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SOME REMARKS ON HARMONIC PROJECTION OPERATORS
ON SPHERES

ALCUNE OSSERVAZIONI SUI PROIETTORI ARMONICI
SU SFERE

VALENTINA CASARINO

Abstract. We give a survey of recent works concerning the mapping properties of joint

harmonic projection operators, mapping the space of square integrable functions on com-

plex and quaternionic spheres onto the eigenspaces of the Laplace–Beltrami operator and

of a suitably defined subLaplacian. In particular, we discuss similarities and differences

between the real, the complex and the quaternionic framework.

Sunto. Presentiamo un sunto di alcuni risultati recenti relativi alle proprietà degli ope-

ratori di proiezione armonica, che mappano lo spazio delle funzioni a quadrato sommabile

sulla sfera unitaria complessa e quaternionica sopra gli autospazi congiunti per l’operatore

di Laplace–Beltrami e per un sublaplaciano. Discutiamo, in particolare, analogie e dif-

ferenze fra il caso reale, quello complesso e quello quaternionico.

2010 MSC. Primary 43A85, 35A23, 33C55 ; Secondary 43A65 33C45.

Keywords. Complex and quaternionic spheres, subLaplacian, Laplace–Beltrami oper-

ator, joint spectral projections, Lp eigenfunction bounds, Jacobi polynomials, Zernike

polynomials

1. Introduction

According to a classical result (see [16, 14]), the space of square-integrable functions

on Sdn−1, where Sdn−1 denotes the unit sphere in Rdn, d = 1, 2, 4, may be decomposed as

direct sum of certain orthogonal subspaces, that is,

(1) L2(Sdn−1) =
⊕
ρ∈F

V ρ ,
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SOME REMARKS ON HARMONIC PROJECTION OPERATORS 3

where F = N if d = 1, F = N × N if d = 2, and F = {(`, `′) ∈ N × N : ` ≥ `′ ≥ 0)} if

d = 4.

The central concern of this paper consists in comparing the mapping properties of the

projection operators

(2) πρ : L2(Sdn−1)→ V ρ

as operators from Lp(Sdn−1) to L2(Sdn−1), 1 ≤ p ≤ 2, in the real, complex and quater-

nionic framework.

At the present stage, such properties are well known in the real and in the complex case.

More precisely, if d = 1, then πρ is the projection operator mapping L2(Sn−1) onto the

subspace of all spherical harmonics of fixed degree ρ, which is also, as is well known, an

eigenspace for the Laplace-Beltrami operator on the unit sphere Sn−1. In this framework,

C. Sogge [17, 20] proved that the Lp − L2 norm of πρ may be controlled by a suitable

power of the corresponding eigenvalue.

If d = 2, then πρ is the projection operator mapping L2(S2n−1) onto the subspace

consisting of all complex spherical harmonics of fixed bidegree. It turns out that that V ρ

is also a joint eigenspace for the the Laplace-Beltrami operator ∆S2n−1 and for a suitably

defined subLaplacian LS2n−1 . Sharp estimates for ‖πρ‖(p,2) in terms on the corresponding

eigenvalues were proved by the author [5], [6].

If d = 4, a “polynomial” description (that is, in terms of spherical harmonics) of V ρ is

more involved; in the quaternionic framework V ρ is instead usually characterized as the

joint eigenspace of the Laplace Beltrami operator ∆S4n−1 and of a subLaplacian LS4n−1 .

Recently, in collaboration with Paolo Ciatti we started the study of the quaternionic

joint spectral projection πρ. In the quaternionic context the picture is much more involved

than in the complex framework, mainly due to the loss of symmetry between the indices

` and `′. In this note, we briefly review the results in [8] and discuss some interesting

differences and analogies with respect to the real and the complex case. In a forthcoming

paper [9] we shall provide a detailed proof of sharp estimates for ‖πρ‖(p,2) for all 1 ≤ p ≤ 2

and for all possible values of ρ.
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The bounds for ‖πρ‖(p,2), interesting in themselves, also provide an essential tool to

approach some problems in harmonic analysis. In the real and complex framework, in

particular, they have been successfully applied in different contexts, such as the Lp summa-

bility of Bochner–Riesz means [18, 10], the unique continuation problem [13, 19, 20], and

Strichartz estimates for solutions of dispersive equations [4, 11].

