzberg, 2014), that is

composed of 10 genomes with two abundance profiles. The MiSeq

metagenomes were built using 10 sets of bacterial whole-genome

shotgun reads. These reads were found either as part of the GAGE-B

project (Magoc et al., 2013) or in the NCBI Sequence Read Archive.

A summary of the metagenomes can be found in Supplementary

Material, Table 1 for short reads, and in Table 2 for long-reads.

Finally, MetaProb was tested also on a real metagenomic sample

of Human feces from the Human Microbiome Project

(SRR1804065).

3.2 Performance evaluation metrics
Precision, Recall and F-measure metrics are used to compare the per-

formances of the binning algorithms under examination. Precision

measures the ability of the approach to build clusters composed by

reads coming from a same species. On the other hand, recall measures

the ability to cluster together all the reads of a given species. Therefore,

when evaluating the performances of a binning algorithm one should

take into account both these aspects. A common way of doing so is

through the F-measure, i.e. the harmonic mean of precision and recall.

Let n be the number of species in a metagenomic dataset, and C

be the number of clusters returned by the algorithm. Let Aij be the

number of reads from species j assigned to cluster i. Following the

definitions in (Vinh et al., 2015) we have:

Precision ¼

XC

i¼1

maxjAij

XC

i¼1

Xn

j¼1

Aij

(6)

Recall ¼

Xn

j¼1

maxiAij

XC

i¼1

Xn

j¼1

Aij þ #unassigned reads

(7)

F�measure ¼ 2 � precision � recall

precisionþ recall
(8)

The input parameters of MetaProb are: the length k used for the

probabilistic sequence signatures, the values of q, m and T used in

the phase 1, and the number of clusters C (optional). For fairness we

used the same parameters values for all the approaches under com-

parison. In particular, the length of the k-mers is set to 4, and the

number of species C is given explicitly in input. The choice of the

best k to compare genomic sequences has been extensively studied in

the context of metagenomic binning (Chatterji et al., 2008; Vinh

et al., 2015; Wu and Ye, 2011; Yang et al., 2010), as well as in a

number of different applications (Comin et al., 2015; Kantorovitz

et al., 2007; Sims et al., 2009). In all these different contexts the best

performances are obtained with k¼4 or k¼5. After a series of test

we choose k¼4 as default value. While MetaCluster 5 and

AbundanceBin do not need further parameters, both BiMeta and

our MetaProb require in input the length q of the q-mers, and the

minimum threshold m of shared q-mers needed to detect reads over-

laps in phase 1. These parameters were set to q¼30, and m¼5

(short reads) or m¼45 (long reads), similarly to (Vinh et al., 2015).

The parameter T that limits the size of groups in phase 1 was set to

9000. Due to its characteristics MetaCluster 5 could be tested only

on the short read datasets.

To better evaluate the performance of MetaProb, the discussion

of the experimental results is done separately for of short paired-end

read datasets and for long single-end read datasets.

3.3 Results on short paired-end reads
These sets of experiments considered all four binning approaches

(our MetaProb, BiMeta, AbundanceBin and MetaCluster) and all

the dataset in S and L, and the two MiSeq datasets.

Table 1 shows the results of the comparison in terms of F-meas-

ure. MetaProb has higher F-measure for 11 out of 18 datasets. In the

other 7 cases, in which the F-measure of BiMeta is higher than the

F-measure of MetaProb, the difference between the two is relatively

low (0.04 on average). Moreover, MetaProb has the best perform-

ance on average when we consider all the datasets.

Table 1 also shows that the datasets from S7 to S10_S are among

the most difficult to analyze by all the tested tools. These datasets

are characterized by the presence of several species (up to 30), and

by an unbalanced abundance ratio. Despite this, MetaProb is still

competitive in the classification.

