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1 Introduction

In this paper we consider the eikonal equation

|Du| = f (x) in S, (1.1)

where S is the Sierpinski gasket. The eikonal equation is the prototype for a general
class of first order Hamilton–Jacobi equations with convex Hamiltonian (see [1]) and,
moreover, it arises in several applications in connection with geometric optics, wave
front propagation, interfaces evolution, granular matter theory, etc.

The analysis of differential operators on irregular sets such as the Sierpinski gasket
has been developed since the late 80’s, starting with the pioneering works of Goldstein
[4], Kusuoka [9] and Lindstrøm [13]. Since there is no natural notion of derivative on
general closed sets, the notion of Laplacian on fractals is introduced by approximating
the set from within and performing a limiting process. The probabilistic version of
this approach was introduced by Kusuoka [9] and Lindstrøm [13] who considered
suitable scaled random walks on the prefractal and then passed to the limit as the
graph approaches the fractal so to define a Brownian motion on S. The corresponding
analytic approach was taken by Kigami (see [10] and references therein) who defined
�u on the class of post-critically finite (pcf in short) fractals as the uniform limit
of suitable scaled finite difference schemes on the prefractal. On pcf fractals the two
approaches give rise to the same self-adjoint differential operator which is identified as
the Laplacian (see [10,18]). The interior approximation preserves some of the classical
properties satisfied by the Laplacian in the Euclidean setting, but other properties are
typical of the fractal one ([15]).

In this paper we pursue an interior approximation approach on the Sierpinski gasket
S for the eikonal equation (1.1). The starting point of our analysis is the work of
Manfredi et al. [14], who consider a general class of nonlinear elliptic difference
equations on graphs. This class includes the graph Laplacian, which coincides up to a
rescaling factor with the operator considered in [10], and the graph eikonal equation.
The principle underlying the definition of Laplacian and harmonic functions on the
Sierpinski gasket is the minimization of the energy. For the eikonal equation the
principle is the optimal control interpretation of the solution at all the different levels
(discrete and continuous on the prefractal and continuous on the fractal).

We consider the graph eikonal equation on the prefractal Sn with a Dirichlet bound-
ary condition on the vertices of the simplex generating the Sierpinski gasket; we
characterize the unique solution of the problem by a representation formula which, for
f ≡ 1 and null boundary data, gives the minimal vertex distance from the boundary.
Moreover we infer that the sequence of the solutions of the graph eikonal equations
on Sn is compact hence, up to a subsequences, converges uniformly to a continuous
function u defined on S. By classical stability properties of viscosity solution theory
it is only reasonable to expect the function u to be the solution in some appropriate
sense of the eikonal equation (1.1) on S.

In [3], the authors give a definition of viscosity solution for the eikonal equation
(1.1) in a general metric space X , which is consistent with the usual notion in the
Euclidean space. The unique solution of the associated Dirichlet problem is charac-
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Eikonal equations on the Sierpinski gasket 1169

terized by a representation formula of control type. This definition obviously applies
to the Sierpinski gasket endowed with the metric induced by the path distance. We
show that the limit of the sequence of the solutions of the graph eikonal equations
on the prefractals converges to the solution defined as in [3] on S. To establish this
link, we introduce a class of continuous eikonal equation on the prefractal Sn and we
obtain an uniform estimate of the distance between the solutions of the discrete and
the continuous eikonal equations on Sn . Then, thanks to the stability property of the
definition in [3], we are able to pass to the limit and to show that the solution of the
continuous eikonal equation (and therefore also of the graph eikonal equation) on Sn

converges to the solution of (1.1) on S. Note that this intermediate step can be also
seen as a sort of homogenization result for the continuous eikonal equation on the
Sierpinski gasket.

The crucial point in [3] is a notion of metric derivative |ξ ′(t)| for a given path
ξ = ξ(t) in X although in general ξ ′(t) may be not well defined. It follows that
this elegant theory is confined to the case of the eikonal equation and it is difficult
to extend to a more general class of Hamilton–Jacobi equation on S. Moreover the
notionof viscosity supersolution in [3] is not local, even if consistentwith theEuclidean
viscosity solution. Insteadwe are able to extend the interior approximation approach to
a more general class of Hamiltonians showing that the corresponding sequence of the
solutions of the graph Hamilton–Jacobi equations converges uniformly to a function
u on S. Lacking a definition of viscosity solution for general convex Hamiltonian on
the Sierpinski gasket, our approach can be seen as a constructive way to define the
solution to Hamilton–Jacobi equations on S. From this point of view the previous
result for the eikonal equation can be also interpreted as a test that the construction
gives the correct solution on the limit fractal.

The paper is organized as follows. In Sect. 2 we recall the definition of Sierpinski
gasket. Section 3 and 4 are devoted to the study of the discrete and respectively
continuous eikonal equation on the prefractal. In Sect. 5 we study the eikonal equation
on the Sierpinski gasket and prove the convergence of the problems on the prefractal.
Finally, in Sect. 6 we consider some possible extensions of the results here developed.

2 The Sierpinski gasket

Consider a unit regular D-dimensional simplex of verticesΓ = {a1, . . . , aD+1} inRD

(e.g., for D = 1, 2, 3, the simplex is respectively an interval, an equilateral triangle
and a regular tetrahedron), and the D + 1 mappings ψi : RD → R

D defined by

ψi (x) := ai + 1

2
(x − ai ) i = 1, . . . , D + 1.

Iterating the ψi ’s, we get the set

Γ ∞ = ∪∞
n=0Γ

n

where Γ 0 ≡ Γ and each Γ n is given by the union of the images of Γ under the action
of the mapsψi1 ◦· · ·◦ψin with ih ∈ {1, . . . , D+1}, h = 1, . . . , n. Then the Sierpinski
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1170 F. Camilli et al.

Fig. 1 Respectively: Γ , Γ 1, Γ 2 and Γ 5

gasket S is the closure of Γ ∞ (with respect to the Euclidean topology) (Fig. 1) and it
is the unique non empty compact set K which satisfies

K = ∪D+1
i=1 ψi (K ).