The plan of the paper is as follows. In Section 2 we briefly describe some classical

results concerning the analysis on the spheres Sdn−1. In Section 3 we recall what is known

about the norm of πρ, defined by (2), as an operator from Lp(Sdn−1) to L2(Sdn−1), when

1 ≤ p ≤ 2 and d = 1, 2, 4. In Section 4 we illustrate the numerology linking exponents

and critical points of the estimates, introduced in the previous section. Finally, in Section

5 we discuss the sharpness, highlighting the peculiarity of the quaternionic bounds with

respect to the real and the complex ones.

In the following, the symbol e1 will denote the north pole of S4n−1, that is e1 :=

(1, 0, . . . , 0). The letter C and variants such as C(n) denote constants, always assumed

to be positive, which may vary from one occurrence to the next. The symbol ' between

two positive expressions means that their ratio is bounded above and below.

Acknowledgement. I am grateful to the organizers and participants of the Bruno Pini

Mathematical Analysis Seminar. It is a pleasure to thank, in particular, Nicola Arcozzi

for the invitation and his kind hospitality.

2. The spheres Sdn−1

2.1. The real sphere. When d = 1, (1) reduces to the classical decomposition

L2(Sn−1) =
∞⊕
`=0

H` ,

H` denoting the subspace of spherical harmonics of degree ` (that is, the space of the

restriction to Sn−1 of polynomials P = P (x1, . . . , xn) homogeneous of degree ` and har-

monic). Each subspace H` is an eigenspace for the Laplace–Beltrami operator ∆Sn−1 for

the eigenvalue ν` = `(`+n− 2) and is invariant under the action of the orthogonal group

O(n). Moreover, the representation of O(n) on H` is irreducible (see [23, Ch. 4]).



SOME REMARKS ON HARMONIC PROJECTION OPERATORS 5

Define the harmonic projection operator

π` : L2(Sn−1)→ H` .

It is well known [23, Ch. 4] that

π`f(x) =

∫
Sn−1

f(y)Z(x)
` (y) dσ(y) ,(3)

where the integral kernel of π` is a zonal spherical harmonic of degree ` with pole x and

dσ represents the Lebesgue measure on Sn−1, given, up to a constant, by

dσn−1 = sinn−2 θ dσn−2 ,

with respect to the standard system of spherical coordinates

(4)



x1 = cos θ1

...

xn−1 = sin θ1 . . . sin θn−2 cos θn−1

xn = sin θ1 . . . sin θn−2 sin θn−1 ,

with θj ∈ [0, π], j = 1, . . . , n− 2, θn−1 ∈ [0, 2π].

The zonal function Z` := Ze1` only depends on x1 and may be explicitly expressed as

Z`(θ1) =
2`+ n− 2

(n− 2)ωn−1
C

n−2
2

` (cos θ1)

=
d`
ωn−1

×
(((n− 3)/2 + `

`

))−1
P

(n−3
2
,n−3

2
)

` (cos θ1) ,(5)

where

d` := dimH` =

(
n+ `− 3

`− 1

)(n+ 2`− 2

`

)
,

ωn−1 denotes the surface area of Sn−1, and C
n−2
2

` and P
(n−3

2
,n−3

2
)

` denote, respectively,

the Gegenbauer and the Jacobi polynomial of degree ` (we refer to [24] for the precise

definition).
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2.2. The complex sphere. For n ≥ 2 we denote by S2n−1 the unit sphere S2n−1 in Cn,

that is,

S2n−1 :=
{
z = (z1, . . . , zn) ∈ Cn : 〈z, z〉 = 1

}
,

where 〈·, ·〉 denotes the scalar product defined by 〈z, w〉 = z1w1 + . . .+ znwn, z, w ∈ Cn.

