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Parkinson disease is a debilitating and incurable neurodegen-
erative disorder affecting �1–2% of people over 65 years of age.
Oxidative damage is considered to play a central role in the pro-
gression of Parkinson disease and strong evidence links chronic
exposure to the pesticide paraquat with the incidence of the
disease, most probably through the generation of oxidative
damage. In this work, we demonstrated in human SH-SY5Y neu-
roblastoma cells the beneficial role of superoxide dismutase
(SOD) enzymes against paraquat-induced toxicity, as well as the
therapeutic potential of the SOD-mimetic compound M40403.
Having verified the beneficial effects of superoxide dismutation
in cells, we then evaluated the effects using Drosophila melano-
gaster as an in vivo model. Besides protecting against the oxida-
tive damage induced by paraquat treatment, our data demon-
strated that in Drosophila M40403 was able to compensate for
the loss of endogenous SOD enzymes, acting both at a cytosolic
and mitochondrial level. Because previous clinical trials have
indicated that the M40403 molecule is well tolerated in humans,
this study may have important implication for the treatment of
Parkinson disease.

Parkinson disease (PD)3 is an incurable chronic and progres-
sive neurodegenerative disorder characterized by the preferen-
tial death of dopaminergic neurons in the midbrain area known

as substantia nigra, resulting in a decrease of dopamine levels in
its striatal projections. Although the discovery of monogenic,
hereditable forms of the disease, which represent 5–10% of all
cases, has been very important in helping to delineate the
molecular pathways that lead to this pathology, PD is generally
a sporadic neurological disorder. The etiology of idiopathic
forms of PD is still poorly understood and aging is considered
the most important risk factor. Strong evidence now exists to
support a role for aberrant mitochondrial form and function, as
well as increased oxidative stress in the progression of PD (1).
For example, an increase in 8-hydroxy-2-deoxy guanosine,
4-hydroxy-2,3-nonenal, and protein carbonylation, which are
respectively markers of DNA damage, lipid peroxidation, and
protein oxidation, have all been detected in postmortem tissues
from PD patients (2–5).

Oxidative damage occurs when the generation of reactive
oxygen species (ROS) overcomes the elimination rate of the
endogenous antioxidant system. The main cellular ROS are
superoxide anion (O2

. ), hydroxyl radical (OH�), and hydrogen
peroxide (H2O2). Even though superoxide anion is relatively
unreactive, it is considered the “primary” ROS because it can
further interact with other molecules to produce more reactive
“secondary” ROS, such as the hydroxyl radical (6). In cells,
superoxide anions are mainly formed in mitochondria during
oxidative ATP production, when a small leakage of electrons
from the electron transport chain can directly react with oxy-
gen to produce superoxide radicals (7). In addition to mito-
chondria, in dopaminergic neurons the auto-oxidation of dop-
amine contribute to cytosolic generation of superoxide and
hydrogen peroxide (8).

Considering the potential toxicity related to physiological
production of ROS, cells possess several endogenous antioxi-
dant enzymes and low molecular weight reductants. Among
the ROS-scavenging enzymes, superoxide dismutase enzymes
(SODs) are often regarded as the first line of defense against
ROS (9). These proteins convert naturally occurring superoxide
radicals to molecular oxygen and hydrogen peroxide. Three
different SOD isoenzymes, that are well compartmentalized,
have been characterized in humans (see Zelko et al. (10) for a
review). SOD1 is a copper/zinc protein located in the cytosol
and in the mitochondrial intermembrane space, but is also
present in peroxisomes and in the nucleus. SOD2 is a mito-
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chondrial manganese enzyme, which is the main scavenger of
superoxide anions produced during the mitochondrial oxida-
tive phosphorylation. SOD3 is an extracellular copper/zinc
protein, which, in contrast to intracellular SOD1 and SOD2, is
expressed in only few cell types and tissues, such as vascular
smooth muscular cells, lung, and plasma (10).

Pesticides represent one of the main factors involved in envi-
ronmental chemical pollution (11). Epidemiological studies
demonstrated that chronic exposure to pesticides, such as para-
quat (PQ) and rotenone, is associated with a higher risk of
developing PD (12–14). Consistently, two independent meta-
analyses found an association between pesticides, in particular
PQ, and the risk of PD (15, 16). PQ is able to enter dopaminergic
neurons through a mechanism that involves the dopamine
transporter DAT and the organic cations transporter-3 (17).
Dopaminergic cell death induced by PQ is ascribed to the gen-
eration of ROS. Recently, it has been shown that PQ promotes
oxidative damage both at the mitochondrial level and in the
cytosol (18).

Despite the central role played by oxidative damage in the
progression of PD, to date, the effects obtained with antioxidant
therapies are modest (see Kanthasamy et al. (19) for a review).
However, most studies do not target the primary cause of the
oxidative stress, i.e. excessive superoxide anion production, but
rather the downstream effects (production of hydrogen perox-
ide, hydroxyl radical or peroxynitrite). This is the case, for
example, of �-tocopherol (vitamin E), ascorbic acid (vitamin
C), creatine, and apocynin (19). A treatment strategy for oxida-
tive stress is likely to be more effective if it targets the origin of
ROS generation. As superoxide accumulation is the main
mechanism involved in the subsequent formation of ROS, its
catalytic elimination should have important cytoprotective
effects.

In the present work we first assessed the potential protective
role of SODs against PQ-induced toxicity in human SH-SY5Y
neuroblastoma cell lines. We then investigated the therapeutic
potential of the SOD-mimetic compound M40403, which has
many properties that make it very attractive from a therapeutic
point of view. Having verified the beneficial effects of superox-
ide dismutation in cells, we evaluated the effects using Drosoph-
ila melanogaster as in vivo model. Our data demonstrate that in
Drosophila M40403 is able to compensate for loss of either Sod
or Sod2, the homologous enzymes to human SOD1 and SOD2,
acting both at a cytosolic and mitochondrial level, and to pro-
tect against oxidative damage induced by PQ treatment. In con-
clusion, in light of the association between PQ and PD, this
work represents the first step in defining specific SOD-mimetic
compounds as potential therapeutic agents to slow down PD
progression.

