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Abstract

We prove by Bernstein inequality that Gauss-Jacobi(-Lobatto) nodes
of suitable order are L∞ norming meshes for algebraic polynomials, in
a wide range of Jacobi parameters. A similar result holds for trigono-
metric polynomials on subintervals of the period, by a nonlinear trans-
formation of such nodes and Videnskii inequality.
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1 Univariate L
∞ norming meshes

In this note we study L∞ norming meshes for univariate function spaces, in
particular Jacobi norming meshes for univariate algebraic polynomials, and
for trigonometric polynomials on subintervals of the period.

Given a sequence {Sn} of finite dimensional spaces of real-valued (or
complex-valued) continuous functions on a compact interval [a, b], Sn ⊂
C([a, b]), we term L∞ norming mesh a sequence of sets Xn ⊂ [a, b] such that

‖p‖[a,b] ≤ C ‖p‖Xn , ∀p ∈ Sn , (1)

for some constant C > 0 (that we term “norming constant”), where ‖f‖D
denotes the L∞ norm of a bounded function f on a continuous or discrete
set D. Since Xn turns out to be Sn-determining (i.e., a function p ∈ Sn van-
ishing there vanishes everywhere in [a, b]), necessarily card(Xn) ≥ dim(Sn).

We begin with the following Lemma, whose elementary proof follows the
lines of [15] via Bernstein-like inequalities.
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Lemma 1 Let {Sn} be a sequence of finite dimensional spaces of differen-
tiable functions defined in the compact interval [a, b]. Assume that for any
p ∈ Sn and x ∈ (a, b) the following Bernstein-like inequality holds

|p′(x)| ≤ φn(x) ‖p‖[a,b] , ∀x ∈ (a, b) , (2)

where φn ∈ L1
+(a, b), and define

Fn(x) =

∫ x

a
φn(s) ds . (3)

Let {ξi = ξ
(n)
i , i = 1, . . . , N = Nn} be a set of points such that a ≤ ξ1 <

ξ2 < · · · < ξN ≤ b, and for a fixed σ ∈ (0, 1)

max

{

Fn(ξ1) , Fn(b)− Fn(ξN ) ,
1

2
max

i
δi

}

≤ σ , (4)

where δi = Fn(ξi+1)− Fn(ξi), i = 1, . . . , N − 1.

Then, Xn = {ξ(n)i }, n = 1, 2, . . . , is a norming mesh for Sn on [a, b],
such that

‖p‖[a,b] ≤
1

1− σ
‖p‖Xn , ∀p ∈ Sn . (5)

Proof. Fix p ∈ Sn and x ∈ [a, b], and let ξi ∈ Xn. By the fundamental
theorem of calculus and the Bernstein-like inequality

|p(x)| =
∣

∣

∣

∣

p(ξi) +

∫ x

ξi

p′(s) ds

∣

∣

∣

∣

≤ |p(ξi)|+
∫ max{ξi,x}

min{ξi,x}
|p′(s)| ds

≤ |p(ξi)|+ ‖p‖[a,b]
∫ max{ξi,x}

min{ξi,x}
φn(s) ds

= |p(ξi)|+ ‖p‖[a,b] |Fn(x)− Fn(ξi)| .
Now, Fn(x) is a nondecreasing function with range [0, Fn(b)], and yn =

Fn(x) belongs to at least one (and at most two) of the (possibly degenerate)
intervals [0, Fn(ξ1)], [Fn(ξN ), Fn(b)], [Fn(ξi), Fn(ξi+1)], 1 ≤ i ≤ N − 1. Thus
there exists an index i = i(x, n) such that

∣

∣yn − Fn

(

ξi(x,n)
)
∣

∣ ≤ σ, from which
we get

|p(x)| ≤ |p(ξi(x,n))|+ σ‖p‖[a,b] ≤ ‖p‖Xn + σ‖p‖[a,b] ,
and hence (5). �

Remark 1 We stress that the present formulation is more general than
[15, Prop. 1]. In fact, there the range [0, Fn(b)] is partitioned by equally
spaced points (including the endpoints), whereas here the distribution of the
points {Fn(ξi)} has only to satisfy inequality (4) (and the endpoints are not
necessarily included).
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Remark 2 In the case when

φn(x) = nφ(x) , φ ∈ L1
+(a, b) , (6)

which is relevant to polynomial and trigonometric spaces in view of the
classical Bernstein and Videnskii inequalities (see the next subsections), we
have

Fn(x) = nF (x) , F (x) =

∫ x

a
φ(s) ds , (7)

and condition (4) becomes

max

{

F (ξ1) , F (b)− F (ξN ) ,
1

2
max

i
(F (ξi+1)− F (ξi))

}

≤ σ

n
. (8)

1.1 Jacobi polynomial meshes

We focus now on norming meshes of Jacobi type for algebraic polynomials,

namely for Sn = Pn = span{1, x, x2, . . . , xn}. Let P
(α,β)
N be the Jacobi

orthogonal polynomial of degree N , where α, β > −1, let G(α,β)
N be the N

Gauss-Jacobi points (the zeros of P
(α,β)
N ), and let GL(α,β)

N be the N Gauss-

Jacobi-Lobatto points (the zeros of P
(α,β)
N−2 together with the endpoints ±1);

cf., e.g., [14] and [12, §18].