The decomposition (1) reads in this case as

L2
(
S2n−1) =

+∞⊕
`,`′=0

V``′ ,

where V``′ is the space of complex spherical harmonics of bidegree (`, `′), `, `′ ≥ 0, that

is, the space of the restrictions to S2n−1 of polynomials P = P (z, z̄) harmonic in Cn,

homogeneous of degree ` in z and `′ in z̄. It is easy to check that V``′ is invariant under

the action of the unitary group U(n) and that the representation of U(n) on H``′ is

irreducible.

Moreover, each subspace V``′ is a joint eigenspace for the Laplace–Beltrami operator

∆S2n−1 and for a subLaplacian. Following Geller [12], we define the subLaplacian LS2n−1

on S2n−1 as

LS2n−1 = −
∑
j<k

MjkM jk +M jkMjk ,

where

Mjk := zj∂zk − zk∂zj .

The eigenvalues of ∆S2n−1 and LS2n−1 are given, respectively, by η``′ = (`+`′) (`+ `′ + 2n− 2)

and θ``′ = 2``′ + (n− 1)(`+ `′).

Then we introduce the joint spectral projector P``′ , mapping L2(S2n−1) onto V``′ . It

turns out that

(6) P``′f(w) =

∫
S2n−1

f(z)Zw``′(z) dσ(z) ,

for all f ∈ L2(S2n−1), where the integral kernel Zw``′ is the so called zonal spherical

harmonic of bidegree (`, `′), with pole w [15, Ch. 11]. Zw``′ may be explicitly written in

terms of certain orthogonal polynomials, called the Zernike polynomials [25]. To be more
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precise, we call Zernike polynomials or disc polynomials the polynomials

Pα
m.n(z, z̄) :=

(
1/

(
m+ α

m

))
z̄n−mP (α,n−m)

m (2zz̄ − 1) ,

where z ∈ C, |z| ≤ 1, and P
(α,m−n)
n denotes a Jacobi polynomial of degree n. The Zernike

polynomials are orthogonal in the unit disc with respect to the weight (1− zz̄)α.

Let us introduce the following coordinates system on S2n−1

(7)



z1 = eiϕ1 cos θ1

z2 = eiϕ2 sin θ1 cos θ2

...

zn = eiϕn sin θ1 . . . sin θn−2 sin θn−1 ,

with ϕk ∈ [0, 2π], k = 1, . . . , n, and θj ∈ [0, π/2], j = 1, . . . , n − 1. Then the normalized

invariant measure dσS2n−1 on S2n−1 in these coordinates is, up to a constant C = C(n),

(8) sin2n−3 θ1 cos θ1 dθ1 dϕ1 dσS2n−3 .

By taking w = e1, the zonal function Z``′ = Ze1``′ in V``′ , which only depends on 〈z, e1〉,

may be expressed as

(9)

Z``′(θ1, ϕ1) :=
d`,`′

ω2n−1
P n−2
`′,` (z1, z̄1)

=
d`,`′

ω2n−1

`′(n− 2)!

(`′ + n− 2)!
ei(`

′−`)ϕ1(cos θ1)
`−`′P

(n−2,`−`′)
`′ (cos 2θ1)

where ` ≥ `′ ≥ 1, ω2n−1 denotes the surface area of S2n−1, and

(10) d`,`′ := dimV``′ = (n− 1) · `+ `′ + n− 1

``′

(
`+ n− 2

`− 1

)(
`′ + n− 2

`′ − 1

)
for all `, `′ ≥ 1.

If ` < `′, we use the fact the Z`,`′ = Z`′,`.