For any n, we can identify Γ n with the graph (V n,∼n), where V n = Γ n and ∼n

is the following relation on V n : for x, y ∈ V n , x ∼n y if and only if the segment
connecting x and y is the image of a side of the starting simplex under the action of
some ψi1 ◦ · · · ◦ψin . When there is no possibility of confusion, for simplicity we shall
write “∼” instead of “∼n”. Moreover, the graph (V n,∼) can be naturally embedded in
the network Sn := V n ∪ En , where En is the set of all segments of endpoints x , y with
x, y ∈ V n and x ∼n y. In other words, Sn is formed by the union of the images of the
initial simplex under all maps ψi1 ◦ · · · ◦ ψin . Hence S = V ∪ E where V := ∪∞

i=1V
n

and E := ∪∞
i=1E

n . The D + 1 vertices of the initial simplex assume the role of the
boundary of Sn and of the curve S itself:

∂S := Γ ;

on this set a boundary condition will be prescribed.
We note that, for any x ∈ S\Γ , there are only two possibilities:

– either x ∈ V \Γ , hence, there exists n ∈ N and v ∈ V n\Γ such that x = v; in
particular, x is a ramification point with 2D incident edges in Sm , for any m ≥ n;

– or x ∈ S\(V ∪ Γ ), hence for n sufficiently large, there exists en ∈ En such that
x ∈ en and x is not a ramification point in any Sn (however, it is the limit of
ramification points).

We define the geodesic distance on the network S.

Definition 2.1 For any x, y ∈ S, set

d(x, y) := inf {�(γ ) : γ is a path joining x to y} (2.1)

where �(γ ) is the length of γ .

We refer the reader to [6,17] (see also [11]) for a complete characterization of the
geodesic distance on the Sierpinski gasket. See [6] for the next result
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Eikonal equations on the Sierpinski gasket 1171

Proposition 2.1 For any x, y ∈ S, there holds

|x − y| ≤ d(x, y) ≤ 1.

Moreover d is continuous and the inf in (2.1) is a minimum.

Since now on, we shall require the following hypotheses

Assumptions D = 2. The function f : S → R is continuous with

λ := inf
S

f (x) > 0.

3 A discrete eikonal equation on the prefractal

In this section, for n ∈ N fixed, we tackle the discrete eikonal equation on the graph
(V n,∼). We denote V n

0 := V n\Γ the set of interior vertices while Γ will stand for
the set of boundary vertices.

The distance between two adjacent vertices x, y is

dn(x, y) = 1

2n
=: hn

while the distance for two arbitrary vertices x, y ∈ V n is the vertex distance

dn(x, y) := inf{d(x0, x1) + d(x1, x2) + · · · + d(xN−1, xN )} (3.1)

where the infimum is taken over all the finite path {x0 = x, x1, . . . , xN = y} with
xi ∼ xi+1, i = 0, . . . , N − 1 connecting x to y. In fact, since V n is a finite set, the
“inf” is a “min”. Note that dn is the restriction of the geodesic distance d defined in
(2.1) to V n .

For a function u : V n → R, we consider the discrete eikonal equation (see [14])

|Du(x)|n = f (x) in V n
0 (3.2)

where

|Du(x)|n := max
y∼x

{
− 1

hn
(u(y) − u(x))

}
.

Definition 3.1 A function u : V n → R is said a subsolution (respectively, a superso-
lution) of (3.2) if

|Du(x)|n ≤ f (x) (resp., |Du(x)|n ≥ f (x)) ∀x ∈ V n
0 .

A function u is said a solution of (3.2) if it is both a sub- and a supersolution of (3.2).

In the next proposition we prove a comparison theorem for (3.2).
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1172 F. Camilli et al.

Proposition 3.1 Let u and v be a subsolution and, respectively, a supersolution of
(3.2) such that u ≤ v on Γ . Then u ≤ v in V n.

Proof We shall proceed using some ideas of [14]. Assume by contradiction that
maxV n {u − v} = δ > 0 and set W = argmaxV n {u − v}, m = min{v(x) : x ∈ W }.

Let x ∈ W be such that v(x) = m; in particular, x belongs to V n
0 . Let z ∈ V n be

such that z ∼ x and |Dv(x)|n = −h−1
n (v(z) − v(x)). By the definition of sub- and

supersolution we have

− 1

hn
(v(z) − v(x)) − f (x) = |Dv(x)|n − f (x) ≥ 0 ≥ |Du(x)|n − f (x)

≥ − 1

hn
(u(z) − u(x)) − f (x);

hence u(z) − v(z) ≥ u(x) − v(x) = δ and therefore z ∈ W . Moreover − 1
hn

(v(z) −
v(x)) ≥ f (x) > 0, hence m = v(x) > v(z) which contradicts the definition of m. �
Proposition 3.2 Let g : Γ → R be such that

g(x) ≤ inf

{
N−1∑
k=0

hn f (xk) + g(y)

}
∀ x, y ∈ Γ, (3.3)

where the infimum is taken over all the finite paths {x0 = x, x1, . . . , xN = y} with
xi ∼ xi+1, i = 0, . . . , N − 1. Then, the unique solution of (3.2) with the boundary
condition

u = g on Γ (3.4)

is given by

u(x) = min

{
N−1∑
k=0

hn f (xk) + g(y)

}
(3.5)

where the minimum is taken over all y ∈ Γ and over all the finite paths {x0 =
x, x1, . . . , xN = y} with xi ∼ xi+1, i = 0, . . . , N − 1.

Proof We observe that the function u is well defined (i.e., the minimum is achieved)
because, for x fixed, the set of admissible paths is finite. Uniqueness is an immediate
consequence of Proposition 3.1. In order to show that u is a subsolution, given x ∈ V n

0 ,
for each z ∼ x consider a path {x0 = z, x1, . . . , xN = yz} such that u(z) = g(yz) +∑N

k=0 hn f (xk). Then {x, x0, . . . , xN } is a path connecting x to Γ and therefore

−(u(z) − u(x)) ≤ −
(
g(yz) + hn

N−1∑
k=0

f (xk) − (g(yz) + hn f (x) + hn

N−1∑
k=0

f (xk))

)

= hn f (x).
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Eikonal equations on the Sierpinski gasket 1173

It follows that |Du(x)|n ≤ f (x).
In order to prove that u is a supersolution, given x ∈ V n

0 consider a path {x0 =
x, x1, . . . , xN = y} with y ∈ Γ such that u(x) = g(y) + ∑N−1

k=0 hn f (xk). Then
x1 ∼ x and {x1, . . . , xN } is a path connecting x1 to Γ . Therefore

−(u(x1) − u(x)) = −
(
u(x1) − (g(y) + hn

N−1∑
k=1

f (xk))

)
+ hn f (x) ≥ hn f (x)

which implies |Du(x)|n ≥ f (x).
To show (3.4), assume by contradiction that there exists x ∈ Γ and a path {x0 =

x, x1, . . . , xN = y} with y ∈ Γ such that

u(x) = g(y) + hn

N−1∑
k=0

f (xk) < g(x).