Experimental Procedures

M40403 Synthesis—The synthesis of M40403 precursor
N,N�-bis{(1R,2R)-[2-(amino)]cyclohexyl}-1,2-diaminoethane
tetrahydrochloride was carried out as reported in the US patent
6214817 B1 without modifications. M40403 was then prepared
following the conditions reported for the synthesis of either
active and inactive complexes (20) the manganese complex was
synthesized by binding of N,N�-bis{(1R,2R)-[2-(amino)]

cyclohexyl}-1,2-diaminoethane and 2,6-pyridinedialdehyde to
obtain the active compound.

Cell Culture—Human neuroblastoma SH-SY5Y cells (IST,
Genova, Italy) were cultured in a mixture 1:1 of Ham’s F12 and
Dulbecco Modified Eagle Medium (Gibco�/Life Technologies)
supplemented with 10% fetal bovine serum, in a 5% CO2
humidified incubator at 37 °C. The cell medium was replaced
every 3 days, and the cells were sub-cultured once confluence
was reached.

Cell Viability Assay—Cell viability was measured by colori-
metric assay using the Cell Counting Kit-8 (CCK-8, Sigma)
according to the manufacturer’s instruction. Wild-type and
transgenic cells were transferred on 96-well plates (104 cell/
well) in phenol red-free medium. One day after seeding, cells
were treated for 24 h with 100 –500 �M of PQ (Sigma-Aldrich);
then they were incubated with 10 �l of CCK-8 solution for 4 or
6 h at 37 °C. The absorbance was measured at 460 nm using a
plate reader (VictorTM X3, Perkin Elmer).

FACS Analysis—Apoptosis was measured by Annexin
V/Propidium Iodide (PI) double staining detection (BD
PharmigenTM) using flow cytometry. Wild-type and stably
transfected cells were cultured on 6-well plates. One day after
seeding, cells were treated with 100 –500 �M of PQ for 24 h.
Then, cells were detached by 3 min treatment with papain pro-
tease (Worthington), centrifuged at 500 g for 5 min and resus-
pended in 500 �l of binding buffer (10 mM Hepes/NaOH, pH
7.4, 140 mM NaCl, 2.5 mM CaCl2). The cell suspension was then
transferred into a 5 ml round-bottom tube and 1.5 �l of
Annexin V-FITC (dilution 1:50) and 2 �l of PI (5 �g/ml) were
added and incubated for 8 min at room temperature. Samples
were analyzed by FACSCanto II flow cytometry (BD Biosci-
ence) acquiring 10,000 ungated events. Annexin V� PI� cells
represented the early apoptotic populations, Annexin V� PI�

cells represented either late apoptotic or secondary necrotic
populations while viable cells were Annexin V� PI�.

roGFP Analysis—The expression vectors coding for cytosol
and mitochondria-directed roGFP were obtained from Prof.
James Remington’s Lab, University of Oregon. SH-SY5Y cells
(2 � 105 cells) were transferred on poly-lysine pre-coated
dishes (�-Dish 35 mm, Ibidi) suitable for live imaging and
transfected using Lipofectamine (Life Technologies) according
to the manufacturer’s instruction. After 24 h, cells were
exposed to 500 �M PQ for 6 or 12 h in growing medium without
phenol red. At the end of the treatment, images were collected
with a Leica SP5 confocal microscope with 63� objective (oil
immersion). Fluorescence was collected between 500 –530 nm
using 405 and 488 nm as excitation wavelength. To avoid pho-
tobleaching and/or laser-induced oxidation, images were
acquired every 2 min using a wide pinhole and a fast scanning
speed (256 � 256). Raw data were exported to ImageJ software.
Each cells in the field was selected as region of interest (ROI)
and the mean intensity of each ROI was then measured after
appropriate background correction. Ratios between the values
obtained by exciting at 405 and 488 nm, respectively, were nor-
malized with respect to the ratios obtained in the presence of 1
mM H2O2 (100% oxidized state) and 4 mM DTT (0% oxidized
state).
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Mitochondrial Morphology—SH-SY5Y cells were transferred
on poly-lysine-coated coverslips in 24 well plates (105 cells per
well) and transfected with an expression vector coding for a
mitochondria-directed RFP, using Lipofectamine (Life Tech-
nologies) as transfection reagent according to manufacturer’s
instruction. After fixation, images were acquired using epifluo-
rescence using a Leica 5000B with 100� oil objective. The data
analysis was performed in a blind manner and reported as per-
centage of cells with tubular, intermediate, or fragmented mor-
phology relative to total cell number.

Drosophila Strains and Culture Maintenance—Flies were
raised on standard yeast-molasses-agar medium at 25 °C and
70% relative humidity in 12 h light/dark cycles. Only male flies
were used in the experiments. A white (Dahomey) strain was
utilized as wild-type control line (a gift from Linda Partridge,
UCL). For all experiments employing GAL4 expression to drive
UAS-transgenes, GAL4/� were utilized as controls. The fol-
lowing strains were obtained from the Bloomington Drosophila
Stock Center: UAS-Sod (33605), UAS-Sod2 (24494), da-GAL4
(5460), UAS-Sod-RNAi (24491), UAS-Sod2-RNAi (24489).
TH-GAL4 was a gift from Serge Birman (21).

Western Blot Analysis—Proteins from untransfected and sta-
bly transfected cell extracts were subjected to SDS-PAGE (12%)
and blotted onto PVDF membranes (Immobilion, Millipore).
Blots were then incubated with rabbit polyclonal antibody for
SOD1 or SOD2 (Prestige, Sigma) and mouse monoclonal anti-
body for �-tubulin (Sigma). The PVDF membranes were
probed with horseradish peroxidase-conjugated anti-rabbit or
anti-mouse IgG (Sigma). Immunoreactive proteins were visu-
alized using enhanced chemiluminescence advance (ECL, GE
Healthcare). Densitometry was carried out using Image J Soft-
ware and the constitutively expressed �-tubulin protein was
used as loading control.

Immunofluorescence—Untransfected and stably SOD1 or
SOD2 transfected cells were plated on 15 mm glass coverslips
pre-coated with poly-D-lysine. Twenty-four hours after seed-
ing, cells were fixed with 4% paraformaldehyde, permeabilized
with 0.1% Triton, and incubated with rabbit polyclonal anti-
body for SOD1 (Prestige, Sigma) or SOD2 (StressMarq, Biosci-
ence Inc.) at a 1:200 dilution. To define the mitochondrial local-
ization of overexpressed SOD2, samples were also incubated
with mouse polyclonal succinate dehydrogenase subunit A
(Santa Cruz) at a 1:200 dilution. Cells were subsequently incu-
bated with secondary anti-rabbit or anti-mouse antibodies con-
jugated with Alexa Fluor-488 and Alexa Fluor-568 (Life Tech-
nologies) at a 1:200 dilution. Nuclei were counterstained using
0.16 �M Hoechst 33258 (Life Technologies) Coverslips were
mounted with ProLong Gold Antifade (Life Technologies), and
images were acquired using a Leica DM5000 epifluorescence
microscope.