Recall finally that V`,0 consists of holomorphic polynomials and V0,` consists of polyno-

mials whose complex conjugates are holomorphic. The dimension of the spaces is given

by

dimV`,0 =

(
`+ n− 2

`

)



8 VALENTINA CASARINO

and the zonal function is

Z`,0(θ1, ϕ1) :=
1

ω2n−1

(
`+ n− 2

`

)
e−i`ϕ1(cos θ1)

`, ϕ1 ∈ [0, 2π], θ1 ∈ [0,
π

2
].

2.3. The quaternionic sphere. Let H denote the skew field of all quaternions q =

x0 + x1i+ x2j + x3k over R, where x0, x1, x2, x3 are real numbers and i, j, k fulfill

i2 = j2 = k2 = −1 , ij = −ji = k , ik = −ki = −j , jk = −kj = i .

For n ≥ 1 the symbol Hn shall denote the n-dimensional vector space over H, consisting

of all vectors q = (q1, . . . , qn), qj ∈ H, j = 1, . . . , n. The conjugate q and the modulus |q|

are, respectively, defined by

q = x0 − x1i− x2j − x3k and |q|2 = qq =
3∑
j=0

x2j .

We endow Hn with the inner product 〈〈q, q′〉〉 := q1q′1 + . . .+ qnq′n, q, q′ ∈ Hn.

Let S4n−1 denote the unit sphere S4n−1 in Hn, that is,

S4n−1 := {q = (q1, . . . , qn) ∈ Hn : 〈〈q, q〉〉 = 1} .

The decomposition (1) reads in the quaternionic framework as

L2
(
S4n−1) =

+∞⊕
`,`′=0

H``′

where H``′ is the joint eigenspace of the Laplace Beltrami operator ∆S4n−1 and of a sub-

Laplacian LS4n−1 , with eigenvalues given, respectively, by µ`,`′ = (` + `′)(` + `′ + 4n− 2)

and λ`,`′ = 4(``′+ (n− 1)`+ n`′). For a precise definition of LS4n−1 we refer to [2, p. 250]

and [3, Section 2.2]; we only recall that L is a positive definite, selfadjoint, subelliptic

operator. We also recall here that H``′ is irreducible under the action of Sp(n) × Sp(1),

Sp(n) denoting the quaternionic unitary group.

It is worth noticing that H``′ is also an eigenspace (with respect to the eigenvalue

γ`,`′ = (`− `′)(`− `′ + 2)) for the operator Γ, which may be defined in the following way.

We write q ∈ Hn as

(11) q = (z1 + jzn+1, z2 + jzn+2, . . . , zn + jz2n) , z1, . . . , z2n ∈ C ,
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and set

(12) Γ = (D̄ −D)2 − 2D1D̄1 − 2D̄1D1 ,

whereD =
∑2n

`=1 z`∂`, D1 =
∑n

`=1 z`∂n+`−zn+`∂`, D =
∑2n

`=1 z`∂`, andD1 =
∑n

`=1 z`∂n+`−

zn+`∂`.

By the symbol π``′ we denote the joint spectral projector mapping L2(S4n−1) onto H``′ .

It turns out that

(13) π``′f(w) =

∫
S4n−1

f(z)Zw``′(z) dσ(z) ,

for all f ∈ L2(S4n−1), where the integral kernel Zw``′ is called quaternionic zonal function

of bidegree (`, `′) with pole w.

A system of spherical coordinates on the sphere S4n−1 is given by

(14)

q1 = cos θ (cos t+ q̃ sin t)

qs = σs sin θ ,

where θ ∈ [0, π/2], t ∈ [0, π], q̃ ∈ H with |q̃|2 = 1 and <q̃ = 0, σs ∈ H with
∑n

s=2 |σs|2 = 1.

Then the normalized invariant measure dσS4n−1 on S4n−1 in these coordinates is, up to a

constant C = C(n),

(15) sin4n−5 θ cos3 θ dθ sin2 t dt dσS4n−5 .