By (3.3), we have

g(y) + hn

N−1∑
k=0

f (xk) ≥ g(y) + g(x) − g(y) = g(x)

and therefore a contradiction. �
It is worth to observe that u verifies a dynamical programming principle.

Lemma 3.1 The function u defined in (3.5) verifies

u(x) = min

{
M−1∑
k=0

hn f (xk) + u(z)

}
(3.6)

where the minimum is taken over all z ∈ V n
0 and over all the finite paths {x0 =

x, x1, . . . , xM = z} with xi ∼ xi+1, i = 0, . . . , M − 1.

Proof We shall argue using some ideas of [1, Prop. III.2.5]. Denote w the right hand
side of (3.6). For any path x0 = x, . . . , xN = y ∈ Γ , there holds

N−1∑
k=0

hn f (xk) + g(y) =
M−1∑
k=0

hn f (xk) +
N−1∑
k=M

hn f (xk) + g(y) ≥
M−1∑
k=0

hn f (xk) + u(xM );

hence, taking the minimum over xM and over the admissible paths, we get u ≥ w.
On the other hand, consider z ∈ V n

0 and a path as in (3.6) such that w(x) =∑M−1
k=0 hn f (xk) + u(z); consider an admissible path z0 = z, z1, . . . , zN ∈ Γ such

that u(z) = ∑N−1
k=0 hn f (zk) + g(zN ). We have: w(x) = ∑M+N−1

k=0 hn f (x̃k) + g(zN )

where x̃k = xk if k ∈ {0, . . . , M} and x̃k = zk−M if k ∈ {M, . . . , N }. Then,
u ≤ w. �
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1174 F. Camilli et al.

Remark 3.1 Observe that by (3.5), the distance from the boundary

dn(x) := inf{dn(x, y) : y ∈ Γ } x ∈ V n (3.7)

is the unique solution of

|Du(x)|n − 1 = 0, x ∈ V n
0 , u = 0, x ∈ Γ.

Proposition 3.3 Let u be the solution of (3.2)–(3.4). Then

|u(x)| ≤ max
Γ

|g| + dn(x) max
V n

{ f } ∀x ∈ V n (3.8)

|u(y) − u(x)|
hn

≤ max
V n

{ f } ∀x, y ∈ V n, x ∼ y (3.9)

where dn(x) is the distance from the boundary introduced in (3.7).

Proof The functions u±(x) := ± (maxΓ |g| + dn(x)maxV n { f }) are a supersolution
and a subsolution of (3.2)–(3.4), then estimate (3.8) follows by Proposition 3.1. The
estimate (3.9) is an immediate consequence of the equation (3.2). �

Let ūn be a continuous piecewise linear reconstruction of the solution un of (3.2)–
(3.4) on Sn . The previous proposition yields that the sequence {ūn}n is compact. In
Sect. 5wewill show that it uniformly converges to a function u andwewill characterize
u in terms of an eikonal equation defined on the Sierpinski gasket.

4 A continuous eikonal equation on the prefractal

In this section we introduce a continuous eikonal equation on the prefractal Sn . More-
over we estimate the distance between the solutions of the discrete problem (3.2) and
of the corresponding continuous eikonal equations on Sn . Let us recall that V n

0 stands
for the set of the interior vertices of Sn whileΓ is the set of the boundary vertices of Sn .
For any n, fix arbitrary orderings I n and Jn of the vertices xi ∈ V n and, respectively,
of the edges e j ∈ En and denote by π j : [0, � j ] → R

2, � j > 0, a parametrization of
the edge e j . For any xi ∈ V n , we set I nci := { j ∈ Jn : xi ∈ e j }. The parametrization
π j of the arc e j induces an orientation along the edge, which can be expressed by the
signed incidence matrix An = {ani j }i∈I n , j∈Jn with

ani j :=
⎧⎨
⎩

1 if xi ∈ e j and π j (0) = xi ,
−1 if xi ∈ e j and π j (� j ) = xi ,
0 otherwise.

(4.1)

We denote by δn : Sn × Sn → R
+ the path distance on Sn , i.e.

δn(x, y) := inf
{
�(γ ) : γ ⊂ Sn is a path joining x to y

} ∀x, y ∈ Sn . (4.2)
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Eikonal equations on the Sierpinski gasket 1175

Note that δn coincides with the vertex distance (3.1) when restricted to x, y ∈ V n .
Moreover δn ≥ d for any n where d as in (2.1).

We say that u is continuous in Sn and write u ∈ C(Sn) if u is continuous with
respect to the subspace topology of Sn . In a similar way we define the space of upper
semicontinuous functions USC(Sn) and the space of lower semicontinuous functions
LSC(Sn), respectively. For any function u : Sn → R, we denote by u j the restriction
of u to e j , i.e.

u j := u ◦ π j : [0, � j ] → R.

Differentiation is defined with respect to the parametrization of the edge. Hence, if
x ∈ e j for some j ∈ Jn (i.e., x is not a ramification point), we set

Dju(x) := du j

dy
(y), with y = (π j )

−1(x)

while if xi ∈ V n
0 (i.e., x is a vertex), we set

Dju(xi ) := du j

dy
(y) for any e j ∈ I nci , y = (π j )

−1(xi ).

For a function u : Sn → R, we consider the eikonal equation

|Du| = f (x) in Sn . (4.3)

In the next definitions we introduce the class of admissible test functions and solution
of (4.3) (see [16]).

Definition 4.1 Let φ ∈ C(Γ ).

(i) Let x ∈ e j , j ∈ Jn . We say that φ is test function at x , if φ j is differentiable at
π−1
j (x).

(ii) Let x ∈ V n
0 , j, k ∈ I nci , j �= k. We say that φ is ( j, k)-test function at x , if φ j

and φk are differentiable at π
−1
j (x) and π−1

k (x), with

ani j D jφ(π−1
j (x)) + anik Dkφ(π−1

k (x)) = 0,

where (ani j ) as in (4.1).

Definition 4.2 (i) If x ∈ e j , j ∈ Jn , then a function u ∈ USC(Sn) (resp., v ∈
LSC(Sn)) is called a subsolution (resp. supersolution) of (4.3) at x if for any test
function φ for which u−φ attains a local maximum at x (resp., a local minimum),
we have

|Djφ(x)| ≤ f (x)
(
resp., |Djφ(x)| ≥ f (x)

);
(ii) If x = xi ∈ V n

0 , then
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1176 F. Camilli et al.