Quantitative Real-Time PCR—RNA was extracted using an
RNeasy RNA purification kit (Qiagen), and cDNA was synthe-
sized using a Protoscript II first-strand cDNA synthesis kit
(New England BioLabs) according to the manufacturers’
instructions from whole flies. Quantitative real-time PCR
(qRT-PCR) was performed using a standard protocol using the
7900HT Fast Real-Time PCR System (Applied Biosystems) and
Taqman probes, and each sample was normalized to the refer-

ence gene, Rpl32. Relative gene expression was calculated using
the 2-��CT (cycle threshold) method.

The primers used for qRT-PCR are as follows: Rpl32: fw
CACCGGAAACTCAATGGATACT, rev CACACAAGGTG-
TCCCACTAAT; probe: CCAAGAAGCTAGCCCAACCTG-
GTT; Sod: fw CCACTGTGCTGATCTACTCTATTT, rev
CTAACAGACCACAGGCTATGTATT; probe: AGCACTA-
CCCACTGGAGATATACAAACGA; Sod2: fw GCGAAATA-
ACGAGAACGTAAGC, rev TTACGGGCCACGAACAT-
ATC; probe: TCGGGACTTAGCCTTATTAGCAGTCGA.

Survival Experiments—Groups of 20–25 one- to two-day-old
flies were starved for 4 h and then kept in vials with filter paper
soaked with 5 mM PQ (plus 200 �M to 1 mM M40403 when
required) in 5% sucrose. Surviving to the chemical treatment
was determined every day for a 4 day-period. Experiments were
repeated 4 – 6 times for control and experimental genotypes,
and the mean and S.E. were calculated.

Locomotion Assay—Groups of 20 –25 one- to two-day-old
flies were starved for 4 h and then kept in vials with filter paper
soaked with 1 mM PQ (plus 200 �M to 1 mM M40403 when
required) in 5% sucrose. The filter paper was replaced every
2 days and the locomotion assays were performed after 5–7
days of treatment. The mobility of flies from each treatment
group was assessed using a counter-current apparatus in a
negative geotaxis climbing assay. Flies were placed in an
empty plastic vial (2.5 cm diameter), gently tapped to the
bottom, and the number of flies crossing a line at 8-cm
height within a time period of 10 s was scored. Each animal
was tested 5 times. The number of male flies tested per gen-
otype was n � 150.

Statistical Analysis—Data were analyzed using GraphPad
Prism 4 software. “t test,” one-way ANOVA followed by Bon-
ferroni post hoc test or logrank test were used to determine
whether groups were statistically different. p values 	 0.05 were
considered significant.

Results

PQ Treatment Increases Mitochondrial ROS Production—To
quantify alterations in the oxidative state induced by PQ and to
define whether this process involves different cell compart-
ments, we used a redox sensitive green fluorescent protein
(roGFP2), which has two cysteine residues that form a disulfide
bond under oxidizing conditions (22). This genetically encoded
indicator allows the measurement of cellular redox state in real-
time, regardless of the absolute levels of probe concentration,
through ratiometric imaging of 405 nm versus 488 nm excita-
tion (22). Two different variants of roGFP2 were used in the
present work: one was cytosolic (cyt-roGFP2), while the other
one was specifically targeted to mitochondria (mt-roGFP2) as
previously reported (22). For each fluorescent probe, a calibra-
tion assay was first performed. The redox state was altered by
the addition of 1 mM H2O2 and 4 mM DTT. As reported in Fig.
1, A and B, in the initial phase, unperturbed cells were in a
predominantly reduced state. After the addition of 1 mM H2O2,
the ratio (405/488) increased reaching a plateau within few
minutes, in agreement with the peroxide-depending oxidation
effect. Afterward, by adding 4 mM DTT the reduced state was
restored shifting the fluorescence ratio to its minimum. After
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calibrating our system, this technique was used to assess the
cellular redox state following PQ exposure. Considering that
ROS production is, most likely, an early event that precedes cell
damage, we treated cells with PQ for a relatively short period (6
and 12 h). While PQ was not able to increase the oxidative state

in the cytosol, the treatment significantly increased mitochon-
drial ROS production after both 6 and 12 h (Fig. 1, C and D).
Consistent with our results, in a recent study it has been showed
that, after 24 h PQ exclusively increased mitochondrial ROS
production, while only after 48 h a dose-response increase in
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FIGURE 1. PQ increases mitochondrial ROS production in SH-SY5Y cells. A, SH-SY5Y cells expressing cyt-roGFP2 or mt-roGFP2 were excited at 405 and 488
nm, and the ratio of the emission in the green channel (500 –530 nm) was calculated. Exemplifying images of the ratios obtained at representative time points
are shown in pseudocolor calibrated by the color scale at the far right. B, time course of cellular redox changes monitored by changes in the ratio between
fluorescence intensities obtained by exciting at 405 and 488 nm cyt-roGFP2 or mt-roGFP2-expressing cells. C, exemplifying pseudocolor ratio pictures of cells
expressing cyt-roGFP2 or mt-roGFP2 recorded 6 and 12 h after PQ treatment (D). Fluorescence ratios (405/488) obtained for each sample were normalized with
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Statistical significance was determined by t test comparing PQ-treated with PQ-untreated cells (*, p 	 0.05; ***, p 	 0.001).
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both mitochondrial and cytosolic oxidative stress was observed
in the surviving cells (18).

SOD2 but Not SOD1 Protects Against Paraquat-induced
Toxicity—SH-SY5Y cell lines stably overexpressing human
SOD1 or SOD2 were established and expression verified by
Western blot analysis, Expression levels were quantified by
densitometry and normalized with respect to tubulin (Fig. 2A).
Clones with comparable SOD1 (clone 2) and SOD2 (clone 1)
expression levels, 4.6 
 1.3- and 5.7 
 1.3-fold respectively,
were selected for further analysis. Immunofluorescence analy-
sis verified the cytoplasmic distribution of SOD1 and the mito-
chondrial localization of SOD2 (Fig. 2, B and C).