In general, the high values of MetaProb in terms of F-measure

derive from both balanced and high values of recall and precision in

all datasets, although they are not necessarily always the highest val-

ues for each individual dataset. Figures 2 and 3 show the details of

Table 1. F-Measure on short paired-end read datasets

F-Measure Abundance Bin MetaCluster BiMeta MetaProb

S1 0.683 0.672 0.978 0.991

S2 0.713 0.631 0.581 0.901

S3 0.824 0.415 0.978 0.928

S4 0.883 0.460 0.994 0.908

S5 0.552 0.643 0.690 0.832

S6 0.692 0.492 0.858 0.970

S7 0.606 0.652 0.843 0.782

S8 0.528 0.529 0.743 0.769

S9 Error 0.639 0.791 0.719

S10_S 0.137 0.052 0.429 0.495

L1 0.625 0.549 0.980 0.984

L2 0.793 0.675 0.980 0.992

L3 0.900 0.667 0.986 0.993

L4 0.959 0.703 0.987 0.986

L5 0.977 0.612 0.991 0.983

L6 0.984 0.649 0.990 0.984

MiSeq_a1 0.534 0.555 0.645 0.737

MiSeq_a2 0.496 0.638 0.667 0.670

Average 0.699 0.568 0.840 0.868

Best results are in bold.
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precision and recall on short-reads datasets for all the approaches

under comparison.

MetaCluster is characterized by a high precision in many data-

sets, but also by a low recall that negatively influences the F-meas-

ure. The performances of AbundanceBin are somewhat

complementary to those of MetaCluster, as they are characterized

by high values of recall, coupled with very low precision in many

cases. In summary, MetaCluster and AbundanceBin showed unbal-

anced performances in terms of precision and recall, having the for-

mer approach its strength in precision, and the latter approach its

strength in recall. Nevertheless, MetaProb showed a precision higher

than MetaCluster in 11 out of 18 datasets, and a recall higher than

AbundanceBin in 9 out of 18 datasets.

The behavior of BiMeta is closer to the behavior of MetaProb,

showing high values in both precision and recall. However, there are

significant differences in terms of precision in the analysis of the

datasets S2, S5, S6. This difference can be explained by the use made

by MetaProb of statistical standardization, which is capable to best

describe the model and properly separate the reads.

While the performances on the datasets S are quite varied,

Figure 3 shows MetaProb and BiMeta as clear winners for the

datasets L in terms of both precision and recall, even when con-

sidered separately. The results show that MetaProb and BiMeta

not only have the highest performances, but are also stable for dif-

ferent ratios of species abundances.

The most interesting short-reads datasets are the MiSeq datasets

(see Table 1 and Fig. 2). These are the more realistic metagenomes,

composed by mixing real reads from individual genomes. On this diffi-

cult test the results of MetaProb, in terms of F-measure, improve over

all other tools. Thus, even for these realistic datasets, the performance

are consistent and similar with the most difficult simulated datasets.

In summary for short-read data the presence of several species,

and the variety in the phylogenetic distance affect the performances

of all the tools under analysis. Nevertheless, MetaProb achieved the

best performances in terms of average F-measure.

3.4 Result on long single-end reads
Table 2 reports the results of the experimental comparison among

MetaProb, BiMeta and AbundanceBin on long reads datasets.

MetaProb is the best algorithm in 8 out of 9 cases, and very close to

AbundanceBin in the remaining case. Its average F-measure is very

high (0.968), 10% higher than BiMeta and 25% higher than

AbundanceBin. The only case (R9) in which the value of F-measure

is under 90% is due to a low precision caused by a unbalanced data-

set with several species and different kind of phylogenetic distance,

as we can see in short read datasets.

