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Network measures for protein 
folding state discrimination
Giulia Menichetti1, Piero Fariselli2 & Daniel Remondini1

Proteins fold using a two-state or multi-state kinetic mechanisms, but up to now there is not a first-
principle model to explain this different behavior. We exploit the network properties of protein 
structures by introducing novel observables to address the problem of classifying the different types 
of folding kinetics. These observables display a plain physical meaning, in terms of vibrational modes, 
possible configurations compatible with the native protein structure, and folding cooperativity. The 
relevance of these observables is supported by a classification performance up to 90%, even with simple 
classifiers such as discriminant analysis.

Protein folding is one of the most studied biophysical problems1, and despite the fact that protein folding is a 
straightforward biophysical process2, up to now there is not a general agreement on how and why proteins fold3. 
Experimentally, protein folding kinetics is divided into two fundamental categories: Two-State (TS) folding and 
Multi-State (MS) folding. While Two-State kinetics can be considered as an “all-or-none” transition, Multi-State 
folding displays at least one or more intermediates. Measuring experimentally the type of protein kinetics is not 
an easy task3, and computational studies can help unraveling relevant mechanisms4. The classification of proteins 
in these two major groups and the related prediction of folding rates have been widely debated in recent years4–8. 
Previous studies have focused on several different types of predictors9–11, exploiting the main features of protein 
primary structures and protein contact map representations (for a review see ref. 3). The geometry of the native 
protein structure plays a relevant role to infer the value of the folding rate. For this task, different predictors 
have been proposed based on: structural topology measures such as contact order12,13 and long range contact 
order14, clustering coefficient, characteristic path length and assortativity coefficient11, cliquishness15, chain length 
and amino acid composition9,10. These observables or combinations of them were usually evaluated by means of 
binary logistic regression (BLR) and support vector machine (SVM). In particular, SVM classifiers map the data 
into a higher dimensional feature space, that is usually not easily interpretable in terms of the original variables. 
Most predictors do not usually perform in the same way both for Two-State and Multi-State proteins, causing 
unbalanced value of sensitivity and sensibility according to the target of the analysis.

In this paper we focus on the problem of the discrimination of protein folding state, and not on the real-valued 
prediction of the folding rates. Our aim is to find physics-based, and easy interpretable observables, that can 
be related to the folding state classification. We propose novel observables based on the network properties of 
the native structure only, and we show that, together with a clear physical interpretation, they also predict with 
high performance if a protein behaves as Two-State or Multi-State by using simple discriminant methods. As 
done before by other authors16–18, we represent the protein 3D structure as a contact map between amino-acid 
residues (Protein Contact Network PCN, see Fig. 1 for an example). The PCN is the adjacency matrix of a graph, 
whose links represent the contacts between residues. Our assumption is that the native PCN contains a clue of 
the protein folding kinetics. In this respect, we introduce three observables that should take into account that 
Multi-State proteins must be trapped into one or more intermediate states. First of all, we make the hypothesis 
that MS protein should have more configurational microstates to explore than TS proteins, and we implemented a 
measure of Network Entropy to quantify this aspect onto a combination of the full PCN with contact potentials as 
weights for the existing PCN links. Second, from a modified version of the PCN, that keeps only long-range con-
tacts but preserving network connectivity, we evaluated the spectrum of the Laplacian matrix, since it has been 
shown that its vibrational properties can be used to model experimental data19,20. Finally, in order to measure the 
folding cooperativity21, we evaluate the fraction of sequence separation (diagonals of the full PCN) that do not 
contain residue contact pairs. The rationale of this measure is that the more diffuse is the cooperation (most of the 
diagonal participate) the less probable is to be trapped in intermediate states. In order to keep these observables 
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as independent as possible from the protein size, they were accordingly rescaled by a function of residue chain 
length. In this paper we show that these observables perform very well even with a simple discriminant classifier, 
that allows to give a intuitive biophysical interpretation to our results.

Results
As previously mentioned, we introduced three main groups of observables (see Methods), i.e.

•	 Network Entropy-based ratio SR, a measure related to the possible configurations consistent with the native 
protein structure PCN combined with the contact potential matrix P (see Methods).

•	 Laplacian-based observables λN, λN−1, λN−2, related to the highest-frequency vibrational modes of a modified 
PCN, in which the backbone is removed.