The potential protective role exerted by SODs against PQ
toxicity was then evaluated. After incubation for 24 h with
increasing concentration of PQ, SH-SY5Y cell viability, mea-
sured by a colorimetric (CCK8) assay, decreases in a dose-de-
pendent manner (Fig. 3A). In agreement with previous results
(23, 24), PQ treatment caused a dose-dependent cell death.
With 500 �M PQ the measured viability was �40% of untreated

cells. Interestingly, the overexpression of SOD1 and SOD2 pro-
duced markedly different effects. While SOD1 was unable to
protect cells from the toxic insult induced by any concentration
of PQ used, SOD2 provided significant protection at all PQ
concentrations (Fig. 3A). An independent analysis based on
fluorescence activated cell sorting (FACS) was performed to
verify the results. As the events analyzed by FACS occurs in a
time period subsequent to the metabolic dysfunctions observed
by CCK8 assay, we prolonged the incubation for 48 h. As sum-
marized in Fig. 3B, these results also showed a dose-dependent
decrease in viability. Moreover, similar effects were also
observed with SOD1 overexpression, while in the SOD2-over-
expressing cells only at the highest amount of PQ used, some
toxic effect became evident. In conclusion, these results indi-
cate a selective effect exerted by SOD2 against PQ-induced
toxicity.

Protective Role of the M40403 SOD-mimetic Compound—
Considering the beneficial role observed for SOD2 in our cel-
lular model, we analyzed the potential protective role of SOD-
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FIGURE 2. SOD1 and SOD2 overexpression and localization in SH-SY5Y cell line. A, Western blot analyses of SOD1 and SOD2 in stably transfected and
untransfected SH-SY5Y cells. �-Tubulin signal was used as loading control. B, immunofluorescence microscopy. Red staining revealed that SOD1 was evenly
distributed in stably transfected SH-SY5Y and confirmed overexpression compared with untransfected cells. Green staining confirmed the isolation of a unique
clone and the increased expression of SOD2 protein in stably transfected SH-SY5Y compared with untransfected cells. C, SOD2 immunoreactivity (green
fluorescence) showed excellent overlapping with Succinate dehydrogenase A (red fluorescence), which is located on the inner membrane of the mitochondria,
indicating the mitochondrial localization of SOD2.
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mimetic compounds. Four classes of molecules possessing
SOD-like activity have been described until now (25), which
include metalloporphyrin, nitroxides, Mn(III)-salen complexes
and Mn(II)-pentaazamacrocyclic-based complexes. Using the
cell model described above we studied compounds from each of
the aforementioned classes, namely Mn(III)TMPyP, M40403,
EUK-134, and Tempol (Fig. 3C). The effects of the SOD-mi-
metic compounds were analyzed via the FACS assay. As sum-

marized in Fig. 3D, among the different drugs tested, only
M40403 was able to significantly rescue PQ toxicity.

Mitochondrial Fragmentation Induced by PQ Is Rescued by
SOD2 and M40403—Mitochondria form a dynamic intercon-
nected network that continuously undergo fission and fusion
processes in order to maintain the proper morphology and
functioning. Mitochondrial ROS production has been sug-
gested to trigger mitochondrial fragmentation (26, 27). In light
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of the previous results, SH-SY5Y cells were transiently trans-
fected to express a mitochondrial-targeted red fluorescent pro-
tein (mt-RFP), which allowed to monitor the mitochondrial
morphological changes through fluorescence microscopy. As
reported in a previous work (28), we classified mitochondria as
tubular, intermediate and fragmented. Tubular are elongated
mitochondria with high connectivity, fragmented are very
small and round mitochondria and intermediate are a mixture
of circular and shorter tubular mitochondria. As shown in Fig.
4, �80% of SH-SY5Y wild-type cells displayed mitochondria
with a tubular shape, while only a small fraction has mitochon-
dria with an intermediate or fragmented morphology. A similar
morphological feature was observed in SOD1 and SOD2-over-
expressing cells indicating that the overexpression of these
enzymes does not perturb the mitochondrial network. When
wild-type cells were treated with PQ we observed a strong shift

toward fragmentation. We also observed an increase of the
intermediate morphology in comparison to our controls. While
the overexpression of SOD1 did not significantly affect the
mitochondrial network in cells treated with PQ, the overex-
pression of SOD2 strongly reduced fragmentation, restoring a
more tubular network. Interestingly, the addition of M40403 to
the growth medium also protected mitochondria from the
morphological changes induced by PQ.

Sod-mediated Protection Against PQ Toxicity in Drosophila
melanogaster—The effects of the overexpression of SOD
enzymes were also evaluated in vivo, using Drosophila melano-
gaster. The use of Drosophila presents several advantages. The
rapid reproductive cycle and the short lifespan of flies readily
allow the analysis of age-related events on a large number of
individuals. Moreover, particularly relevant for this study, it is
possible to target the expression of transgenes into specific cell
types, such as dopaminergic neurons. Several studies have
already analyzed the effect of PQ toxicity on fly survival (29, 30),
including in models of PD (31). Drosophila express homologs of
both SOD1 and SOD2, called Sod and Sod2 respectively. We
used the GAL4/UAS system to drive the overexpression of
either Sod or Sod2 in a tissue-specific manner (32). First, the
proteins were expressed ubiquitously via the da-GAL4 driver.
The overexpression was evaluated by semi-quantitative PCR
analysis on fly lysate extracts and quantified through densitom-
etry and normalized with respect to 18S rRNA (Fig. 5A). The
overexpression levels of Sod and Sod2 in comparison to wild-
type flies were 9 
 2 and 9 
 4, respectively. The acute treat-
ment of 5 mM PQ causes �30% of da-GAL4/� flies died after 1
day and more than 70% after 4 days (Fig. 5B). The overexpres-
sion of Sod did not provide any significant protection, in agree-
ment with a previous work (33). Consistent with the results
obtained in our cellular model, the ubiquitous overexpression
of Sod2 made the flies significantly more resistant to PQ toxic-
ity: more than 60% of flies were still alive after 4 days of treat-
ment. These results suggest that the damage induced by 5 mM

PQ is likely to compromise the organismal viability much more
extensively at the mitochondrial level than the cytosol since
only Sod2 overexpression resulted in rescue.