• A function u ∈ USC(Sn) is called a subsolution at x if for any j, k ∈ I nci
and any ( j, k)-test function φ for which u − φ attains a local maximum at x
relatively to e j ∪ ek , we have |Djφ(x)| ≤ f (x).

• A function v ∈ LSC(Sn) is called a supersolution at x if for any j ∈ I nci ,
there exists k ∈ I nci\{ j} (said feasible for j at x) such that for any ( j, k)-test
function φ for which u − φ attains a local minimum at x relatively to e j ∪ ek ,
we have |Djφ(x)| ≥ f (x).

Remark 4.1 It is worth to observe that the definitions of sub- and supersolution are
not symmetric at the vertices. As observed in [16] for the equation |Du| = 1, a def-
inition of supersolution similar to the one of subsolution would not characterize the
“expected” solution, i.e. the distance from the boundary. Also in [3], these definitions
are asymmetric: see Definition 5.1 below. Furthermore, let us recall that several defi-
nitions of solutions for Hamilton–Jacobi equations on network have been introduced
recently; however for Eq. (4.3) they coincide (see [2]).

Remark 4.2 Consider a vertex vi ∈ V n
0 and, wlog, assume π j (0) = vi ∀ j ∈ I nci .

Then, a function u ∈ USC(Sn) is a viscosity subsolution in vi if, and only if, for every
j, k ∈ I nci with j �= k, the function

Ujk(t) :=
{
u(π j (t)) t ∈ [0, l j )
u(πk(−t)) t ∈ [−lk, 0)

is a (standard) viscosity subsolution at t = 0.
Similarly, a function u ∈ LSC(Sn) is a viscosity supersolution in vi if, and only if,

for every j ∈ I nci there exists k ∈ I nci\{ j} such that the functionUjk is a (standard)
viscosity supersolution at t = 0.

In the next propositions we recall from [16] comparison and existence result for (4.3);
for the proof we refer the reader to [16, Prop. 6.1].

Proposition 4.1 Let u and v be a subsolution and, respectively, a supersolution of
(4.3) such that u ≤ v on Γ . Then u ≤ v in Sn.

Proposition 4.2 Let g : Γ → R be such that

g(x) ≤ inf

{∫ T

0
f (ξ(t))dt + g(y)

}
∀x, y ∈ Γ (4.4)

where the infimum is taken over all the piecewise differentiable paths ξ such that
ξ(0) = x, ξ(T ) = y and |ξ ′(t)| ≤ 1. Then the unique solution of (4.3) with the
boundary condition

u = g on Γ (4.5)

is given by

u(x) = inf

{∫ T

0
f (ξ(t))dt + g(y)

}
for all x ∈ Sn, (4.6)
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where the infimum is taken over all y ∈ Γ and over all the paths ξ such that ξ(0) = x,
ξ(T ) = y and |ξ ′(t)| ≤ 1. Moreover, u is bounded and Lipschitz continuous and

|u(x)| ≤ max
Γ

|g| + δn(x, Γ )max
Sn

{ f } for all x ∈ Sn, (4.7)

‖Du‖∞ ≤ max
Sn

{ f }. (4.8)

Remark 4.3 Observe that by (4.6), the distance from the boundary

δn(x) := inf{δn(x, y) : y ∈ Γ } x ∈ Sn (4.9)

is the unique solution of

|Du(x)| = 1 x ∈ Sn, u = 0 x ∈ Γ.

Remark 4.4 Note that assumption (3.3) for every n ∈ N ensures assumption (4.4).

Proposition 4.3 The sequence {un}n of the solutions of (4.3)–(4.5) is decreasing.
Moreover there exists a continuous function ū on S such that {un}n converges uniformly
to ū on each prefractal Sm.

Proof Let um be the solution of (4.3)–(4.5) on the set Sm , withm > n. Since Sn ⊂ Sm ,
um is a subsolution of (4.3)-(4.5) on Sn . By Proposition 3.1, it follows that um ≤ un .
By (4.7)–(4.8), the sequence {un}n is equi-bounded, equi-continuous and decreasing.
Hence it converges uniformly to a function ū on each Sm . �
Proposition 4.4 Let uhn and un be respectively the solution of (3.2)–(3.4) and of
(4.3)–(4.5). Then, there holds

|un(x) − uhn (x)| ≤ C
(
ω f (h

1/2
n ) + h1/2n

)
∀x ∈ V n

where ω f is the modulus of continuity of f and C ∈ R depends only onmaxΓ |g| and
maxS | f |. Hence the sequences uhn and un converge to the same limit ū on S.

In order to prove this result, it is expedient to establish a preliminary lemma whose
proof is postponed at the end of this section.

Lemma 4.1 Let uhn be the solution of (3.2)–(3.4). Then whn = 1 − e−uhn solves

{ |Dw|n + fn(x)w = fn(x) in V n
0

w = 1 − e−g on Γ
(4.10)

where fn(x) := h−1
n (ehn f (x) − 1). Moreover

max
Sn

| fn − f | ≤ hn max
S

f 2. (4.11)
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Proof of Proposition 4.4 We observe that the function wn := 1 − e−un solves

|Dw| + f w = f in Sn, w = 1 − e−g on Γ.

Define Ψ : V n × Sn → R by

Ψ (x, y) = whn (x) − wn(y) − δn(x, y)2

2ε

where whn is the function introduced in Lemma 4.1 while δn is the geodesic distance
on Sn defined in (4.2). Since Ψ is continuous and V n × Sn is compact, there exists
(xε, yε) ∈ V n × Sn such that Ψ (xε, yε) ≥ Ψ (x, y) for any (x, y) ∈ V n × Sn . By
Ψ (xε, yε) ≥ Ψ (x, x), we get

δn(xε, yε)2

2ε
≤ 2(‖whn‖∞ + ‖wn‖∞)

and therefore limε→0+ δn(xε, yε) = 0. Hence there exists xi ∈ V n such that

lim
ε→0+ xε = lim

ε→0+ yε = xi .