Fig. 3. Precision and recall of various binning algorithms on short paired-end

reads datasets. The datasets L are highly unbalanced

Fig. 2. Precision and recall of various binning algorithms on short paired-end

reads datasets (S and MiSeq). These datasets are varied in terms of number

of species and abundance ratios

Table 2. F-measure on long single-end read datasets R

F-Measure Abundance Bin BiMeta MetaProb

R1 0.674 0.609 0.971

R2 0.667 0.773 0.968

R3 0.672 0.780 0.928

R4 0.686 0.992 0.993

R5 0.709 0.988 0.998

R6 0.761 0.953 0.994

R7 0.950 0.890 0.986

R8 0.926 0.980 0.994

R9 0.891 0.860 0.881

Average 0.771 0.870 0.968

Best results are in bold.
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Figure 4 shows the detailed precision and recall for all the data-

sets R. Clearly MetaProb outperforms the competitors in terms of

precision, and in most cases also in terms of recall. Moreover, the

performances are quite stable for both these metrics. These results

show how the statistical standardization performed by MetaProb

has an even higher impact in the performances when long reads are

analyzed.

3.5 Estimating the number of species
The estimation of the number of species C is in general a very diffi-

cult task. To have a complete overview of the performance of

MetaProb, when the number of species is unknown, we devised two

tests. First of all we evaluated the variations of precision, recall and

F-measure as a function of the number of species C of k-means. In a

second test we compared the SpeciesNumber estimator, described in

Section 2.3, and the estimator of MetaCluster 5, that tries to solve

the same problem.

The first analysis is necessary to evaluate how the performances

of MetaProb are affected when an incorrect number of species is

used. The data reported refer to the dataset with the largest number

of species S10_S, that contains 30 species.

In Figure 5 we report all the performance metrics while varying

the number of species from 10 to 50. We observe that if the number

of species increases, the precision improves while the recall de-

creases. On the other hand if the number of species is underesti-

mated the recall improves and the precision worsens. The F-measure

follows the major variation between precision and recall, however

its peak is at the correct value of C¼30, see Figure 5. From this

study we can see that, if we use a number of species C in the broad

range [20,50], without knowing its correct value, still we have an F-

measure that is comparable with the best F-measure obtained for the

correct value of C.

In the second test we compare the estimation of number of spe-

cies of MetaProb and MetaCluster on the datasets with the largest

number of reads and largest number of species that best represents

the real metagenomes. As we can see in Table 3 both MetaProb and

MetaCluster tend to overestimate the correct number of species C,

except for S10 S dataset in which MetaCluster underestimates the

value of C. However the prediction of MetaProb overestimates the

number of species C just by a small amount compared to

MetaCluster. For example MetaCluster predicts twice the number

of clusters for S7, 7 times more species for S8 and of about 9 times

more clusters for S9. Instead MetaProb, on the same datasets, over-

estimates only by 1 cluster in S7 and S8 and 2 times more clusters in

S9. In S10 S MetaCluster underestimates the number of clusters

from 30 to 16, instead the prediction of MetaProb was 31, very

close to the actual value. In the most realistic metagenome

MiSeq_a1, MetaProb estimates the correct number of clusters,

whereas MetaCluster overestimates this value. Both methods tend to

overestimate the number of species for the dataset MiSeq_a2, how-

ever the predictions are not too far from the correct value. If we con-

sider the F-measures we can see that MetaProb has the highest

scores for all datasets, and that these values are comparable with the

best F-measures obtained when the number of species is known.

3.6 Results on real metagenome
We also ran our tool using a real metagenome dataset. We chose

one DNA stool samples of a female from the Human Microbiome

Project (SRR1804065), generated using Illumina, also used in

(Sobih et al., 2016). The average read length is 100 bp and the total

number of reads from the sample was 43 747 562. This time,

Fig. 4. Precision and recall of various binning algorithms on long single-end

reads datasets

Fig. 5. Precision, recall and F-measure on S10_S dataset as a function of the

number of species C of k-means

Table 3. Estimating the number of species C: comparison between

MetaProb and MetaCluster. The best results are in bold

MetaCluster Precision Recall F-measure C est. C real

S7 0.9256 0.6711 0.7781 9 5

S8 0.7363 0.3533 0.4775 35 5

S9 0.8255 0.4519 0.5841 133 15

S10_S 0.4064 0.0278 0.0521 16 30

MiSeq_a1 0.8828 0.4909 0.6309 16 10

MiSeq_a2 0.8385 0.3926 0.5348 14 10

MetaProb Precision Recall F-measure C est. C real

S7 0.8179 0.7453 0.7799 6 5

S8 0.7393 0.7536 0.7464 6 5

S9 0.8723 0.8168 0.8437 31 15

S10_S 0.4321 0.5142 0.4696 31 30

MiSeq_a1 0.6598 0.6580 0.6589 10 10

MiSeq_a2 0.7678 0.6206 0.6864 15 10
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however, the ‘ground truth’ was not available. Solely with the pur-