Proposition 1 The set sequence
{

G(α,β)
mn

}

, n ≥ 1, is a polynomial mesh on

[−1, 1], namely

‖p‖[−1,1] ≤ C1 ‖p‖G(α,β)
mn

, C1 =
m

m− νπ
, ∀p ∈ Pn , (9)

provided that m > νπ, where

ν = ν(α, β) =































1 α, β ∈
[

−1
2 ,

1
2

]

max
{

α+2
2 , β+3

2

}

, α > 1
2 , or 0 < α ≤ 1

2 and |β| > 1
2

max
{

β+2
2 , α+3

2

}

, β > 1
2 , or 0 < β ≤ 1

2 and |α| > 1
2

(10)

Similarly, for the set sequence
{

GL(α,β)
}

, n ≥ 1, we have that

‖p‖[−1,1] ≤ C2 ‖p‖GL(α,β)
mn+2

, C2 =
m

m− νπ/2
, ∀p ∈ Pn , (11)

provided that m > νπ/2.
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Remark 3 Observe that in Proposition 1 not all parameters α, β > −1
are covered. There is a small region of excluded nonpositive parameters,
that is (α, β) ∈ (−1,−1/2)× (−1, 0] ∪ [−1/2, 0]× (−1,−1/2), where precise
quantitative bounds such as (12), (13) and (14), were reported in [8] to be
(and seem still to be) missing in the literature.

Proof of Proposition 1. Let θN,i, i = 1, . . . , N , denote the zeros of P
(α,β)
N (cos(θ))

with 0 < θN,1 < · · · < θN,N < π (i.e., G(α,β)
N = {cos(θN,i)}). There is a vast

literature on estimating the zeros of Jacobi polynomials, with bounds that
are typically valid in (more or less) restricted ranges of parameters; cf., e.g.,
[6, 7, 8, 12, 14] with the references therein. For α, β ∈ [−1

2 ,
1
2 ] the classical

inequality
(i− 1/2)π

N + 1/2
≤ θN,i ≤

iπ

N + 1/2
, i = 1, . . . , N (12)

holds, cf. [12, §18.16]. Now, by Bernstein polynomial inequality in (6) we
have φ(s) = 1/

√
1− s2, s ∈ (a, b) = (−1, 1), and F (x) = π − arccos(x) in

(7). Setting ξN−i+1 = cos(θN,i), i = 1, . . . , N , and taking N = mn in (12),
we can write the estimate

max

{

F (ξ1) , F (1)− F (ξN ) ,
1

2
max

i
(F (ξi+1)− F (ξi))

}

= max

{

π − θN,N , θN,1 ,
1

2
max

i
(θN,i+1 − θN,i)

}

≤ max

{

π/2

N + 1/2
,

π

N + 1/2
,

3π/4

N + 1/2

}

=
π

N + 1/2
<

π

N
=

π

mn
,

and thus by (8) and Lemma 1 we get (9) provided that σ = π/m < 1.
On the other hand, for α > 0, β > −1 the estimate

(i− 1 + α/2)π

Ñ
< θN,i <

(i+ α/2)π

Ñ
, i = 1, . . . , N , (13)

where Ñ = N + (α+ β + 1)/2, was obtained in [8, Lemma 4.1], along with

(i+ (α− 1)/2)π

Ñ
< θN,i <

(i+ (α+ 1)/2)π

Ñ
, i = 1, . . . , N , (14)

which is valid for α > −1, β > 0. Then for α > 1/2, or 0 < α ≤ 1/2 and
|β| > 1/2, and N = mn, we get

max

{

π − θN,N , θN,1 ,
1

2
max

i
(θN,i+1 − θN,i)

}

< π max

{

β + 3

2Ñ
,
α+ 2

2Ñ
,
1

Ñ

}

= π max

{

β + 3

2Ñ
,
α+ 2

2Ñ

}

=
νπ

Ñ
<

νπ

N
=

νπ

mn
,
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from which (9) follows, provided that σ = νπ/m < 1. A chain of estimates of
the same kind gives the third instance in (10) when β > 1/2, or 0 < β ≤ 1/2
and |α| > 1/2, in view of (14).