By choosing e1 as pole, an explicit formula for the zonal function Ze1``′ in H``′ was

obtained in [14]. We have

(16) Z``′(θ, t) :=
D``′

ω4n−1

sin ((`− `′ + 1)t)

(`− `′ + 1) sin t
(cos θ)`−`

′ × P
(2n−3,`−`′+1)
`′ (cos 2θ)

P
(2n−3,`−`′+1)
`′ (1)

,

where ` ≥ `′ ≥ 0, t ∈ [0, π/2] , θ ∈ [0, π
2
], ω4n−1 denotes the surface area of S4n−1,

P
(2n−3,`−`′+1)
`′ is the Jacobi polynomial and

D``′ := (`+ `′ + 2n− 1)(`− `′ + 1)2
(`+ 2n− 2)!

(`+ 1)!(2n− 3)!

(`′ + 2n− 3)!

`′!(2n− 1)!
, ` ≥ `′ ≥ 0,
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is the dimension of H``′ . Observe that

(17) D``′ '


(`− `′ + 1)2`4n−5 if (1− ε0)` ≤ `′ ≤ `

`4n−3 if ε0`
′ ≤ (1− ε0)`

`2n`′2n−2 if 1 ≤ `′ ≤ ε0` ,

which yields a first clue to the symmetry breaking occurring in the harmonic analysis in

the quaternionic context.

When `′ = 0, the dimension of the space H`,0 is given by

dimH`,0 =

(
`+ 2n

`

)
,

and the zonal function is

Z`,0(θ, t) :=
1

ω4n−1

(
`+ 2n

`

)
sin ((`+ 1)t)

(`+ 1) sin t
(cos θ)`, t ∈ [0,

π

2
], θ ∈ [0,

π

2
].

3. The estimates

In this section, we briefly recall the estimates which are known for the norm of the

projector πρ, defined by (2), as an operator from Lp(Sdn−1) to L2(Sdn−1), when 1 ≤ p ≤ 2

and d = 1, 2, 4.

In the real case C. Sogge proved the following sharp result.

Theorem 3.1. [17, 20] For 1 ≤ p ≤ 2 and for all ` ∈ N

(18) ‖π`‖(p,2) ≤ C(n, p) `σ(1/p,n) ,

where

σ(
1

p
, n) =

(n− 1)(1
p
− 1

2
)− 1

2
if 1 ≤ p < pR(n)

(n
2
− 1)

(
1
p
− 1

2

)
if pR(n) ≤ p ≤ 2 ,

with pR(n) := 2n
n+2

.

In the case of the complex spheres sharp estimates for ‖P`,`′‖(p,2), where P``′ is defined

by (6), were obtained by the author in [5, 6].
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Theorem 3.2. For 1 ≤ p ≤ 2 and for all 0 ≤ `′ ≤ `, we have

‖P`,`′‖(p,2) ≤ C(n, p) (1 + `′)
α(p)

(1 + `)(n−1)(
1
p
− 1

2) ,

where

α(p) =

(n− 1)(1
p
− 1

2
)− 1

2
if 1 ≤ p < pC(n)

−1
2

(
1
p
− 1

2

)
if pC(n) ≤ p ≤ 2 ,

with pC(n) := 22n−1
2n+1

. These bounds are sharp.

It is worth mentioning that there is an intimate connection between the reduced Heisen-

berg group hn and the unit complex sphere. By exploiting the fact that hn is a contraction

of S2n−1, in [7] we deduced from Theorem 3.2 sharp bounds for analogous joint spectral

projectors in the Heisenberg framework.

Let us consider now the quaternionic case. In [8] we proved sharp bounds for the

Lp − L2 norm of the projector π``′ , defined by (13), in two particular cases. First of all,

we considered the case when `− `′ ≤ c0, for some non negative constant c0.

