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Abstract

We prove by Bernstein inequality that Gauss-Jacobi(-Lobatto) nodes
of suitable order are L*° norming meshes for algebraic polynomials, in
a wide range of Jacobi parameters. A similar result holds for trigono-
metric polynomials on subintervals of the period, by a nonlinear trans-
formation of such nodes and Videnskii inequality.
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1 Univariate L*° norming meshes

In this note we study L*° norming meshes for univariate function spaces, in
particular Jacobi norming meshes for univariate algebraic polynomials, and
for trigonometric polynomials on subintervals of the period.

Given a sequence {S,} of finite dimensional spaces of real-valued (or
complex-valued) continuous functions on a compact interval [a,b], S, C
C([a,b]), we term L*° norming mesh a sequence of sets X,, C [a, b] such that

[1Pllfa) < Cllpllx, » VP € Su, (1)

for some constant C' > 0 (that we term “norming constant”), where || f||p
denotes the L* norm of a bounded function f on a continuous or discrete
set D. Since X, turns out to be S,-determining (i.e., a function p € S,, van-
ishing there vanishes everywhere in [a, b]), necessarily card(X,,) > dim(S,,).

We begin with the following Lemma, whose elementary proof follows the
lines of [15] via Bernstein-like inequalities.
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Lemma 1 Let {S,} be a sequence of finite dimensional spaces of differen-
tiable functions defined in the compact interval [a,b]. Assume that for any
p € Sy and x € (a,b) the following Bernstein-like inequality holds

P ()] < én(@) Ipllap) » V2 € (a,D) (2)

where ¢, € LY (a,b), and define
Faw) = [ ons)ds 3)

Let {& = gi(")’ i=1,...,N = N,} be a set of points such that a < & <
& < <&n <b, and for a fized o € (0,1)

1
max {Fo(€0), Fol)) ~ Fulen) 5 maxdi p <o (@)
where 52 = Fn(ngrl) — Fn(fl), 1= 1, e ,N — 1.
Then, X, = {£§n)}, n =1,2,..., is a norming mesh for S, on |a,b],
such that 1
Pl < Ipllx, . ¥p € Sy )

Proof. Fix p € S, and = € [a,b], and let § € X,,. By the fundamental
theorem of calculus and the Bernstein-like inequality

max{&;,x}

< p(&)| + / 1p'(s)] ds
min{&;,z}

p()] = \p@n T /5 P (5) ds

max{&;,zr}

< Ip(E)] + 12l / bn(s) ds

min{¢;,x}
= [p(&)| + Iplljap) 1Fn(®) — Ful&)] -

Now, F),(z) is a nondecreasing function with range [0, £, (b)], and y,, =
F,.(z) belongs to at least one (and at most two) of the (possibly degenerate)
intervals [0, Fy,(€1)], [Fn(En), Fn(b)], [Fn(&i), Fn(&is1)], 1 <i < N —1. Thus
there exists an index ¢ = i(x, n) such that {yn —F, (fi(%n)){ < o, from which
we get

p(@)] < [P(Eitam)| + allplliay < llpllx, + ollpllap -

and hence (B). O

Remark 1 We stress that the present formulation is more general than
[15, Prop. 1]. In fact, there the range [0, F},(b)] is partitioned by equally
spaced points (including the endpoints), whereas here the distribution of the
points {F},(§;)} has only to satisfy inequality (4)) (and the endpoints are not
necessarily included).



Remark 2 In the case when

on(z) =no(z), ¢€ Ll(a,b), (6)

which is relevant to polynomial and trigonometric spaces in view of the
classical Bernstein and Videnskii inequalities (see the next subsections), we
have

Fo(e) =nF(x), F(zx)= [ ¢é(s)ds, (7)

and condition (@) becomes
wax {P() F0) = Plew), 5 max (Flen) - F@) [ < 2. (6)

1.1 Jacobi polynomial meshes

We focus now on norming meshes of Jacobi type for algebraic polynomials,
namely for S, = P, = span{l,z,2%,...,2"}. Let P](Va’ﬁ) be the Jacobi
orthogonal polynomial of degree N, where o, > —1, let g](\‘;"ﬁ) be the N
Gauss-Jacobi points (the zeros of P](Va’ﬁ)), and let gﬁﬁ@"ﬁ) be the N Gauss-