pose to evaluate our method on real data, as many other studies, we

use BLAST to map the reads against all bacterial genomes, and filter

out the reads that do not map to any genome. If two paired-end

reads do not map on the same genome we discard them. After this

filter 2 531 376 reads can be mapped to one or more species, with a

sequence identity of 95%. We run MetaProb on this dataset with de-

fault parameters, along with the estimation of the number of clus-

ters. MetaProb reports 9 clusters of various sizes. In Table 4 we

show the resulting clusters in order of size. For each cluster we re-

port the majority species, the precision of the cluster, the abundance

rate of the cluster, and the abundance rate of the majority species.

The cluster abundance rate is computed as the size of clusters div-

ided by the total number of reads. The abundance rate of the major-

ity species is the number of reads, from a given cluster, assigned to

the majority species divided by the total number of reads. The most

abundant species is Bacteroides vulgatus, with a total abundance of

51%, which was also reported as the most abundant species in

human feces (Qin et al., 2010). Other abundant species like

Parabacteroides distasonis, Faecalibacterium prausnitzii and

Bacteroides salanitroni can also be detected with a relative high pre-

cision (greater than 65%). These bacteria are also among the most

abundant species in stool samples (Qin et al., 2010). Other bacteria

associated with feces are also discovered, like Bacteroides thetaio-

taomicron and Odoribacter splanchnicus, but with a low precision.

If we further analyze the clusters without a strong majority species,

like clusters 5 and 9, we found that the majority of reads belong to

the same family. However, this study does not cover the low abun-

dance species. A possible setup to expand the taxonomy annotation

of all species, is to filter out the most abundant species and rerun

MetaProb on the remaining reads.

3.7 Time performances
Besides the quality of clustering, we assessed also the time perform-

ances of all the tools. All the experiments were performed on a lap-

top equipped with Intel core i7-4510U CPU @ 2.00G Hz and 16 GB

of RAM.

Metaprob is implemented in Cþþ, and exploits multithreading

(as MetaCluster). Table 5 shows the average time for the analysis of

short and long reads datasets. MetaProb is an order of magnitude

faster than AbundanceBin and BiMeta both on short and long reads.

On short reads MetaCluster is the fastest algorithms, but the per-

formances of MetaProb are comparable. In details, MetaProb is ac-

tually faster than MetaCluster on 12 out of 18 short read datasets.

(data shown in the Supplementary Material, Tables 3 and 4).

4 Conclusion and future work

Binning metagenomics reads remains a crucial step in metagenomics

analysis. In this work we presented MetaProb, an assembly-assisted

approach for reference-free metagenomic binning. Our approach

can deal with short and long reads in a novel probabilistic frame-

work, by using probabilistic sequence signatures. We compared the

binning performances over several short and long reads datasets

against other state-of-art binning algorithms, showing that

MetaProb achieves in most cases the best performances in terms of

F-measure. The estimation of the number of species in a metage-

nomic sample can be performed with MetaProb, adding a degree of

freedom in the analysis. On a real fecal metagenomic data MetaProb

was able to detect the most abundant species with high precision.

MetaProb is also much faster than AbundanceBin and BiMeta, and

it has time performances comparable to those of MetaCluster 5. In

the future we plan to extend the features of MetaProb with the abil-

ity to annotate each read with the taxonomy.

Funding

This work was partially supported by the Italian MIUR project

PRIN20122F87B2.

Conflict of Interest: none declared.

References

Apostolico,A. and Denas,O. (2008) Fast algorithms for computing sequence

distances by exhaustive substring composition. Algorithms Mol. Biol., 3,

13.