To analyze more in depth the neurotoxic effects associated to
a chronic exposure of PQ, we treated flies with 1 mM PQ for 7
days, a sub-lethal condition. Defects in motor behavior were
then analyzed using a negative-geotaxis climbing assay. After
PQ treatment, control flies showed a strong impairment in
locomotion (Fig. 5C). Interestingly, the ubiquitous overexpres-
sion of Sod via the da-GAL4 driver was able to almost com-
pletely rescue this motor dysfunction. In contrast, even though
Sod2 overexpression improved the behavioral phenotype in a
statistically significant manner, the rescue was only partial and
much lower than with Sod. These results suggest that following
chronic exposure to PQ, cytosolic production of superoxide
lead to behavioral defects in flies. As chronic exposure to PQ
has been associated to PD, we then analyzed the effects of the
selective over-expression of Sods in the dopaminergic neurons
using the TH-GAL4 driver. Once again, after the exposure to
PQ the locomotion behavior of control flies was significantly
reduced (Fig. 5D). Overexpressing Sod2 did not improve the
motor dysfunction while an increased amount of Sod was able
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rection (*, p 	 0.05; **, p 	 0.01; ***, p 	 0.001). For the sake of clarity, only
statistical significance relative to PQ-treated WT cells is reported.
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to significantly counteract the oxidative damage specifically
induced by PQ in the dopaminergic neurons. In conclusion, in
the presence of 1 mM PQ the damage appears to be mostly
related to the cytosolic production of superoxide radical, which
interferes with the correct functioning of neurons.

Protective Role of the M40403 SOD-mimetic Compound in
Drosophila—The protection of M40403 was also tested in vivo
in wild-type flies. First, fly survival was evaluated by exposing
flies to 5 mM PQ in the absence or presence of M40403. As
before, survival was strongly affected by the presence of 5 mM

PQ. However, the presence of M40403 increased fly survival in
a dose-dependent manner and at the highest concentration
used (1 mM) the rescue was almost complete (Fig. 6A). The
locomotion behavior of flies treated with 1 mM PQ for 7 days
was then analyzed in the absence or presence of M40403. Again,
the climbing ability of flies was strongly affected by the expo-
sure to PQ (Fig. 6B), but the presence of M40403, at both con-
centrations tested, resulted in a significant improvement of the
climbing ability.

Lethality Rescue by M40403 in Sod- and Sod2-knockdown
Flies—While from the results obtained in the presence of the
higher concentration of PQ used it appears evident that
M40403 is able to act similarly to SOD2, to infer its cytosolic
activity from our data is more difficult. To address this impor-
tant question, we evaluated whether the drug could affect fly
survival upon Sod- and Sod2-knockdown, mediated via trans-
genic RNAi lines coupled with the da-GAL4 driver. The gene
silencing was evaluated by qRT-PCR. As Shown in Fig. 7A the

down-regulation of Sod and Sod2 transcripts was remarkably
effective (90 –95%). Moreover, the level of these transcripts was
attenuated to a equivalent extent. The ubiquitous down-regu-
lation of the enzymes has been described to lead to early adult
mortality and elevated endogenous oxidative damage produc-
tion (34, 35). In our experimental conditions, the viability of
control flies is basically not affected during the experimental
time-course. On the contrary, the survival of flies rendered defi-
cient for either Sod or Sod2 is comparably much shorter than
our control, with a median survival of 13 days. The co-treat-
ment of flies with M40403 increased the survival for both gen-
otypes, but with differential effects. In the case of Sod-deficient
flies, the presence of M40403 appeared to be strongly protective
in the first period of treatment (12 days), after which the sur-
vival rapidly decreased reaching the values similar to the
untreated flies (Fig. 7B). In contrast, the drug was not able to
reduce the mortality of Sod2-deficient flies in the first period of
treatment but showed protection starting from the 6th day until
the end of the experiment (Fig. 7C). The survival distribution
of the untreated and M40403-treated flies was compared
through the logrank test, which indicated that in both cases the
two curves are significantly different (p � 0.004 and p 	 0.001
for Sod-and Sod2-knockdown flies, respectively). In conclusion
the data presented here indicate that the SOD-mimetic mole-
cule M40403 is able to partially rescue, in vivo, the loss of either
Sod or Sod2, and suggest that it can act both at cytosolic and
mitochondrial level.
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Discussion

Increased production of ROS and/or decreased capacity of
antioxidant defense can disrupt oxidative balance and damage
many components of the cell, including lipids, proteins, and
DNA. It is well established that oxidative damage is closely
linked to the progression of PD (1). Exposure to pesticides, such
as PQ and rotenone, has been associated with a higher risk of
developing PD (36), and increasing evidence exists on the
induction of oxidative damage by PQ. Accordingly, PQ is
widely used to generate neurotoxin-based models of sporadic
PD (37–39).

In this study, we investigated the beneficial effects of SOD
enzymes and SOD-mimetic compounds. The picture that
emerges from all the experiments presented here emphasizes
the role of both cytosolic and mitochondrial SODs in protecting
cells against superoxide overproduction. Specifically, our in
vitro analyses demonstrated that PQ promotes oxidative stress
at mitochondrial level, which, in turn, impacts on the morphol-
ogy of these organelles and, ultimately, on cell viability. These

observations explain the selective protection exerted by SOD2,
which resides directly on the site of ROS production. A similar
picture emerges in flies treated with high concentrations of PQ
(acute treatment), highlighting once again the important role
played by SOD2 in protecting against oxidative damage. On the
contrary, the situation observed in flies at sub-lethal concentra-
tions of PQ indicates that only the overexpression of SOD1 is
able to rescue the PQ-associated toxicity, while SOD2 appears
ineffective. Interestingly, this is also true when SOD1 is specif-
ically expressed in dopaminergic neurons, the neuronal popu-
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lation mainly affected in PD. In this condition (chronic treat-
ment), endogenous SOD1 and SOD2 are probably able to
counteract both cytosolic and mitochondrial production of
superoxide in most tissues. Nevertheless, consistent with the
notion that dopaminergic neurons are particularly vulnerable
to oxidative damage conditions (40), other cytosolic processes
inside these neurons, such as dopamine oxidation, may amplify
the toxicity derived from an elevated production of free radical
species. In support of this, a previous study showed that when
PQ was administered with a non-toxic concentration of DA,
significant increases in ROS levels and cell death were detected,
suggesting that DA itself may contribute to the vulnerability of
DA neurons to PQ toxicity (17). Moreover, consistent with this
interpretation, the overexpression of the vesicular monoamine
transporter, which reduces the cytosolic level of dopamine by
sequestering it inside synaptic vesicles, has been described to
protect from neurotoxin-induced degeneration of dopaminer-
gic neurons, both in flies and mice (41, 42).