•	 Inter-residue link density R0, measuring the fraction of sequence separation (diagonals of the full PCN) that 
do not contain residue contact pairs.

All the defined observables were considered as features for classification of TS and MS proteins by Fisher 
discriminant analysis (see Methods).

Classification with combinations of the novel observables is very high and balanced between the two classes, 
with performances up to 88% and Matthews Correlation Coefficient MCC =  0.76 (see Methods). Previous 
results, with a more complex classifier (nonlinear Support Vector Machine13) that does not allow a simple 
interpretation of the results as in our case, were around 80%. The details of all performances of the analyzed 
signatures, both with single observables and their combinations in couples, are shown in Table 1. We also con-
sidered higher-dimensional signatures (with combinations of 3 and 4 observables) but the performance was 

Figure 1. An example of different PCN representations for protein 1A6N, with MS folding kinetics and 
151 Cα residues. In Panel A the whole PCN is displayed. In Panel B, once calculated the number of diagonals 
b =  4 needed to break the protein network in more than one component, 3 backbone diagonals were removed. 
In Panel C the related Long-range Interaction Network (LIN) is shown11,14 in which no backbone diagonal is 
present.

(a) Classification performances

% λN λN−1 λN−2 R0 SR
λN 76.6 ±  1.3 74.7 ±  1.4 70.7 ±  1.8 85.2 ±  1.4 78.4 ±  1.2

λN−1 76.7 ±  1.4 70.7 ±  1.4 88.3 ±  1.1 75.9 ±  2.3

λN−2 77.6 ±  1.1 87.3 ±  1.4 76.5 ±  1.9

R0 75.9 ±  1.2 84.5 ±  1.3

SR 80.4 ±  1.8

(b) Matthews correlation coefficient MCC

λN 0.57 ±  0.02 0.53 ±  0.02 0.46 ±  0.03 0.69 ±  0.03 0.60 ±  0.02

λN−1 0.58 ±  0.02 0.46 ±  0.03 0.76 ±  0.02 0.57 ±  0.04

λN−2 0.59 ±  0.02 0.74 ±  0.03 0.56 ±  0.04

R0 0.52 ±  0.02 0.67 ±  0.03

SR 0.59 ±  0.04

Table 1.  Classification performances of the newly defined observables and Matthews correlation 
coefficient MCC, based on quadratic discriminant analysis. The tables show the performances of couples of 
observables, with the performance of the single observables along the diagonal; the best overall performance 
is bold-typed. The results presented are the average values of 10-fold cross-validation over 10000 instances and 
their standard deviation.
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not significantly increased. The combinations of the largest Laplacian eigenvalues λN, λN−1, λN−2 with the link 
density R0 produce the best performances of classification, with a top-score value given by the couple (λN−1, 
R0), with 88.33% ±  1.10% correctly classified proteins, and a highly homogeneous performance on both classes 
(87.20% ±  2.21% MS and 89.07% ±  1.01% TS correctly classified proteins, MCC =  0.76 ±  0.02). Considering the 
full PCN matrix, the classification performance of the Laplacian eigenvalue was reduced (see Methods). The 
entropy ratio SR is the best single classifier (80.36% ±  1.81% correctly classified proteins, MCC =  0.59 ±  0.04), 
and it also has a very high performance in combination with R0 (84.50% ±  1.30% correctly classified proteins, 
MCC =  0.67 ±  0.03). Classifying without cross-validation, i.e. using the entire set of (λN−1, R0) features, we 
obtain a performance of 90.48%, with 92.00% for MS proteins and 89.47% for TS proteins. In Fig. 2 we show the 
scatter-plot for two top-scoring couples: (λN−1, R0) and (SR, R0). It appears that MS and TS proteins are almost 
linearly separated in this parameter space, and this may allow a simple interpretation in terms of the observables, 
as stated in the Discussion section.