Moreover, since V n is a finite set, wlog we can assume that, for ε sufficiently small
xε = xi . By the Lipschitz continuity of un and Ψ (xε, yε) ≥ Ψ (xε, xε), it follows

δn(xε, yε)2

2ε
≤ wn(xε) − wn(yε) ≤ Lwnδn(xε, yε)

where Lwn is the Lipschitz constant of wn (see Proposition 4.2). Whence, we have

δn(xε, yε) ≤ Lwnε. (4.12)

Assume first that xε = xi ∈ Γ . Then, since wn = whn on Γ , we get

whn (xε) − wn(yε) = wn(xε) − wn(yε) ≤ Lwnδn(xε, yε). (4.13)

Assume xε = xi ∈ V n
0 and let zε ∈ V n be such that yε is contained in the edge e j ,

j ∈ I nci , of endpoints xε and zε. Since zε ∼ xε andΨ (xε, yε) ≥ Ψ (zε, yε), it follows

− 1

hn

(
δn(zε, yε)2

2ε
− δn(xε, yε)2

2ε

)
+ fn(xε)whn (xε) ≤ fn(xε). (4.14)

By δn(xε, yε) + δn(yε, zε) = hn , we get

−
(

δn(zε, yε)2

2ε
− δn(xε, yε)2

2ε

)
= hn

δn(xε, yε)

ε
− h2n

2ε
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Eikonal equations on the Sierpinski gasket 1179

and by (4.14)

δn(xε, yε)

ε
− hn

2ε
+ fn(xε)whn (xε) ≤ fn(xε). (4.15)

Defined φ(y) = whn (xε) − δn(xε, y)2/2ε, by −Ψ (xε, yε) ≤ −Ψ (xε, y) it follows
that wn − φ attains a minimum at yε. Observe that only two cases may occur: either
yε = xε or yε ∈ e j . Let us consider the former case; the latter one can be dealt with
by easy adaptations and we shall omit it. Since Djφ(xε) = 0 = Dkφ(xε), we obtain
that for any k ∈ I ncxε\{ j}, φ is a ( j, k)-admissible test function for wn at xε. Hence,
in both cases, by definition of viscosity supersolution, we obtain

1

ε
δn(xε, yε) + f (yε)wn(yε) ≥ f (yε). (4.16)

By (4.15) and (4.16) we get

fn(xε)whn (xε) − f (yε)wn(yε) ≤ fn(xε) − f (yε) + hn
2ε

. (4.17)

By either (4.13) or (4.17), using (4.12), (3.8) and (4.11) (and our assumptions as well),
we get

whn (xε) − wn(yε) ≤ C

λ

(
ω f (Lwnε) + hn

2ε

)
(4.18)

where C depends only on maxΓ |g|, maxS | f | (note that Lwn depends only on the

latter). Taking ε = h1/2n /Lwn in (4.18) we get the estimate

whn (xε) − wn(yε) ≤ C(ω f (h
1/2
n ) + h1/2n ).

Finally the inequality Ψ (xε, yε) ≥ Ψ (x, x) for x ∈ V n yields

uhn (x) − un(x) ≤ uhn (xε) − un(yε) ≤ C(ω f (h
1/2
n ) + h1/2n ).

Let us now pass to prove the reverse inequality: un(x)−uhn (x) ≤ C(ω f (h
1/2
n )+h1/2n );

the arguments are similar to those of the previous case so we shall just sketch them.
We consider the function

Ψ (x, y) := wn(x) − whn (y) − δn(x, y)2

2ε
for (x, y) ∈ Sn × V n

and we denote (xε, yε) its maximum point. Since φ(x) := whn (yε) + δn(x,yε)2

2ε is an
admissible test function for wn at xε, we obtain

δn(xε, yε)/ε + f (xε)wn(xε) ≤ f (xε).
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On the other hand, by the inequality Ψ (xε, yε) ≥ Ψ (xε, z) for any z ∈ V n and
by (4.10), we get

max
z∼yε

[
δn(xε, z)2

2εhn
− δn(xε, yε)2

2εhn

]
+ fn(yε)whn (yε) ≥ fn(yε). (4.19)

Denote by zε ∈ V n the vertex where the maximum in the previous relation is attained;
obviously, δn(yε, zε) = hn . Then, plugging δn(xε, zε) ≤ δn(xε, yε) + δn(yε, zε) =
δn(xε, yε) + hn in relation (4.19), we get

δn(xε, yε)

ε
+ hn

2ε
+ fn(yε)whn (yε) ≥ fn(yε)

and we can conclude as in the previous case. �
Remark 4.5 Taking advantage of the structure of the equations, Proposition 4.4 can be
also proved following the approach introduced by Ishii et al. in [7,8]. Let us sketch the
main issues. For ε = h1/2n , θ = 1− (ω f (Lunh

1/2
n ) + h1/2n )λ−1, consider the function

�(x, y) := θuhn (x) − un(y) − δn(x, y)2

2ε
∀(x, y) ∈ V n × Sn .

Let (xε, yε) be a maximum point of �; as before, we have δn(xε, yε) ≤ Lunε. We
claim that xε ∈ Γ . Indeed, assuming by contradiction that xε ∈ V n

0 and arguing as

in (4.15)–(4.16), we get δn(xε,yε)
ε

− hn
2ε ≤ θ f (xε) and

δn(xε,yε)
ε

≥ f (yε). Subtracting
these inequalities, we infer the desired contradiction:

−hn
2ε

≤ θ f (xε) − f (yε) ≤ ω f (Lunε) − (1 − θ)λ ≤ −hn
ε

.

In conclusion, the inequality �(x, x) ≤ �(xε, yε) gives

uhn (x) − un(x) ≤ uhn (xε) − un(yε) − δn(xε, yε)
2(2ε)−1

+ (1 − θ)[uhn (x) − uhn (xε)].

By our choice of ε and θ , the fact that xε ∈ Γ so uhn (xε) = un(xε), estimates (4.7),
(3.8) and of δn(xε, yε), we accomplish the proof.

Proof of Lemma 4.1 For x ∈ V n
0 , consider z ∼ x such that

|Duhn (x)|n = −h−1
n

(
uhn (z) − uhn (x)

) = f (x).

Whence, by the definition of whn , we deduce

log

(
1 − whn (z)

1 − whn (x)

)
= hn f (x)
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and, by easy calculations, we get

− (
whn (z) − whn (x)

) − whn (x)
[
1 − ehn f (x)

]
= ehn f (x) − 1.

Dividing by hn , we accomplish the proof of (4.10). Estimate (4.11) can be obtained
by easy calculations and we omit its proof. �

5 The eikonal equation on the Sierpinski gasket

In this section we show that, in analogy with the construction of the Laplacian on
fractal sets, the eikonal equation on the Sierpinski gasket can be obtained as the limit
of a sequence of discrete problems defined on the prefractal Sn .

We first recall some notations and definitions in [3]. Let (X , d) be a metric space.
Given a curve ξ : I ⊂ R → X , define the metric derivative of ξ by

|ξ ′|(t) := lim
s→t

d(ξ(s), ξ(t))

|s − t | .