Wherever the origin of ROS production is, at mitochondrial
level or in the cytosol, a very considerable result presented in
this work, is the ability of the SOD-mimetic compound M40403
to prevent the PQ-induced toxicity. Not only M40403 showed
significant beneficial properties in our cellular model, but,
when tested in vivo, it succeeded in rescuing the lethality
induced by elevated concentration of PQ. Moreover, in the
presence of a sub-lethal concentration of PQ, M40403 was also
able to improve the locomotion behavior of flies. The protective
effects of M40403, both in the presence of acute and chronic PQ
treatments, derive, most probably, from its ability to act in vivo
both at cytosolic and mitochondrial level, as we demonstrated
by using either Sod or Sod2 knockdown flies. This behavior is of
particular importance in the context of PD, where cytosolic
processes can contribute to and exacerbate the production of
superoxide radicals and where antioxidants targeted to mito-
chondria failed to show any benefit in clinical trials (43)

In the rational design of potential therapeutic molecules to
combat PD, at least two additional aspects must be considered.
The first is their ability to cross the brain blood barrier; the
second is the absence of any toxicity. The in vivo distribution of
M40403 has been described in rats, where the drug, 6 h after
injection, was found widely distributed (44). Its presence in the
brain clearly indicated its ability to cross the brain blood bar-
rier. By monitoring the intact Mn(II)-complex in biological
samples, the long lasting stability of M40403 was also demon-
strated (44). Furthermore, results of phase I and phase II clinical
trials that have already been performed in �700 subjects/pa-
tients using an intravenous formulation of M40403, indicate
that it is safe and well-tolerated (45).

In conclusion, the M40403 molecule has unique properties
that make it very attractive from a therapeutic point of view.
M40403 does not just act as a free radical scavenger, but, like the
native enzymes, is able to catalytically dismutate superoxide. As
demonstrated in this work, it is able to rescue the toxicity
induced by the attenuation of either SOD1 or SOD2, indicating
that it can act both a cytosolic and mitochondrial level. The
molecule is water-soluble so that it can be orally administered,
but at the same time it is able to cross the blood brain barrier
and to accumulate in the brain (44). Even though the following

aspect was not considered in this work, M40403 has been orig-
inally designed with the aim to counteract inflammatory pro-
cesses (see Salvemini et al. 46 for a review) rather than oxidative
stress, and until now its clinical application is restricted to anti-
inflammatory therapy (45). Considering that microglia activa-
tion is believed to contribute to the progression of PD, it is
highly probable that the beneficial effects of M40403, described
here, are underestimated.

In light of these considerations and of the data presented in
this work, the possibility to explore a novel use of SOD-mimetic
compounds as a disease modifying treatment for PD becomes
very attractive. More specifically, SOD-mimetic compounds
belonging to the M40403 family could be evaluated for their use
as a complementary therapy against PD, in addition to the cur-
rently adopted treatments.

Author Contributions—R. F. performed most of the cellular experi-
ments. V. K. G. and A. S. M. performed most of the experiments in
Drosophila. E. F. and L. C. designed and performed the synthesis of
M40403. M. Be. and L. B. contributed to the conception of the study
and to the revision of the paper. A. J. W. and M. B. designed and
coordinated the study and wrote the paper.

Acknowledgments—We thank F. Carpanese, A. Residori, and Dr. V.
Ferrari for helping with cellular colorimetric assays and fluorescence-
activated cell sorting (FACS) analysis.

References
1. Henchcliffe, C., and Beal, M. F. (2008) Mitochondrial biology and oxida-

tive stress in Parkinson disease pathogenesis. Nat. Clin. Pract Neurol 4,
600 – 609

2. Dexter, D. T., Carter, C. J., Wells, F. R., Javoy-Agid, F., Agid, Y., Lees, A.,
Jenner, P., and Marsden, C. D. (1989) Basal lipid peroxidation in substantia
nigra is increased in Parkinson’s disease. J. Neurochem. 52, 381–389

3. Zhang, J., Perry, G., Smith, M. A., Robertson, D., Olson, S. J., Graham,
D. G., and Montine, T. J. (1999) Parkinson’s disease is associated with
oxidative damage to cytoplasmic DNA and RNA in substantia nigra neu-
rons. Am. J. Pathol 154, 1423–1429

4. Floor, E., and Wetzel, M. G. (1998) Increased protein oxidation in human
substantia nigra pars compacta in comparison with basal ganglia and pre-
frontal cortex measured with an improved dinitrophenylhydrazine assay.
J. Neurochem. 70, 268 –275

5. Alam, Z. I., Daniel, S. E., Lees, A. J., Marsden, D. C., Jenner, P., and Halli-
well, B. (1997) A generalised increase in protein carbonyls in the brain in
Parkinson’s but not incidental Lewy body disease. J. Neurochem. 69,
1326 –1329

6. Valko, M., Leibfritz, D., Moncol, J., Cronin, M. T., Mazur, M., and Telser,
J. (2007) Free radicals and antioxidants in normal physiological functions
and human disease. Int. J. Biochem. Cell Biol. 39, 44 – 84

7. Murphy, M. P. (2009) How mitochondria produce reactive oxygen spe-
cies. Biochem. J. 417, 1–13

8. Bisaglia, M., Filograna, R., Beltramini, M., and Bubacco, L. (2014) Ageing
Res. Rev. 13C, 107–114

9. Zhou, C., Huang, Y., and Przedborski, S. (2008) Oxidative stress in Parkin-
son’s disease: a mechanism of pathogenic and therapeutic significance.
Ann. N.Y. Acad. Sci. 1147, 93–104

10. Zelko, I. N., Mariani, T. J., and Folz, R. J. (2002) Superoxide dismutase
multigene family: a comparison of the CuZn-SOD (SOD1), Mn-SOD
(SOD2), and EC-SOD (SOD3) gene structures, evolution, and expression.
Free Radic. Biol. Med. 33, 337–349