Since in previous studies9 it has been shown that the chain length NC is a good classifier of folding classes, we 
rescaled our observables in order to keep them as much independent as possible from protein length. Moreover, 
as a comparison for classification performance, we used NC as a variable for discrimination. In our dataset, the NC 
parameter correctly classifies 78.23% ±  1.52 proteins, with a large unbalance between correctly classified proteins 
from the two classes: 57.61% ±  3.04 for MS proteins and 91.80% ±  1.29 for TS proteins (MCC =  0.54 ±  0.03). We 
also evaluated the classification power of some measures typically used in literature, i.e. the average hydrophobic-
ity value 〈 h〉 22, the contact order CO12,13 and the long range contact order LRCO14. In the considered dataset the 
couple (NC, 〈 h〉 ) correctly classifies 73.71% ±  2.15 proteins, with MCC =  0.44 ±  0.05. Both the structural topology 
measures perform poorly: CO correctly classifies 68.42% ±  0.65 proteins with MCC =  0.36 ±  0.01 while LRCO 
guesses right 54.38% ±  2.41 proteins with MCC =  0.14 ±  0.05. The best performing couple of observables (NC 
and LRCO) reaches a performance of 80% ±  1, with a high heterogeneity of performance for TS and MS proteins 
(MCC =  0.57 ±  0.02). A complete summary of the performances of classical measures (both singularly and in 
couples) can be found in Table 2. We also performed Discriminant Analysis with all possible combinations of new 
and classical observables, but the results did not outperform the performances obtained with the new observables 
only (CO and SR: 81.4% ±  1.8, MCC =  0.61 ±  0.04).

We also performed the same analysis on a different and more recent dataset7 (http://kineticdb.protres.ru/
db/index.pl), containing 85 proteins for which the PDB structure is available. In this dataset we found the same 
top-performing variables: the combination of R0 with SR had a 80.9% ±  1.3% ratio of correctly classified protein 
with MCC =  0.58 ±  0.03, while R0 for λN−2 we found 79.7% ±  1.1% and MCC =  0.59 ±  0.02.

Discussion
Trying to deduce properties of the proteins from their structure is still an open challenge: in this paper we pro-
pose novel observables, based on the network properties of PCN, that allow the discrimination between proteins 
with a different folding dynamics (TS proteins that present only two configurations (folded/unfolded) and MS 
proteins with a richer landscape of stable and metastable states) by looking only at information on their native 
state structure. Since previous work used the number of protein residues as a discriminating variable, but this may 
have some bias as we will discuss later, we only considered size-independent observables, by rescaling their value 
with an appropriate function of protein size. Thanks to this processing our analysis resulted more performing and 
robust, in particular in the “grey region” of short MS and long TS proteins. The performance of these observables 
is achieved by simple Fisher Discriminant Analysis, that allows a plain physical interpretation, in terms of vibra-
tional modes, possible configurations compatible with the native protein structure, and folding cooperativity.

Figure 2. Scatterplots of two top-ranking classification couples of observables. Panel A: λN−1 and R0 
(classification =  88.3% ±  1.1%, MCC =  0.76 ±  0.02). Panel B: SR and R0 (classification =  84.5% ±  1.3%, 
MCC =  0.67 ±  0.03).

http://kineticdb.protres.ru/db/index.pl
http://kineticdb.protres.ru/db/index.pl
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The observable R0 simply counts the density of inter-residue distances in which there are no contacts, but 
nonetheless it results to be very powerful for this classification purposes though being independent on protein 
size. This means that the information contained in the PCN bands (the diagonals of the related adjacency matrix 
containing links between d–neighboring nodes) is very relevant, and possibly more complex measures could 
be developed based on this information. Another class of observables that we have introduced is based on the 
eigenvalues of the Laplacian operator applied to PCNs. In analogy with the physical Laplacian operator (acting on 
Euclidean space) the eigenvalues and eigenvectors can be put in relation with the main vibrational modes of the 
network and their respective frequencies. We remark that for Laplacian observables it was important to empha-
size the role of long-range residue contacts, that effectively characterize the protein 3D structure, by removing 
the protein backbone with a procedure that preserves the network connectivity as a unique component: based on 
PCN properties, this filtering of non-relevant links is protein-specific, differently from the more general definition 
of long-range interaction commonly used, with a unique threshold for all proteins. Our Discriminant Analysis 
showed that in general TS and MS proteins are better classified by larger Laplacian eigenvalues, corresponding 
to high-frequency vibrating modes, at difference with small eigenvalues such as the Fiedler number. From the 
best performing couple of observables, λN−1 and R0 see Fig. 2, we deduce that TS proteins have larger values of 
fast-vibrating frequencies, and a larger number of inter-residue contacts (as can be seen in Fig. 2A). An inter-
esting remark is that the vibrating modes associated with large eigenvalues tend to be more localized in specific 
residue chain regions (such as focusing modes in optics and whispering modes in acoustics23). It seems thus that 
the vibrating dynamics associated with specific regions of the residue may have a relevant role in these folding 
processes. The other observable we introduced, based on the concept of network ensemble, depends on an estima-
tion of the size of network ensembles (from a canonical Statistical Mechanics point of view) that share common 
constraints (in our case the degree and the strength sequence of the PCN). As expected by the physical meaning 
of entropy, that counts the number of “microstates” corresponding to a “macrostate” characterized by some fixed 
constraints, TS proteins show a smaller value of SR, that can be interpreted as a smaller number of topological 
configurations available to the related networks. A high number of available PCN states, given a fixed degree 
and strength sequence, is thus very likely associated with MS proteins, with more intermediate states during the 
folding process.