A curve ξ is said absolutely continuous if |ξ ′|(t) exists for a.e. t ∈ I , |ξ ′| ∈ L1
loc(I )

and

d(ξ(s), ξ(t)) ≤
∫ t

s
|ξ ′|(r)dr.

For � ⊂ X , denote by A(I,�) the set of absolutely continuous curves such that
ξ(t) ∈ � and |ξ ′|(t) ≤ 1 a.e. in I and by Ax (I,�) the set of curves in A(I,�) such
that 0 ∈ I and ξ(0) = x . For any ξ ∈ Ax (I,�), define the exit and the entrance time
in � by

T+
� [ξ ] := inf{t ∈ [0,+∞) : ξ(t) ∈ ∂�} ∈ [0,+∞]

T−
� [ξ ] := sup{t ∈ (−∞, 0] : ξ(t) ∈ ∂�} ∈ [−∞, 0].

A function u is said arcwise upper (resp., lower) semicontinuous in � ⊂ X if for
each ξ ∈ A(I,�) the function u ◦ ξ is upper (lower) semicontinuous in I . The set of
arcwise upper (resp., lower) semicontinuous functions in � is denoted by USCa(�)

(resp., LSCa(�)). It is worth to recall that these definitions of semicontinuity are
weaker than the corresponding standard ones (which are given in terms of the distance;
see [3]). For a function w : R → R, denote by D±w(t) respectively its super- and
subdifferential at the point t (see [1] for the precise definition and main properties).

For � ⊂ X , consider the eikonal equation

|Du| = f (x) in �; (5.1)

for the sake of completeness, we recall the definition of (metric viscosity) subsolutions
and supersolutions introduced in [3].
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Definition 5.1 (i) A function u ∈ USCa(�) is said a viscosity subsolution of (5.1)
if for each x ∈ � and for all ξ ∈ Ax (I,�), the function w : I → R, with
w(t) := u(ξ(t)), satisfies

|p| ≤ f (x) ∀p ∈ D+w(0).

(ii) A function v ∈ LSCa(�) is said a viscosity supersolution of (5.1) if for each
x ∈ � and ε > 0, there exists ξ ∈ Ax (R,�) and w ∈ LSC(R) such that

⎧⎨
⎩
T± := T±

� [ξ ] are both finite,
w(0) = v(x), w(t) ≥ v(ξ(t)) − ε ∀t ∈ (T−, T+),

|p| ≥ f (ξ(t)) − ε ∀p ∈ D−w(t), t ∈ (T−, T+).

Remark 5.1 The previous definitions apply to the case where X is the Sierpinski gas-
ket S introduced in Sect. 2 with � := S\Γ (recall that Γ is the set of the vertices
of the starting simplex). In this case the metric on X is the one induced by the geo-
detic distance d defined in (2.1). Moreover arcwise upper and lower semicontinuous
functions coincide with upper and lower semicontinuous functions with respect to the
metric induced by d.

The following results are immediate consequences of the theory developed in [3]
for a generic metric space (X , d); for the proofs, we refer the reader to [3, Thm 3.1]
and to [3, Thm 3.2].

Proposition 5.1 Let u and v be a subsolution and, respectively, a supersolution of
(5.1) such that u ≤ v on Γ . Then u ≤ v in S.

Proposition 5.2 Let g : Γ → R be such that

g(x) ≤ inf

{∫ T

0
f (ξ(t))dt + g(y)

}
for all x, y ∈ Γ (5.2)

where the infimum is taken over all the paths ξ ∈ A((0, T ), S) such that ξ(0) = x,
ξ(T ) = y. Then the unique solution of (5.1) with the boundary condition

u = g on Γ (5.3)

is given by

u(x) = inf

{∫ T

0
f (ξ(t))dt + g(y)

}
for all x ∈ S (5.4)

where the infimum is taken over all y ∈ Γ and over all the paths ξ ∈ A((0, T ), S)

such that ξ(0) = x, ξ(T ) = y. Moreover u is continuous, bounded and

|u(x)| ≤ max
Γ

|g| + max
S

| f |d(x, Γ ) for all x ∈ S.
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The Definition 5.1 also applies to the prefractal Sn . In the next propositions we
establish the relation between sub and supersolutions in the sense of Definition 5.1
and of Definition 4.2 for the problem

|Du| = f (x) ∀x ∈ � := Sn\Γ. (5.5)

These results are expedient in order to show the convergence of the discrete problem.

Proposition 5.3 A function u ∈ USC(Sn) is a subsolution in the sense of Defini-
tion 5.1 to problem (5.5) if and only if it is a subsolution in the sense of Definition 4.2
to (5.5).

Taking advantage of Remark 4.2, the proof can be easily done adapting to the case of
Sn the argument in [3, Prop. 6.1]which shows the equivalence betweenmetric viscosity
subsolutions and standard viscosity subsolution in the Euclidean space. Therefore, we
shall omit it.

Proposition 5.4 For v ∈ LSC(Sn), the following statement are equivalent:

(i) v is a supersolution in the sense of Definition 5.1 to problem (5.5),
(ii) v is a supersolution in the sense of Definition 4.2 to problem (5.5),
(iii) for each x ∈ Sn, there exists ξ ∈ Ax (R, Sn), with T± := T±

� [ξ ] both finite, such
that the function w(t) := v(ξ(t)) satisfies

|p| ≥ f (ξ(t)) ∀p ∈ D−w(t), t ∈ (T−, T+).

Remark 5.2 Point (i i i) coincides with the notion of supersolution in Definition 5.1
with ε = 0 and with w := v ◦ ξ .

Proof (i) implies (i i ). Assume by contradiction that v does not satisfy the definition
of supersolution in Definition 4.2 at x ∈ Sn . We assume that x coincides with a vertex
xi otherwise we can proceed as in [3, Prop. 6.2]. Then there exists j ∈ I nci such that
for any k ∈ K := I nci\{ j}, there exists a ( j, k)-admissible test function φk for u at x
which satisfies |Djφk(x)| ≤ f (x) − 2δ for some δ > 0. By adding the term d(x, y)2

to the test function it is not restrictive to assume that

v(x) = φk(x), (v − φk)(y) ≥ d(x, y)2 ∀ y ∈ Sn .

By the regularity of φk we can find r > 0 such that

|Dφk(y)| ≤ f (y) − δ ∀y ∈ B(x, 2r) ∩ (e j ∪ ek).