Apostolico,A. et al. (2011) Efficient algorithms for the discovery of gapped

factors. Algorithms Mol. Biol., 6, 1–10.

Apostolico,A. et al. (2014). Alignment free sequence similarity with bounded

hamming distance. In: Proceedings of Data Compression Conference,

DCC’14. IEEE, pp. 183–192.

Apostolico,A. et al. (2016) Sequence similarity measures based on bounded

hamming distance. Theor. Comput. Sci., 638, 76–90.

Chatterji,S. et al. (2008). Research in Computational Molecular Biology: 12th

Annual International Conference, RECOMB 2008, Singapore, March 30–

April 2, 2008. In: Proceedings, chapter CompostBin: A DNA Composition-

Based Algorithm for Binning Environmental Shotgun Reads. Springer,

Berlin, Heidelberg, pp. 17–28.

Chor,B. et al. (2009) Genomic DNA k-mer spectra: models and modalities.

Genome Biol., 10, R108.

Comin,M. and Antonello,M. (2013) Fast Computation of Entropic Profiles

for the Detection of Conservation in Genomes. Springer, Berlin, Heidelberg,

pp. 277–288.

Comin,M. and Antonello,M. (2014) Fast entropic profiler: an information the-

oretic approach for the discovery of patterns in genomes. IEEE/ACM Trans.

Comput. Biol. Bioinf., 11, 500–509.

Comin,M. and Antonello,M. (2016) On the comparison of regulatory se-

quences with multiple resolution entropic profiles. BMC Bioinformatics, 17,

1–12.

Table 4. Experiment on real fecal metagenome

Cluster Majority species Precision Cluster Species

Abund. Abund.

1 Bacteroides vulgatus 80% 49.1% 39.1%

2 Bacteroides vulgatus 56% 22.1% 12.4%

3 Parabacteroides distasonis 66% 7.2% 4.8%

4 Bacteroides salanitronis 65% 6.9% 4.5%

5 Bacteroides thetaiotaomicron 28% 4.9% 1.4%

6 Parabacteroides distasonis 40% 3.4% 1.3%

7 Faecalibacterium prausnitzii 77% 2.8% 2.2%

8 Odoribacter splanchnicus 53% 2.4% 1.3%

9 Parabacteroides distasonis 33% 1.2% 0.4%

Best results are in bold.

Table 5. Average running time on short and long read datasets

Average Time AbundanceBin MetaCluster BiMeta MetaProb

Short Read 2161.772 144.715 1047.715 164.585

Long Read 1969.560 – 1652.692 286.042

Best results are in bold.

i574 S.Girotto et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/32/17/i567/2450796 by guest on 26 January 2022

Deleted Text: &hx201C;
Deleted Text: &hx201D; 
Deleted Text: ,
Deleted Text: ,
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btw466/-/DC1
Deleted Text: F


Comin,M. and Verzotto,D. (2012) Whole-genome phylogeny by virtue of unic

subwords. In: 2012 23rd International Workshop on Database and Expert

Systems Applications (DEXA), pp. 190–194.

Comin,M. and Verzotto,D. (2014) Beyond fixed-resolution alignment-free

measures for mammalian enhancers sequence comparison. IEEE/ACM

Trans. Comput. Biol. Bioinf., 11, 628–637.

Comin,M. et al. (2015) Clustering of reads with alignment-free measures and

quality values. Algorithms Mol. Biol., 10, 4.

Eisen,J.A. (2007) Environmental shotgun sequencing: its potential and chal-

lenges for studying the hidden world of microbes. PLoS Biol, 5, e82.

Fernandes,F. et al. (2009) Entropic profiler – detection of conservation in gen-

omes using information theory. BMC Res. Notes, 2, 1–8.

Hamerly,G. and Elkan,C. (2003) Learning the K in K-Means. In: Advances in

Neural Information Processing Systems 16 (NIPS), pp. 281–288.

Huson,D.H. et al. (2007) Megan analysis of metagenomic data. Genome Res.,

17, 377–386.