We remark that some known parameters used for TS-MS classification, such as the residue number NC, are 
“extensive” variables that depend on protein size, thus their performances might be biased from the fact that many 
MS proteins are “long” and many TS proteins are “short” (e.g. considering protein size of the used database), and 
might not reflect real physical properties of the studied proteins. Since our analysis has a better performance of 
at least 10% with respect to these observables, this means that protein size is very relevant but not crucial to char-
acterize MS and TS classes.

In conclusion, the high classification performance achieved, together with a direct physical interpretation, 
indicate that the newly introduced network-based observables can be relevant for a better comprehension of 
protein folding processes.

Methods
Experimental data. The proteins to be classified as TS or MS are obtained from the manually-annotated 
dataset curated by Ivankov and Finkelstein24. The dataset consists of 63 proteins, 25 of which are classified as 
Multi-State and 38 as Two-State. The protein structures are taken from the Protein Data Bank (www.rcsb.org). 
We model the protein structure with its alpha carbon (Cα) trace. We collapse the entire protein structures into 
related contact matrices between the Cαs of the residues. Contact matrices represent a common way of modeling 
proteins, that guarantees a good representation of the complex relationship between structure and function of 
proteins, while cutting out the redundant information embedded in the whole 3D structure. Contact matrices 
are essentially networks in which the role of nodes is played by residues and edges or “contacts” depend upon a 
notion of “distance” between each couple of residues. The position of an entire amino acid is usually collapsed 
into the corresponding Cα and the ordering of nodes is physically justified by the primary structure of the protein, 

(a) Classification performances

% NC 〈h〉 CO LRCO

NC 78.2 ±  1.5 73.7 ±  2.1 78.4 ±  1.7 80.0 ±  1.1

〈 h〉 57.3 ±  1.4 72.6 ±  2.8 62.7 ±  1.9

CO 68.4 ±  0.7 70.4 ±  2.1

LRCO 54.4 ±  2.4

(b) Matthews correlation coefficient MCC

NC 0.54 ±  0.03 0.44 ±  0.05 0.54 ±  0.04 0.57 ±  0.02

〈 h〉 0.17 ±  0.03 0.44 ±  0.06 0.22 ±  0.04

CO 0.36 ±  0.01 0.44 ±  0.04

LRCO 0.14 ±  0.05

Table 2.  Classification performances of the observables used in literature and Matthews correlation 
coefficient MCC. The tables show the performances of couples of observables, with the performance of the 
single observables along the diagonal; the best overall performance is bold-typed. The results presented are the 
average values of 10-fold cross-validation over 10000 instances and their standard deviation.

http://www.rcsb.org
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i.e. the protein backbone. The backbone is composed by residues that are in sequence and whose distance ranges 
3–4 Å, the so-called “peptide bond”. Once obtained the Cα spatial distribution, the contact matrix D is considered, 
where each element dij is the 3D Euclidean distance between the ith and jth residues. The protein contact network 
PCN is then obtained by choosing an upper threshold of 8 Å25–28:

= <PCN if d1 8Å (1)ij ij

In order to build our Entropy-based observables, we retrieved also data regarding amino acidic interactions, 
such as hydropathy indexes29,30 and contact potentials, namely, 20 ×  20 matrices describing the interactions 
between the 20 side-chains31–33. Each element of the contact potential represents the interaction strength between 
a pair of amino acids at contact. In this paper we provide results only for the contact potential matrix M, as 
described in ref. 31, since the results obtained with other potentials32,33 are very similar. For each protein, starting 
from the known residue sequence, we define the contact potential matrix P in which

=P M r r( , ) (2)ij i j

where ri is the amino acid residue corresponding to the ith Cα, and the matrix P has the same size of the related 
PCN. Since Pij can assume negative values, in order to have only positive weights (necessary for the calculation of 
network entropy) we shifted their values in each PCN to have the smallest weight equal to one. For the Entropy 
calculations only, we use the Hadamard (element-wise) product of PCN and P.