Theorem 3.3. Let n ≥ 2, 1 ≤ p ≤ 2, and let `,`′ be integer numbers such that ` ≥ `′ ≥ 0,

` − `′ ≤ c0 for some non negative constant c0. Then there exists some constant C, only

depending on n, p and c0, such that the following estimate holds

(19) ||π``′f ||2 ≤ C(n, p, c0) (1 + `)A(
1
p
,n)(1 + `′)B( 1

p
,n)(c0 + 1)C( 1

p
,n) ||f ||p ,

with

A
(1

p
, n
)

:= 2(n− 1)
(1

p
− 1

2

)
, C

(1

p

)
= 2
(1

p
− 1

2

)
, for all 1 ≤ p ≤ 2 , and

B(
1

p
, n) :=

2(n− 1)
(
1
p
− 1

2

)
− 1

2
if 1 ≤ p ≤ pH(n)

1
2
(1
2
− 1

p
) if pH(n) ≤ p ≤ 2 .

where pH(n) := 24n−3
4n−1 .

Then we considered the case when `′, the minimum between ` and `′, is bounded.
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Theorem 3.4. Let n ≥ 2, 1 ≤ p ≤ 2, and let `,`′ be integer numbers such that ` ≥ `′ ≥ 0,

`′ ≤ c1, for some non negative constant c1. Then there exists some constant C, only

depending on n, p and c1, such that the following estimate holds

(20) ||π``′f ||2 ≤ C(n, p, c1) (1 + `)A
′
(1 + `′)(2n−3)(

1
p
− 1

2
) ||f ||p ,

where

A′(
1

p
, n) :=

(2n+ 1)
(
1
p
− 1

2

)
− 1

2
if 1 ≤ p ≤ pc

(2n− 1)
(
1
p
− 1

2

)
if pc ≤ p ≤ 2,

with pc = 4
3

and constants C(n, p, c1) only depending on n, p and c1.

The proofs of Theorems 3.2, 3.3, 3.4, are inspired by Sogge’s proof of Theorem 3.1.

They are both quite long and technical and can not be summarized here. Anyway, they

are essentially based on two ingredients: interpolation arguments and fine estimates for

the Jacobi and Zernike polynomials. We briefly sketch the main steps.

(1) The estimates for p = 1 and p = 2 are trivial, as a consequence of Young’s

inequality and of the fact that P``′ and π``′ are projectors.

(2) Thus, by the Riesz-Thorin Theorem, it suffices to prove the bounds for p equal to

the critical point, that is, p = pC(n) in Theorem 3.2, p = pH(n) in Theorem 3.3

and p = 4/3 in Theorem 3.4.

(3) We use the Stein–Tomas trick to reduce the Lp−L2 bound to a Lp−Lp′ bound (here

p is one of the critical points). Then, we introduce a suitable family of analytic

operators {T z}, which are related to the convolution with the zonal functions Z``′

and Z``′ , defined for z ∈ C, <z ∈ [0, 1], and invoke the Stein theorem on analytic

interpolation [23].

For <ez = 0 we prove a L1 − L∞ bound for T iy, while for <ez = 1 we have

to prove a L2 − L2 bound for T 1+iy. Thus we need both pointwise and integral

estimates for the zonal functions, and therefore for the Jacobi polynomials.

(4) In the complex case, we fix β = ` − `′ and use the classical bounds for P
(α,β)
k

holding for α and β larger that −1 and fixed, which may be found, for instance,

in [24]. Since the estimates we obtain are independent of ` − `′, we may easily

deduce uniform bounds.
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(5) In the quaternionic case,by fixing β and applying the classical bounds for P
(α,β)
k

we get estimates for the L2−L2 norm of T 1+iy, that strongly depend on `, `′, and

`−`′. Thus we need some more refined and recent estimates for Jacobi polynomials

with variable indices. We refer to [8] for a discussion of the problem.

4. The critical points

A recurrent thread among the estimates for different joint harmonic projection operators

is the occurrence of critical points in the interval (1, 2) (denoted, respectively, by pR(n),

pC(n), pH(n) and pc), where the behavior of ‖πρ‖(p,2) changes. In this section we shall try

to illustrate the numeralogy linking these different exponents.