11. Köhler, H. R., and Triebskorn, R. (2013) Wildlife ecotoxicology of pesti-
cides: can we track effects to the population level and beyond? Science 341,
759 –765

SOD-mimetic M40403 in Parkinson Disease

9266 JOURNAL OF BIOLOGICAL CHEMISTRY VOLUME 291 • NUMBER 17 • APRIL 22, 2016

 at B
ibl B

iologico-M
edica on M

ay 2, 2016
http://w

w
w

.jbc.org/
D

ow
nloaded from

 

http://www.jbc.org/


12. Liou, H. H., Tsai, M. C., Chen, C. J., Jeng, J. S., Chang, Y. C., Chen, S. Y., and
Chen, R. C. (1997) Environmental risk factors and Parkinson’s disease: a
case-control study in Taiwan. Neurology 48, 1583–1588

13. Tanner, C. M., Kamel, F., Ross, G. W., Hoppin, J. A., Goldman, S. M.,
Korell, M., Marras, C., Bhudhikanok, G. S., Kasten, M., Chade, A. R., Co-
myns, K., Richards, M. B., Meng, C., Priestley, B., Fernandez, H. H., Cambi,
F., Umbach, D. M., Blair, A., Sandler, D. P., and Langston, J. W. (2011)
Rotenone, paraquat, and Parkinson’s disease. Environ. Health Perspect.
119, 866 – 872

14. Wang, A., Costello, S., Cockburn, M., Zhang, X., Bronstein, J., and Ritz, B.
(2011) Parkinson’s disease risk from ambient exposure to pesticides. Eur.
J. Epidemiol. 26, 547–555

15. van der Mark, M., Brouwer, M., Kromhout, H., Nijssen, P., Huss, A., and
Vermeulen, R. (2012) Is pesticide use related to Parkinson disease? Some
clues to heterogeneity in study results. Environ. Health Perspect. 120,
340 –347

16. Pezzoli, G., and Cereda, E. (2013) Exposure to pesticides or solvents and
risk of Parkinson disease. Neurology 80, 2035–2041

17. Rappold, P. M., Cui, M., Chesser, A. S., Tibbett, J., Grima, J. C., Duan, L.,
Sen, N., Javitch, J. A., and Tieu, K. (2011) Paraquat neurotoxicity is medi-
ated by the dopamine transporter and organic cation transporter-3. Proc.
Natl. Acad. Sci. U.S.A. 108, 20766 –20771

18. Rodriguez-Rocha, H., Garcia-Garcia, A., Pickett, C., Li, S., Jones, J., Chen,
H., Webb, B., Choi, J., Zhou, Y., Zimmerman, M. C., and Franco, R. (2013)
Free Radic. Biol. Med. 61, 370 –383

19. Jin, H., Kanthasamy, A., Ghosh, A., Anantharam, V., Kalyanaraman, B.,
and Kanthasamy, A. G. (2014) Biochim. Biophys. Acta 1842, 1282–1294

20. Aston, K., Rath, N., Naik, A., Slomczynska, U., Schall, O. F., and Riley, D. P.
(2001) Computer-aided design (CAD) of Mn(II) complexes: superoxide
dismutase mimetics with catalytic activity exceeding the native enzyme.
Inorg. Chem. 40, 1779 –1789

21. Friggi-Grelin, F., Coulom, H., Meller, M., Gomez, D., Hirsh, J., and Bir-
man, S. (2003) Targeted gene expression in Drosophila dopaminergic cells
using regulatory sequences from tyrosine hydroxylase. J. Neurobiol. 54,
618 – 627

22. Dooley, C. T., Dore, T. M., Hanson, G. T., Jackson, W. C., Remington, S. J.,
and Tsien, R. Y. (2004) Imaging dynamic redox changes in mammalian
cells with green fluorescent protein indicators. J. Biol. Chem. 279,
22284 –22293

23. Yang, W., Tiffany-Castiglioni, E., Lee, M. Y., and Son, I. H. (2010) Paraquat
induces cyclooxygenase-2 (COX-2) implicated toxicity in human neuro-
blastoma SH-SY5Y cells. Toxicol. Lett. 199, 239 –246

24. Fujimori, K., Fukuhara, A., Inui, T., and Allhorn, M. (2012) Prevention of
paraquat-induced apoptosis in human neuronal SH-SY5Y cells by lipoca-
lin-type prostaglandin D synthase. J. Neurochem. 120, 279 –291

25. Muscoli, C., Cuzzocrea, S., Riley, D. P., Zweier, J. L., Thiemermann, C.,
Wang, Z. Q., and Salvemini, D. (2003) On the selectivity of superoxide
dismutase mimetics and its importance in pharmacological studies. Br. J.
Pharmacol. 140, 445– 460

26. Pletjushkina, O. Y., Lyamzaev, K. G., Popova, E. N., Nepryakhina, O. K.,
Ivanova, O. Y., Domnina, L. V., Chernyak, B. V., and Skulachev, V. P.
(2006) Effect of oxidative stress on dynamics of mitochondrial reticulum.
Biochim. Biophys. Acta 1757, 518 –524

27. Wu, S., Zhou, F., Zhang, Z., and Xing, D. (2011) Mitochondrial oxidative
stress causes mitochondrial fragmentation via differential modulation of
mitochondrial fission-fusion proteins. FEBS J. 278, 941–954

28. Rambold, A. S., Kostelecky, B., Elia, N., and Lippincott-Schwartz, J. (2011)
Tubular network formation protects mitochondria from autophagosomal
degradation during nutrient starvation. Proc. Natl. Acad. Sci. U.S.A. 108,
10190 –10195

29. Phillips, J. P., Campbell, S. D., Michaud, D., Charbonneau, M., and Hilliker,
A. J. (1989) Null mutation of copper/zinc superoxide dismutase in Dro-
sophila confers hypersensitivity to paraquat and reduced longevity. Proc.
Natl. Acad. Sci. U.S.A. 86, 2761–2765

30. Minois, N., Carmona-Gutierrez, D., Bauer, M. A., Rockenfeller, P., Eisen-
berg, T., Brandhorst, S., Sigrist, S. J., Kroemer, G., and Madeo, F. (2012)
Spermidine promotes stress resistance in Drosophila melanogaster
through autophagy-dependent and -independent pathways. Cell Death
Dis. 3, e401