Kantorovitz,M.R. et al. (2007) A statistical method for alignment-free com-

parison of regulatory sequences. Bioinformatics, 23,

Kelley,D.R. et al. (2010) Quake: quality-aware detection and correction of

sequencing errors. Genome Biol., 11, 1–13.

Lindgreen,S. et al. (2016) An Evaluation of the Accuracy and Speed of

Metagenome Analysis Tools. Scientific Reports 6, 19233.

Lippert,R.A. et al. (2002) Distributional regimes for the number of k-word

matches between two random sequences. PNAS, 99, 13980–13989.

Magoc,T. et al. (2013) Gage-b: an evaluation of genome assemblers for bacter-

ial organisms. Bioinformatics, 29, 1718–1725.

Mande,S.S. et al. (2012) Classification of metagenomic sequences: methods

and challenges. Brief. Bioinf., 13, 669–681.

Ounit,R. et al. (2015) Clark: fast and accurate classification of metagenomic and

genomic sequences using discriminative k-mers. BMC Genomics, 16, 1–13.

Parida,L. et al. (2014a) Entropic profiles, maximal motifs and the discovery of

significant repetitions in genomic sequences. In: Brown D. and Morgenstern

( B.eds.) Algorithms in Bioinformatics, Volume 8701 of Lecture Notes in

Computer Science. Springer, Berlin, Heidelberg, pp. 148–160.

Parida,L. et al. (2014b) Irredundant tandem motifs. Theor. Comput. Sci., 525,

89–102. (Advances in Stringology).

Pizzi,C. (2016) Missmax: alignment-free sequence comparison with mis-

matches through filtering and heuristics. Algorithms Mol. Biol., 11, 1–10.

Qin,J. et al. (2010) A human gut microbial gene catalogue established by meta-

genomic sequencing. Nature, 464, 59–65.

Richter,D.C. et al. (2008) MetaSim: a sequencing simulator for genomics and

metagenomics. PloS One, 3, e3373.

Segata,N. et al. (2012) Metagenomic microbial community profiling using

unique clade-specific marker genes. Nat. Methods, 9,

Sims,G.E. et al. (2009) Alignment-free genome comparison with feature

frequency profiles (ffp) and optimal resolutions. Proc. Natl. Acad. Sci.,

106,

Sobih,A. et al. (2016) Metaflow: Metagenomic profiling based on whole-

genome coverage analysis with min-cost flows. bioRxiv.

Song,K. et al. (2014) New developments of alignment-free sequence compari-

son: measures, statistics and next-generation sequencing. Brief. Bioinf., 15,

343–353.

Ulitsky,I. et al. (2006) The average common substring approach to phyloge-

nomic reconstruction. J. Comput. Biol., 13, 336–350.

Vinh,L.V. et al. (2015) A two-phase binning algorithm using l-mer frequency

on groups of non-overlapping reads. Algorithms Mol. Biol., 10, 1–12.

Wang,Y. et al. (2012) Metacluster 5.0: a two-round binning approach for

metagenomic data for low-abundance species in a noisy sample.

Bioinformatics, 28,

Wood,D. and Salzberg,S. (2014) Kraken: ultrafast metagenomic sequence

classification using exact alignments. Genome Biol., 15,

Wu,Y.W. and Ye,Y. (2011) A novel abundance-based algorithm for binning

metagenomic sequences using l-tuples. J. Comput. Biol., 18, 523–534.

Yang,B. et al. (2010). ACM BCB’10, chapter Metacluster: unsupervised bin-

ning of environmental genomic fragments and taxonomic annotation.

ACM, New York, USA.

Zeller,G. et al. (2014) Potential of fecal microbiota for early-stage detection of

colorectal cancer. Mol. Syst. Biol., 10, 766.

MetaProb: accurate metagenomic reads binning i575

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/32/17/i567/2450796 by guest on 26 January 2022


	hcw104-TF1
	hcw104-TF2
	hcw104-TF3
	hcw104-TF4