Since the existence of such critical points is strictly related to the Stein–Tomas restric-

tion theorem, we start by recalling it.

On the Euclidean space Rd the spectral resolution of the Laplacian ∆ = − ∂2

∂x21
−· · ·− ∂2

∂x2d

may be expressed in terms of convolution with the Fourier transform of the measures dσr,

induced on the spheres centered at the origin by the Lebesgue measure, since ∆f ∗ σ̂r =

r2f ∗ σ̂r. The Stein-Tomas theorem [22, Ch. 9], which primarily concerns the restriction

properties of the Fourier transform, also yields therefore the mapping properties of the

spectral resolution of the Laplacian.

Theorem 4.1. Suppose that 1 ≤ p ≤ p∗(m), where

(21) p∗(m) := 2
m+ 1

m+ 3
, d ∈ N ,

and let 1
p

+ 1
p′

= 1. Then the estimate

(22) ‖f ∗ σ̂r‖p′ ≤ Cr‖f‖p

holds for all Schwartz functions on Rm and all r > 0.

According to the Knapp example [22], estimate (22) fails if p > p∗.

Let us consider now the real case. According to Sogge’s bounds, the exponent in (18)

is a piecewise affine function changing its slope at a point pR(n) = 2n
n+2

. Calling m

the dimension of the real sphere (that is, setting n− 1 = m), we get pR(m+ 1) = 2(m+1)
m+3

,

corrisponding to the restriction exponent p∗(m). This fact is not surprising, since Theorem



14 VALENTINA CASARINO

3.1 may be considered for all intents and purposes a discrete version of the restriction

estimates of Stein and Tomas (we refer to [21] for a thorough discussion of this analog).

Then we observe that the critical point in the complex case pC(n) = 22n−1
2n+1

coincides

with the critical point pR(2n− 1), as could be heuristically expected from the fact that

Hk
(2n) =

⊕
`+`′=k

V``′ ,

where Hk
(2n) denotes the space of real spherical harmonics of degree k in R2n.

The quaternionic case is more involved, due to the existence of two critical points, one,

pH(n), depending on n, the other one, pc, independent of the dimension of the sphere. A

possible interpretation is the following.

We observe that, up to some detail, the quaternionic zonal function Z``′(θ, t), defined

by (16), is essentially given by the product between the real spherical harmonic in R4,

from now on denoted by Z(4)
`−`′(t), and the complex spherical harmonic Z`,`′ in C2n−1, from

now on denoted by Z(2n−1)
`,`′ .

To justify our claim, we recall from (3) and (5) that on the real sphere Sn−1 ⊆ Rn the

spectral projector associated to the k-th eigenvalue is given by

πkf = Zk ∗ f ' k(n−1)/2P
(n−3

2
,n−3

2
)

k ∗ f ,

where we refer to [17] for an appropriate definition of a convolution product on the sphere.

In particular, as a consequence of [24, (4.1.7)] for n = 4 and k = `− `′ we have

Z(4)
`−`′(t) ' (`− `′ + 1)3/2P

( 1
2
, 1
2
)

`−`′ (cos t) ' (`− `′ + 1)2
sin ((`− `′ + 1)t)

(`− `′ + 1) sin t
,

for all t ∈ [0, π], so that we may write

(23)

Z``′(θ, t) = Cn Z(4)
`−`′(t) × (`+ `′ + 1)

(
(`+ 1)(`′ + 1)

)2n−3
(cos θ)`−`

′

P
(2n−3,`−`′+1)
`′ (cos 2θ)

P
(2n−3,`−`′+1)
`′ (1)

, ` ≥ `′ ≥ 0, t ∈ [0, π] , θ ∈ [0,
π

2
] .