Entropy-based measure SR. The first observable introduced is associated with the-so called Entropy of 
a network ensemble34,35. Network entropy is related to the logarithm of the number of typical networks (in our 
case the possible PCNs) that satisfy some given constraints based on node and link features of a real network 
instance (the studied protein). We hypothesize that the network structure of the protein native state retains infor-
mation related to the protein folding process (such as the possible intermediate states that could be represented 
as non-native PCNs). It has been recently applied in a biological context, as a measure of the “parameter space” 
available to the cell (in terms of gene expression profile or clonal diversity) and it allowed to successfully charac-
terize different cell states related to different cancer stages or to physiological ageing36. In our approach, each pro-
tein is considered as an undirected weighted network, in which we integrate the information on the topological 
structure given by protein contacts with the information on residue interactions given by {Pij} as weights for the 
existing PCN links (related to the contact potential matrix M described in ref. 31 and explained in details in the 
“Experimental Data” Section, Eq. 2).

For each protein, we calculated the Network Entropy SBS for two different ensembles, with a different number 
of constraints: in the first ensemble, we only fix the strength sequence {si} of the protein network (Ss), while in the 
second ensemble (Sks) we fix both strength sequence {si} and degree sequence {ki}. The degree sequence {ki} and 
the strength sequence {si} are respectively defined as the number of contacts and the weighted sum of contacts of 
the nodes in the network.

Network Entropy can be generally defined as

∑∑π π= − .
< =

∞
S w w( )log( ( ))

(3)i jw
ij ij

0

where weights w are positive and πij(w) is the probability to observe weight w between residue i and j. The con-
straints previously defined for the calculation of maximum network entropy are written as

∑∑ π= ∀s w w i( )
(4)

i
prot

j w
ij

∑∑π= ∀
≠

k w i( ) ,
(5)

i
prot

j w
ij

0

where the average values of strength sequence and degree sequence over the network ensemble are enforced to 
match the real features of the selected protein, i.e. s{ }i

prot  and k{ }i
prot . The network entropy observable SR is defined 

as the ratio between the two entropies with a different number of constraints

=S S S/ (6)R s ks

with Ss ≥  Sks given the fewer number of constraints. The closer is the value of SR to 1, the less relevant is the role of 
the degree sequence constraint {ki}, and thus most of the information on possible PCN configurations is enclosed 
in the strength sequence {si} only. On the contrary, a large value of SR implies that the given strength sequence is 
compatible with a larger number of degree sequences (corresponding to more possible PCNs). Thus, MS proteins 
could in principle have larger SR values than TS proteins: having more stable (or metastable) configurations avail-
able could be reflected in a larger number of available configurations as measured by SR.

Laplacian-based observables λi. The Laplacian operator L on networks is a positive semi-definite operator  
that plays a major role in the study of diffusion processes on networks, in node clustering and network visualiza-
tion37,38, and it has already been applied to characterize protein features39. Given an adjacency matrix A without 
self loops, we define the Laplacian operator as
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δ= − = ⋅L K A K k; (7)ij i ij

Remarkably, in case of a N-lattice network, the eigenvalue problem for the Laplacian operator can be put in 
analogy with the discretization of an N-dimensional elastic membrane40. With this analogy in mind, the eigenval-
ues of the Laplacian matrix can be associated with the oscillating frequencies (harmonics) of the vibrating modes 
on the membrane, with the largest eigenvalues corresponding to the highest frequencies.