The proof in the case of the Gauss-Jacobi-Lobatto points is similar since
the same zeros are involved, with the difference that the interval endpoints
belong to the family, so that F (ξ1) = 0 = F (1)−F (ξmn+2) and hence a factor
1/2 appears in the final estimate, which gives the condition σ = νπ/(2m) < 1
when applying Lemma 1. �

Remark 4 The fact that n + 1 Gauss-Jacobi(-Lobatto) points form good
interpolation meshes (i.e., have a slowly increasing Lebesgue constant Λn) is
a well-known result by Szegö (cf., e.g., [11]), who showed that Λn = O(log n)
for −1 < α, β ≤ 1/2 and Λn = O(nγ+1/2), γ = max(α, β), otherwise.
Clearly, the polynomial inequality ‖p‖[−1,1] ≤ Cn ‖p‖Xn , Cn = Λn, holds for

every p ∈ Pn, with Xn = G(α,β)
n+1 or Xn = GL(α,β)

n+1 . Here we have shown that,
for the displayed ranges of α, β, a suitable number of Gauss-Jacobi(-Lobatto)
points gives instead a polynomial inequality with Cn ≡ C.

Indeed, estimate (11) was already obtained by Bernstein inequality in
[15] in the special case α = β = −1/2 (the Chebyshev-Lobatto points of
the first kind). As recalled there, in this instance there is a slightly tighter
classical estimate by Ehlich and Zeller [5] (see also [2]). On the other hand,
even though they are not fully tight, the present estimates (9)-(11) hold
for a wide range of parameters α, β, that includes all nonnegative couples,
for example the ultraspherical instances of Gauss-Legendre(-Lobatto) points
(α = β = 0), and Chebyshev(-Lobatto) points of the second kind (α = β =
1/2).

1.2 Jacobi trigonometric meshes

“Subperiodic” trigonometric approximation, that is approximation by trigono-
metric polynomials on subintervals of the period, has received some attention
recently, especially for its connections with multivariate polynomial approx-
imation and cubature on domains defined by circular arcs, such as sections
of disk, sphere, torus; cf., e.g., [3, 4, 10, 13] and the references therein.

In the subperiodic setting, L∞ norming meshes for trigonometric poly-
nomials have been studied for example in [9, 15]. Here, with reference to
Lemma 1 we have that

Sn = Tn([−ω, ω]) = span{1, cos(u), sin(u), . . . , cos(nu), sin(nu), u ∈ [−ω, ω]} ,

the space of trigonometric polynomials of degree not exceeding n restricted
to an angular interval [−ω, ω] with 0 < ω ≤ π. The role of (2) is played by
the following Videnskii inequality, valid for any t ∈ Tn([−ω, ω])

|t′(u)| ≤ n
√

1− cos2(ω/2)/ cos2(u/2)
‖t‖[−ω,ω] , u ∈ (−ω, ω) , (15)
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cf. [1, E.19, p. 243]. Moreover, we shall resort to the following nonlinear
transformation τ : [−1, 1] → [−ω, ω],

τ(x) = 2 arcsin
(

sin
(ω

2

)

x
)

, x ∈ [−1, 1] , (16)

that plays a key role in the theory of subperiodic interpolation and quadra-
ture, cf. [3, 4].

We are now ready to state and prove the following

Proposition 2 Let ν = ν(α, β) be defined as in (10), and the transforma-

tion τ as in (16). Then, the set sequences
{

τ
(

G(α,β)
mn

)}

and
{

τ
(

GL(α,β)
mn+2

)}

,

n ≥ 1, are norming meshes for trigonometric polynomials on [−ω, ω], 0 <
ω ≤ π, namely

‖t‖[−ω,ω] ≤ C1 ‖t‖τ
(

G
(α,β)
mn

) , C1 =
m

m− 2νπ
, ∀t ∈ Tn([−ω, ω]) , (17)

provided that m > 2νπ, and

‖t‖[−ω,ω] ≤ C2 ‖t‖τ
(

GL
(α,β)
mn+2

) , C2 =
m

m− νπ
, ∀t ∈ Tn([−ω, ω]) , (18)

provided that m > νπ.

Proof. By Videnskii inequality (15), in (7) we have

F (u) =

∫ u

−ω

1
√

1− cos2(ω/2)/ cos2(v/2)
dv = π + arcsin

(

sin(u/2)

sin(ω/2)

)

.

Let θN,i, i = 1, . . . , N , denote the zeros of P
(α,β)
N (cos(θ)) with 0 < θN,1 <

· · · < θN,N < π, and set

ξN−i+1 = τ(cos(θN,i)) = 2 arcsin
(

sin
(ω

2

)

cos(θN,i)
)

,

i = 1, . . . , N . Then

F (ξi) = π + 2arcsin (cos(θN,N−i+1))

= π + 2
(π

2
− arccos(cos(θN,N−i+1))

)

= 2 (π − θN,N−i+1) ,

from which follow

F (ξ1) = 2(π − θN,N ) , F (ω)− F (ξN ) = 2π − 2(π − θN,1) = 2θN,1 ,

and
max

i
{F (ξi+1 − F (ξi)} = 2max

i
{θN,i+1 − θN,i} .

The proof now proceeds like that of Proposition 1, taking into account a
new factor equal to 2 appearing in the estimates. �

We conclude by observing that, as already obtained in [15] for the τ -
image of the Gauss-Chebyshev-Lobatto points (improving the estimates of
[9]), the norming constants C1 and C2 are independent of ω.
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