Define φ : ⋃
k∈I nci ek → R by

φ(y) :=
{
maxk∈K φk(y), if y ∈ e j ,
φk(y), if y ∈ ek, k ∈ K .

As in [16, Prop. 4.1], we have: φ is C(∪k∈I nci ek), it satisfies φ(x) = v(x) and (in
viscosity and a.e. sense)

123



1184 F. Camilli et al.

|Dφ(y)| ≤ f (y) − δ for all y ∈ B(x, 2r).

For ε ∈ (0, r2/3), consider a couple (ξε, wε) as in the Definition 5.1 with T± =
T±
B(x,r)[ξε]. Let ρη : R → R be a mollifier with support in [−η, η]; set φη,ε(t) :=

(φ(ξε(·)) ∗ ρη)(t). Then, as η → 0, φη,ε(t) → φ(ξε(·)) uniformly in [T−, T+]. Let
tη,ε be a minimum point for wε − φη,ε in [T−, T+]. Then for η sufficiently small in
such a way that ‖φ(ξε(·)) − φη,ε(·)‖∞,[T−,T+] ≤ ε, we have

0 = v(x) − φ(x) = wε(0) − φ(ξε(0)) ≥ wε(0) − φη,ε(0) − ε

≥ wε(tη,ε) − φη,ε(tη,ε) − ε ≥ v(ξε(tη,ε)) − φ(ξε(tη,ε)) − 3ε

≥ d(ξε(tη,ε), x)
2 − 3ε.

By our choice of ε, ξε belongs to B(x, r) for t ∈ [0, tη,ε]; hence, tη,ε belongs to
(T−, T+) and φη,ε is a test function for wε at tη,ε. It follows that

f (ξε(tη,ε)) − ε ≤ |Dφη,ε(tη,ε)| = |D(φ(ξε(·) ∗ ρη)(tη,ε)|
≤

∫
(tη,ε−η,tη,ε+η)

|Dφ(ξε(s))||ξ̇ε(s)|ρη(tη,ε − s)ds

≤
∫

(tη,ε−η,tη,ε+η)

f (ξε(s))ρη(tη,ε − s)ds − δ

≤ f (ξε(tη,ε)) + ω f (η) − δ

which gives a contradiction for ε and η small.
(i i ) implies (i i i ). Let us now prove that if v is a supersolution in the sense of

Definition 4.2, then it is a supersolution in the sense of Definition 5.1. To this end,
fix a point x ∈ Sn and introduce a map ξ : R → Sn as follows. Assume that x ∈ e j
with x = π j (yx ), yx ∈ [0, l j ]. Set ξ(t) := π j (yx + t) for t ∈ [−yx , l j − yx ]; in
particular we have ξ(0) = x . Let us now proceed to introduce ξ for positive t ; the case
of negative t is similar and we shall omit it. The point ξ(l j − yx ) is an endpoint of e j ;
hence it belongs either to Γ or to V n

0 . In the former case we obtain T+. In the latter
case, by the definition of supersolution in Definition 4.2 there exists a feasible edge
for e j , say ek ; wlog assume πk(0) = ξ(l j − yx ). We define ξ(t) := πk(t − l j + yx ) for
t ∈ (l j − yx , lk + l j − yx ). We iterate this idea of following an edge and then choosing
the corresponding feasible edge when arriving at a vertex of V n

0 . Assume now that the
initial point x belongs to V n

0 , say x = vi . In this case we choose arbitrarily an edge
e j , incident to vi and the corresponding feasible edge in vi , say ek . Wlog we assume
x = π j (0) = πk(0). We introduce ξ(t) = π j (t) for t ∈ [0, l j ] and ξ(t) = πk(−t) for
t ∈ [−lk, 0) and we iterate the same idea as before. We claim that

T± := T±
Sn [ξ ] are both finite. (5.6)

In order to prove this property, we proceed by contradiction assuming that ξ(t) /∈ Γ

for every t ∈ R. Since Sn is given by a finite collection of edges of finite length,
this may happen only if ξ contains a loop, say L := e1 ∪ · · · ∪ ek . Being lower
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semicontinuous, the function v attains its minimum with respect to L at some point
x̄ . Since the constant function φ = minL v is an admissible test function for v at x̄ we
obtain a contradiction with the definition of supersolution in Definition 4.2; hence our
claim (5.6) is completely proved.

Finally, by the Definition 4.2 and Remark 4.2, one can easy check that for w(t) :=
v(ξ(t)) ∀t ∈ [T−, T+], there holds: |p| ≥ f (ξ(t)) for every p ∈ D−w(t), t ∈
(T−, T+).

(i i i ) implies (i). By Remark 5.2, this statement is a straightforward consequence
of the definition of supersolution in Definition 5.1. Hence, the proof is accomplished.

�
A natural question in the previous approach is if we need to consider all the paths

on the Sierpinski gasket or just the ones that visit a finite number of vertices. We say
that a path ξ : I → S is piecewise differentiable when it is absolutely continuous and
there exist n ∈ N, t0 < t1 < · · · < tm and j1, . . . , jm ∈ Jn such that there holds:
I = (t0, tm) and ξ(t) belongs to e jk for t ∈ (tk−1, tk). In other words, a piecewise
differentiable path is an absolutely continuous path in some Sn and it changes edge
only a finite number of times.

Definition 5.2 We say that a function u is a mild subsolution (resp., supersolution) of
(5.1) if it verifies the definition of subsolution (resp., supersolution) in Definition 5.1
by considering only piecewise differentiable paths.

Proposition 5.5 Assume (5.2). Then, the unique mild solution to (5.1)–(5.3) is given
by

v(x) = inf

{∫ T

0
f (ξ(t))dt + g(y)

}
for all x ∈ S

where the infimum is taken over all y ∈ Γ and over all the piecewise differentiable
paths ξ ∈ A((0, T ), S) such that ξ(0) = x, ξ(T ) = y. Moreover v coincides with the
solution u given by (5.4).

Proof Following exactly the same arguments in the proof of [3, Thm 3.1], one can
easily check that Proposition 5.1 still holds formild super- and subsolutions. Similarly,
repeating the arguments of the proof of [3, Thm 3.2], one can also obtain that the
function v is a mild supersolution.