Since we suppose that the relevant information on folding kinetics can be contained in the long-range contacts 
of the native folded state41, we decided to partially remove the backbone contacts from the original PCN. In more 
detail, for each protein we evaluated b, the number of d–diagonals (the set of links between nodes at a distance 
of d residues along the backbone, see Eq. 8) needed to break the protein network in more than one component. 
Then, b −  1 diagonals were removed from the PCN. We verified that with the full PCN our classification perfor-
mance was significantly reduced by 2–3% on average, justifying our choice to emphasize the role of long-range 
connections with respect to the protein backbone. We remark that this procedure is specific for each protein, i.e. 
the parameter b depends on the PCN of each protein, and moreover, once removed b −  1 diagonals, the PCN is 
still connected, thus generating a unique eigenvalue spectrum for L. Also other authors considered a reduced 
PCN11,14, but they used a unique threshold to define long-range interactions, taking only inter-residue distances 
d >  12 independently from protein size and structure (see Fig. 1). Once the laplacian spectrum of this modified 
version of PCN was computed for each protein, we considered as observables {λi}, the largest eigenvalues of 
L rescaled by the number of residues NC. This rescaling was chosen because we observed a dependence of the 
largest eigenvalues on NC, so our observables could in principle be linearly dependent on the number of residues. 
According to the vibrational interpretation of the Laplacian, these eigenvalues represent the highest vibrational 
frequencies associated with the long-range structure of the protein.

Inter-residue link density R0. Each PCN is an adjacency matrix, in which the d-diagonals

∀ | − | =PCN i j i j d, , : (8)ij

contain all the links between residues with a sequence separation equal to d (ranging from 1 to NC −  1) with 
respect to the protein backbone. The observable R0 is defined as the ratio between the number of d-diagonals 
without links and the number of residues NC of the protein, i.e.

∑ ∑δ=










< − =
R

N
PCN1 , 0

(9)C d i j i j d
ij0

,

where δ is the Kronecker delta. For a given protein, a low value of R0 implies that the residues interact at many 
different levels of sequence separation (different values of d). On the contrary, a high value of R0 indicates that, in 
such protein structure, the residue interactions are more localized and show less cooperativity.

Statistical analysis for classification. Fisher Discriminant Analysis, a robust classifier that allows plain 
interpretations of the classifying parameters due to the simple boundaries separating the classes, was applied to 
single observables and to their combinations (i.e. couples, triplets and quadruplets of observables). A 10-fold 
cross-validation with 10000 re-samplings was used to assess the performance of our classifiers, that will be 
described by the average value over the re-samplings and by the standard deviation as confidence interval. Given 
the presence of homologous proteins, in each partition of the 10-fold cross-validation all the homologous pro-
teins were kept together, to reduce the risk of overestimating the classifier performance. In order to character-
ize the homogeneity of the classification performance over both TS and MS classes, we consider the Matthews 
Correlation Coefficient MCC, defined as

=
⋅ − ⋅

+ + + +
MCC T T F F

T F T F T F T F( )( )( )( ) (10)
P N P N

P P P N N P N N

where TP is the number of true positives, TN the number of true negatives, FP the number of false positives and FN 
the number of false negatives. A coefficient of + 1 defines a perfect prediction, 0 is nothing more than a random 
prediction, while − 1 reflects total disagreement between prediction and observation.

Classical observables. We investigated the classification power of some classical observables, with the main 
purpose to have a comparison with the introduced measures. The statistical analysis and the estimation of the 
classification performances were the same as for the novel observables (see previous Subsection).

We analyzed the performance of the chain length NC, the average hydrophobicity value 〈 h〉 , the contact order 
CO and the long range contact order LRCO.

The parameter h is chosen since hydrophobic force has always been indicated as one of the major drivers for 
protein folding22. Each amino acid is associated with a hydropathy index hi, a number representing the hydropho-
bic or hydrophilic properties of its side-chain, thus each protein can be associated with an average hydrophobicity 
value 〈 h〉 :

∑=h
N

h1
(11)C i

i
KD
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where hi
KD refers to the hydropathy index of residue i when the Kyte-Doolittle (KD) scale29 is considered. The 

average hydrophobicity 〈 h〉  has been often coupled with NC to classify the protein folding kinetics.
We also considered the classification power of structural topology measures such as contact order12,13

∑= ⋅ −CO
N L

PCN i j1

(12)C C ij

N

ij

C

where LC is the total number of contacts for the given PCN, and long range contact order14

∑= ⋅ −
− >

LRCO
N

PCN i j1

(13)C ij i j

N

ij2
, 12

C

which were used before for TS/MS classification purposes.
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