Now we observe from (10) that the dimension of the subspace V``′ of L2(S4n−3) has the

same order of growth as (`+ `′+ 1)
(

(`+ 1)(`′+ 1)
)2n−3

. Recall moreover that the critical

point in C2n−1 is pC(2n − 1) = 24n−3
4n−1 and that the Lebesgue measure on the unit sphere

in C2n−1 is essentially given by (sin θ)4n−5 cos θ dθ.
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Indeed, a standard recursive formula for the Jacobi polynomials (see, e.g., (22.7.16) in

[1]) yields

(2n+ `+ `′) cos2 θ P
(2n−3,`−`′+1)
`′ (cos 2θ) = (`+ 2)P

(2n−3,`−`′)
`′ (cos 2θ)

+ (`′ + 1)P
(2n−3,`−`′)
`′+1 (cos 2θ) .

Since the factors `+2
2n+`+`′

and `′+1
2n+`+`′

are bounded, multiplying by cos2 θ, we recover the

measure (15) on S4n−1 ⊆ Hn.

In [9] we shall prove, in particular, that the bounds for ‖π``′‖(p,2) in the general case

may be deduced from a combination between Theorem 3.1 in R4 and Theorem 3.2 in

C2n−1.

5. Optimality

In order to prove the optimality of the estimates for the joint harmonic projection

operators πρ, defined by (2), we are led by the inequality

(24) ‖πρ‖(p,2) ≥
‖Yρ‖p′
‖Yρ‖2

, (p′ ≥ 2 , Yρ ∈ Hρ)

to study the Lq norms of the eigenfunctions Yρ ∈ V ρ, for q ≥ 2.

In the complex case, a careful analysis of the Lebesgue norm (see [5, 6]) of the Zernike

polynomials shows that the zonal functions Z``′ yield the sharpness on the interval

(1/pC(n), 1). while the “highest weight spherical harmonics” Q``′ = z`1z̄
`′
2 yield the sharp-

ness on the interval (1/2, 1/pC(n)).

Moreover, it is not difficult to check that the zonal functions are pointwise concentrated

at the North Pole, while the highest weight spherical harmonics are concentrated in a small

neighborhood around the Equator. Thus, as in the real case, we observe that for small

p the estimates for ‖P``′‖(p,2) are sensitive to a high pointwise concentration, while for

large p bounds in Theorem 3.2 are more sensitive to a “scattered” concentration along

the Equator (or, more generally, to a high concentration along closed geodesics, as proved

also in more general contexts by Sogge).

This scheme is true in the quaternionic framework as well, with some extra disadvan-

tages due to the occurrence of two critical points.
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To be more precise, when p is small, we prove that the estimates in Theorem 3.3 and

in Theorem 3.4 are optimal by considering the quaternionic zonal functions Z``′ . When p

is close to 2, we prove the sharpness by computing the Lebesgue norm of the quaternionic

highest weight vectors in H``′ , which may be expressed, by using the coordinates (11), as

(25) Q``′ = z̄`−`
′

n+1(z1z̄n+2 − z2z̄n+1)
`′ .

Just to give an idea of the results, we present one of the results proved in [8].

Proposition 5.1. Let `,`′ be integer numbers such that ` ≥ `′ ≥ 0, ` − `′ ≤ c0 for some

non negative constant c0, both sufficiently large. Let Q``′ be the highest weight vector

defined by (25). For all q > 2 we have

‖Q`,`′‖q ≥ C(n, q, c0)

(
(`′ + 1)

1
2

(`+ `′ + 1)2n−2 (`− `′ + 1)

) 1
q

.(26)

Moreover, for q = 2 in (26) the symbol ≥ may be replaced by '.

Then in the light of (24) Corollary 5.1 entails optimality for large p, at least when

`− `′ is bounded. In the general case, anyway, when `− `′ is variable, the picture is much

more tangled and we have to prove optimality on the intermediate interval p ∈ (4
3
, pH(n))

as well. This case in treated in full generality in [9], where we prove the sharpness, by

considering other joint eigenfunctions for the Laplace Beltrami operator ∆S4n−1 and for

the subLaplacian LS4n−1 , different from Z``′ and Q``′ .
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