Finally, we observe that a subsolution (respectively, a supersolution) in the sense of
Definition 5.1 is also a mild subsolution (resp., mild supersolution). Hence we deduce
that the function u defined in (5.4) is a mild solution and the comparison principle
yields that u = v. �
Remark 5.3 Observe that by (5.4), the distance from the boundary

d(x) := inf{d(x, y) : y ∈ Γ } x ∈ S (5.7)

is the unique solution of

|Du(x)| = 1 x ∈ S, u = 0 x ∈ Γ.
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Theorem 5.1 Assume (5.2) and let un be the viscosity solution of (4.3)–(4.5). Then,
as n → +∞, un tends to u uniformly on each prefractal Sm where u is the viscosity
solution of (5.1)–(5.3).

Proof First observe that if condition (5.2) is satisfied, then, for any n, condition (4.4)
is satisfied as well, hence for any n there exists a solution to (4.3)–(4.5). By Proposi-
tion 4.3, we already know that un converges to a function ū on S. We want to prove
that u = ū.

In order to show that ū is a supersolution at x ∈ S, given ε > 0, let n ∈ N be such
that x ∈ Sn and 0 ≤ un − ū ≤ ε. Let ξ ∈ Ax (R, Sn) and w ∈ LSC(R) be an ε-
admissible couple for un as in Definition 5.1 withX = Sn . Set w̄ = w+ ū(x)−un(x).
Then ū(x) = w̄(0) and

ū(ξ(t)) ≤ un(ξ(t)) + ε ≤ w(ξ(t)) + 2ε ≤ w̄(ξ(t)) + 3ε.

Moreover |p| ≥ f (ξ(t)) − ε for all p ∈ D−w(ξ(t)) = D−w̄(ξ(t)). It follows that
(ξ, w̄) is an ε-admissible couple for ū in the sense of Definition 5.1.

To show that ū is a subsolution, by Proposition 5.5, it suffices to show that it is a
mild subsolution. To this end, given x ∈ S, consider ξ ∈ Ax (R, S) and n̄ ∈ N such
that ξ ∈ Ax (R, Sn̄). Set w(t) := ū(ξ(t)) and let φ ∈ C1(R) be supertangent to w in
0. Since un → u uniformly, then wn(t) := un(ξ(t)) converges to w uniformly. Hence
there exists tn → 0 such that φ is supertangent to wn at tn . Moreover ξ ∈ Ax (R, Sn)
for n > n̄ and therefore |Dφ(tn)| ≤ f (ξ(tn)). For n → ∞, since ξ(tn) → ξ(0) it
follows that |Dφ(0)| ≤ f (x). �

As an immediate consequence of Proposition 4.4 and Theorem 5.1, we get the con-
vergence of discrete problems to the continuous problem on S.

Theorem 5.2 Assume (5.2) and (3.3) for any n ∈ N. Then, as n → +∞, the sequence
{uhn }n of the solutions of (3.2)–(3.4) converges uniformly to the solution u of (5.1)–
(5.3).

Remark 5.4 Observe that (5.2) does not imply (3.3) except in some particular case
(e.g., g constant on Γ ). Nevertheless we can always modify f in such a way that
(5.2) implies (3.3). Indeed, under condition (5.2), let us show that (3.3) is satisfied
with f replaced by fn(x) := f (x) + ω f (hn). For any x, y ∈ Γ and any path {x0 =
x, x1, . . . , xN = y} ⊂ V n with xi ∼ xi+1, i = 0, . . . , N − 1, define an admissible
continuous path ξ : [0, Nhn] → Sn such ξ(ihn) = xi , i = 0, . . . , N − 1. Then, by
(5.2), there holds

g(x) ≤
∫ Nh

0
f (ξ(t))dt + g(y) ≤

N−1∑
i=0

∫ (i+1)h

ih
f (ξ(t))dt + g(y)

≤
N−1∑
i=0

hn( f (xi ) + ω f (hn)) + g(y) =
N−1∑
i=0

hn fn(xi ) + g(y).
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Therefore, fn satisfies (3.3). Moreover, since { fn}n is decreasing, by the same argu-
ments as those of previous sections, one can prove that the solution uhn to (3.2)–(3.4)
with f replaced by fn converges to the solution of (5.1)–(5.3).

Corollary 5.1 Let δn, dn and d be the distance function fromΓ respectively on Sn, V n

and S, defined in (4.9), (3.7) and (5.7). Then, as n → +∞, both δn and dn converge
to d.

Proof By Remark 3.1 (respectively, Remarks 4.3 and 5.3), the function dn (resp., δn
and d) is the solution of the eikonal equation with f ≡ 1 in Sn (resp., V n and S) and
g = 0 on Γ . Invoking Theorem 5.1 (resp., Theorem 5.2), we infer that δn (resp., dn)
converge to d as n → +∞. �

6 Extensions

In this section we discuss some possible extensions of the previous results.

More general Hamiltonians For the sake of clarity, the present paper only concerns the
eikonal equation; it is our purpose to extend these results tomore general Hamiltonians
in a futurework. For instance,we observe that the results on prefractals can be extended
to an Hamiltonian H(x, p) convex and coercive with respect to p, obtaining the
uniform convergence of the solutions of (3.2)–(3.4) to a function u defined on the
Sierpinski gasket. The definition introduced in [3] for the sole eikonal equation can
possibly be extended to a class of Hamiltonians of the type H(x, |p|).
Boundary conditions Following the classical definition of Laplacian on the Sierpinski
gasket, we imposed the boundary conditions on Γ . Nevertheless, by easy modifica-
tions, it is possible to consider as boundary set any finite subset of V . An interesting
case considered in [6,17] is when the boundary reduces to one point of Γ and g = 0 at
this point. The solutions of the (3.2), (4.3) and (5.1) represent respectively the vertex
distance on Sn , the path distance on Sn and the path distance on S from the given
boundary vertex. More generally the problem (5.1)–(5.3) can be considered in a con-
nected subdomain � of S imposing the boundary condition on any finite subset of
vertices contained in �.

More general fractals The interior approximation method can be extended to some
classes of post-critically finite self similar sets (generally speaking, these sets are
obtained by subdividing the initial cell into cells of smaller and smaller size and the
cells must intersect at isolated points; see [10,18] for the precise definition). We will
consider the problem in a future work.

Resistance metric Given the energy form associated to the Laplacian on the Sierpin-
ski gasket, it is possible to introduce a metric, called resistance metric, which plays
an important role in several estimates (see [10,18]). While in the Euclidean setting
resistance metric and pathwise distance coincide, this is not true on S. On the other
hand the Sierpinski gasket can be embedded in R

2 by certain harmonic maps whose
image is now called the harmonic Sierpinski gasket and on this set the two distances
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coincide (see [5,12]). We aim to consider a characterization of the resistance metric
via the eikonal equation in a future work.
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