Jacobi-Lobatto points (the zeros of P](\,a;g) together with the endpoints +1);
cf., e.g., [14] and [12] §18].
Proposition 1 The set sequence { 7(7%6)}, n > 1, 1s a polynomial mesh on

[—1,1], namely

m
L <cC wpy, C1=———  VpeP,, 9
Pl < Calpllgge » C1=———, Vpe Py ©)

provided that m > vw, where

( 1 b € [~3,3]
v=uv(a,B) = maX{O‘TH,#}, a>%, or 0<a§%and |ﬁ|>%
max{%,‘%“g}, ﬁ>%,0r O<5§%and ]a\>%
(10)

Similarly, for the set sequence {gﬁ(aﬁ)}, n > 1, we have that

m
HPH[fl,l} <O HpHgﬁm@Q , Oy = m , Vp € Py, (11)

provided that m > v /2.



Remark 3 Observe that in Proposition 1 not all parameters «, 8 > —1
are covered. There is a small region of excluded nonpositive parameters,
that is (o, B) € (—1,—-1/2) x (=1,0]U[-1/2,0] x (—1,—1/2), where precise
quantitative bounds such as (I2)), (I3)) and ([I4]), were reported in [§] to be
(and seem still to be) missing in the literature.

Proof of Proposition 1. Let 04,1 =1,..., N, denote the zeros of P](Va’ﬁ) (cos(0))
with 0 <Oy <--- <Oyn <7 (ie, Q](\?’B) = {cos(On,)}). There is a vast
literature on estimating the zeros of Jacobi polynomials, with bounds that
are typically valid in (more or less) restricted ranges of parameters; cf., e.g.,
[6], [7, 18, [12], [14] with the references therein. For «, 3 € [—1,1] the classical
inequality -1/ .

i— T T

Ni1jz NS §ap !
holds, cf. [12, §18.16]. Now, by Bernstein polynomial inequality in (@) we
have ¢(s) = 1/vV1—s%, s € (a,b) = (—1,1), and F(z) = 7™ — arccos(z) in
([@). Setting En—ijt1 = cos(fny), ¢ =1,..., N, and taking N = mn in (I2),
we can write the estimate

=1,...,N (12)

max {F(€). F() = Fin) 5 max (Fl&n) - FI) |

1
5 max (ON,iv1 — HN,i)}

/2 T 3 /4 ™ T T
< max , , = < —==—,
N+1/2N+12N+1/2) N+1/2 "N mn

and thus by (8) and Lemma 1 we get (@) provided that o = w/m < 1.
On the other hand, for a > 0, 8 > —1 the estimate

= max {77 —OnnN, 0N,

(i—l—i:oz/Q)ﬂ' (i—l—cz/2)7r

<On; < ,1=1,...,N, (13)

where N = N + (a + 3 + 1)/2, was obtained in [, Lemma 4.1], along with

(i+(at1)/2)7r < Ov: < (z'—i—(oz—i:l)/?)w
N

N

which is valid for « > —1, 8 > 0. Then for « > 1/2, or 0 < a < 1/2 and
|8l > 1/2, and N = mn, we get

,i=1,...,N, (14)

32

1
— max ((9]\[7@'4_1 — GNJ‘)} < max{

B+3 a+2 1
max 7T—(9N7N,6N71,2 —

oN * 2N 'N

{ﬁ—i—?) a—l—2}_mr<1/7r s



from which (@) follows, provided that o = vw/m < 1. A chain of estimates of
the same kind gives the third instance in (I0) when g > 1/2, or 0 < 8 < 1/2
and |a| > 1/2, in view of (I4).

The proof in the case of the Gauss-Jacobi-Lobatto points is similar since
the same zeros are involved, with the difference that the interval endpoints
belong to the family, so that F'(§;) = 0 = F(1)—F(&mnn+2) and hence a factor
1/2 appears in the final estimate, which gives the condition o = vm/(2m) < 1
when applying Lemma 1. [

Remark 4 The fact that n + 1 Gauss-Jacobi(-Lobatto) points form good
interpolation meshes (i.e., have a slowly increasing Lebesgue constant A,,) is
a well-known result by Szeg6 (cf., e.g., [11]), who showed that A,, = O(logn)
for -1 < o, < 1/2 and A, = O(n"*Y/2), v = max(a, ), otherwise.
Clearly, the polynomial inequality ||p||(—1,1) < Cn [|pllx,,, Cn = Ay, holds for

every p € P, with X,, = gffﬁf) or X, = gﬁﬁﬁ‘ff). Here we have shown that,
for the displayed ranges of a, 3, a suitable number of Gauss-Jacobi(-Lobatto)
points gives instead a polynomial inequality with C,, = C.