31. Meulener, M., Whitworth, A. J., Armstrong-Gold, C. E., Rizzu, P., Heu-
tink, P., Wes, P. D., Pallanck, L. J., and Bonini, N. M. (2005) Drosophila
DJ-1 mutants are selectively sensitive to environmental toxins associated
with Parkinson’s disease. Curr. Biol. 15, 1572–1577

32. Brand, A. H., and Perrimon, N. (1993) Targeted gene expression as a
means of altering cell fates and generating dominant phenotypes. Devel-
opment 118, 401– 415

33. Orr, W. C., and Sohal, R. S. (1993) Effects of Cu-Zn superoxide dismutase
overexpression of life span and resistance to oxidative stress in transgenic
Drosophila melanogaster. Arch. Biochem. Biophys. 301, 34 – 40

34. Kirby, K., Hu, J., Hilliker, A. J., and Phillips, J. P. (2002) RNA interference-
mediated silencing of Sod2 in Drosophila leads to early adult-onset mor-
tality and elevated endogenous oxidative stress. Proc. Natl. Acad. Sci.
U.S.A. 99, 16162–16167

35. Wicks, S., Bain, N., Duttaroy, A., Hilliker, A. J., and Phillips, J. P. (2009)
Hypoxia rescues early mortality conferred by superoxide dismutase defi-
ciency. Free Radic Biol. Med 46, 176 –181

36. Kamel, F. (2013) Epidemiology. Paths from pesticides to Parkinson’s. Sci-
ence 341, 722–723

37. Bové, J., and Perier, C. (2012) Neurotoxin-based models of Parkinson’s
disease. Neuroscience 211, 51–76

38. Tieu, K. (2011) Cold Spring Harb. Perspect. Med. 1, a009316
39. Blandini, F., and Armentero, M. T. (2012) Animal models of Parkinson’s

disease. FEBS J. 279, 1156 –1166
40. Wang, X., and Michaelis, E. K. (2010) Selective neuronal vulnerability to

oxidative stress in the brain. Front Aging Neurosci. 2, 12
41. Lawal, H. O., Chang, H. Y., Terrell, A. N., Brooks, E. S., Pulido, D., Simon,

A. F., and Krantz, D. E. (2010) The Drosophila vesicular monoamine trans-
porter reduces pesticide-induced loss of dopaminergic neurons. Neuro-
biol. Dis. 40, 102–112

42. Lohr, K. M., Bernstein, A. I., Stout, K. A., Dunn, A. R., Lazo, C. R., Alter,
S. P., Wang, M., Li, Y., Fan, X., Hess, E. J., Yi, H., Vecchio, L. M., Goldstein,
D. S., Guillot, T. S., Salahpour, A., and Miller, G. W. (2014) Increased
vesicular monoamine transporter enhances dopamine release and op-
poses Parkinson disease-related neurodegeneration in vivo. Proc. Natl.
Acad. Sci. U.S.A. 111, 9977–9982

43. Snow, B. J., Rolfe, F. L., Lockhart, M. M., Frampton, C. M., O’Sullivan, J. D.,
Fung, V., Smith, R. A., Murphy, M. P., and Taylor, K. M. (2010) A double-
blind, placebo-controlled study to assess the mitochondria-targeted anti-
oxidant MitoQ as a disease-modifying therapy in Parkinson’s disease.
Mov. Disord. 25, 1670 –1674

44. Salvemini, D., Wang, Z. Q., Zweier, J. L., Samouilov, A., Macarthur, H.,
Misko, T. P., Currie, M. G., Cuzzocrea, S., Sikorski, J. A., and Riley, D. P.
(1999) A nonpeptidyl mimic of superoxide dismutase with therapeutic
activity in rats. Science 286, 304 –306

45. Murphy, C. K., Fey, E. G., Watkins, B. A., Wong, V., Rothstein, D., and
Sonis, S. T. (2008) Efficacy of superoxide dismutase mimetic M40403 in
attenuating radiation-induced oral mucositis in hamsters. Clin. Cancer
Res. 14, 4292– 4297

46. Salvemini, D., Riley, D. P., and Cuzzocrea, S. (2002) SOD mimetics are
coming of age. Nat. Rev. Drug Discov. 1, 367–374

SOD-mimetic M40403 in Parkinson Disease

APRIL 22, 2016 • VOLUME 291 • NUMBER 17 JOURNAL OF BIOLOGICAL CHEMISTRY 9267

 at B
ibl B

iologico-M
edica on M

ay 2, 2016
http://w

w
w

.jbc.org/
D

ow
nloaded from

 

http://www.jbc.org/


Bisaglia
Luigi Casella, Mariano Beltramini, Luigi Bubacco, Alexander J. Whitworth and Marco 

Roberta Filograna, Vinay K. Godena, Alvaro Sanchez-Martinez, Emanuele Ferrari,
of Paraquat Toxicity: IMPLICATIONS FOR PARKINSON DISEASE

Superoxide Dismutase (SOD)-mimetic M40403 Is Protective in Cell and Fly Models

doi: 10.1074/jbc.M115.708057 originally published online March 7, 2016
2016, 291:9257-9267.J. Biol. Chem. 

  
 10.1074/jbc.M115.708057Access the most updated version of this article at doi: 

 Alerts: 

  
 When a correction for this article is posted•  

 When this article is cited•  

 to choose from all of JBC's e-mail alertsClick here

  
 http://www.jbc.org/content/291/17/9257.full.html#ref-list-1

This article cites 46 references, 13 of which can be accessed free at

 at B
ibl B

iologico-M
edica on M

ay 2, 2016
http://w

w
w

.jbc.org/
D

ow
nloaded from

 

http://www.jbc.org/lookup/doi/10.1074/jbc.M115.708057
http://www.jbc.org/cgi/alerts?alertType=citedby&addAlert=cited_by&cited_by_criteria_resid=jbc;291/17/9257&saveAlert=no&return-type=article&return_url=http://www.jbc.org/content/291/17/9257
http://www.jbc.org/cgi/alerts?alertType=correction&addAlert=correction&correction_criteria_value=291/17/9257&saveAlert=no&return-type=article&return_url=http://www.jbc.org/content/291/17/9257
http://www.jbc.org/cgi/alerts/etoc
http://www.jbc.org/content/291/17/9257.full.html#ref-list-1
http://www.jbc.org/