Indeed, estimate (II) was already obtained by Bernstein inequality in
[15] in the special case « = 8 = —1/2 (the Chebyshev-Lobatto points of
the first kind). As recalled there, in this instance there is a slightly tighter
classical estimate by Ehlich and Zeller [5] (see also [2]). On the other hand,
even though they are not fully tight, the present estimates (@)-(I1]) hold
for a wide range of parameters «, 5, that includes all nonnegative couples,
for example the ultraspherical instances of Gauss-Legendre(-Lobatto) points
(o = 8 =0), and Chebyshev(-Lobatto) points of the second kind (o = 5 =

1/2).

1.2 Jacobi trigonometric meshes

“Subperiodic” trigonometric approximation, that is approximation by trigono-
metric polynomials on subintervals of the period, has received some attention
recently, especially for its connections with multivariate polynomial approx-
imation and cubature on domains defined by circular arcs, such as sections
of disk, sphere, torus; cf., e.g., [3, [4] 10, 13] and the references therein.

In the subperiodic setting, L°° norming meshes for trigonometric poly-
nomials have been studied for example in [9] [I5]. Here, with reference to
Lemma 1 we have that

Sp = Ty ([—w,w]) = span{1, cos(u),sin(u), . .., cos(nu),sin(nu), u € [—w,w]},

the space of trigonometric polynomials of degree not exceeding n restricted
to an angular interval [—w,w] with 0 < w < 7. The role of (2) is played by
the following Videnskii inequality, valid for any ¢ € T, ([—w,w])

n

| <
V1= cos?(w/2)/ cos?(u/2)

5

t'(w) [t —ww) » v € (mwsw), (15)



cf. [I, E.19, p. 243]. Moreover, we shall resort to the following nonlinear
transformation 7 : [—1,1] — [~w,w],

7(z) = 2arcsin <sin (g) x) , ve[-1,1], (16)

that plays a key role in the theory of subperiodic interpolation and quadra-
ture, cf. [3] 4].
We are now ready to state and prove the following

Proposition 2 Let v = v(a, B) be defined as in (1), and the transforma-
y y (avﬁ) (avﬁ)
tion T as in (I6). Then, the set sequences § T Gy and ST\ GL, o) ¢

n > 1, are norming meshes for trigonometric polynomials on [—w,w], 0 <
w < m, namely

[l o) < G HtHT(gmm) y Or=——p—, Ve Ty([~w,wl),  (17)
provided that m > 2vm, and
< = —
e < Coltl (gpnmy » O = e VEETallel) (19

provided that m > vr.

Proof. By Videnskii inequality (IH), in (7)) we have
“ 1
Fw - |
—w /1 —cos?(w/2)/ cos?(v/2)

Let Oy, @ = 1,..., N, denote the zeros of P](Va’ﬁ)(cos(«?)) with 0 < On1 <
-+ < OnnN <, and set

. . w
En—it1 = T(cos(fn,;)) = 2arcsin <sm (5) COSWN,z‘)) )
i=1,...,N. Then
F(&) = 7+ 2arcsin (COS(HN,N—iH))

dv = 7 + arcsin <M> .

sin(w/2)

=m+2 (g - arccos(cos(HN,N_iH))) =2(m—ONnN—it1) »
from which follow
F(&)=2(r—0nnN), Flw)—F(n)=2r—2(m—60n1) =20N1 ,
and
max {F(&iv1 = F(&)} = 2max {Oniv1 —Oni} -

The proof now proceeds like that of Proposition 1, taking into account a
new factor equal to 2 appearing in the estimates. [

We conclude by observing that, as already obtained in [I5] for the 7-
image of the Gauss-Chebyshev-Lobatto points (improving the estimates of
[9]), the norming constants Cy and Cy are independent of w.
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