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  Abstract
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Introduction: Several conditions such as training, aging, estrogen deficiency and drugs could affect the biological and anatomo-
physiological characteristics of the tendon. Additionally, recent preclinical and clinical studies examined the effect of detraining on
tendon, showing alterations in its structure and morphology and in tenocyte mechanobiology. However, there is a paucity of data
examining the impact that cessation of training may have on tendon. In practice, we do not fully understand how tendons respond
to a period of training followed by sudden detraining. Therefore, within this review, we summarize the studies where tendon
detraining was examined.
Materials and methods: A descriptive systematic literature review was conducted by searching three databases (PubMed, Scopus
and Web of Knowledge) on tendon detraining. Original articles in English from 2000 to 2015 were included. In addition, the search
was extended to the reference lists of the selected articles. A public reference manager (“www.mendeley.com”) was used to
delete duplicate articles.
Results: An initial literature search yielded 134 references (www.pubmed.org: 53; www.scopus.com: 11;
www.webofknowledge.com: 70). 15 publications were extracted based on the title for further analysis by two independent
reviewers. Abstracts and whole articles were then reviewed to detect if they met inclusion criteria.
Conclusions: The revised literature comprised 4 clinical studies and an in vitro and three in vivo reports. Overall, the results
showed that tendon structure and properties after detraining are compromised, with an alteration in the tissue structural
organization and mechanical properties. Clinical studies usually showed a lesser extent of tendon alterations, probably because
preclinical studies permit an in-depth evaluation of tendon modifications, which is hard to perform in human subjects. In
conclusion, after a period of sudden detraining (e.g. after an injury), physical activity should be restarted with caution, following
an appropriate rehabilitation program. However, further research should be performed to fully understand the effect of sudden
detraining on tendons.
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ABTRACT 30 

Introduction: Several conditions such as training, aging, estrogen deficiency and drugs could affect 31 

the biological and anatomo-physiological characteristics of the tendon. Additionally, recent 32 

preclinical and clinical studies examined the effect of detraining on tendon, showing alterations in 33 

its structure and morphology and in tenocyte mechanobiology. However, few data evaluated the 34 

importance that cessation of training might have on tendon. Basically, we do not fully understand 35 

how tendons react to a phase of training followed by sudden detraining. Therefore, within this 36 

review, we summarize the studies where tendon detraining was examined. 37 

Materials and methods: A descriptive systematic literature review was carried out by searching 38 

three databases (PubMed, Scopus and Web of Knowledge) on tendon detraining. Original articles in 39 

English from 2000 to 2015 were included. In addition, the search was extended to the reference lists 40 

of the selected articles. A public reference manager (“www.mendeley.com”) was adopted to remove 41 

duplicate articles. 42 

Results: An initial literature search yielded 34 134 references (www.pubmed.org: 17 53; 43 

www.scopus.com: 8 11; www.webofknowledge.com: 9 70). 11 15 publications were extracted 44 

based on the title for further analysis by two independent reviewers. Abstracts and complete articles 45 

were after that reviewed to evaluate if they met inclusion criteria. 46 

Conclusions: The revised literature comprised 4 clinical studies and an in vitro and two three in 47 

vivo reports. Overall, the results showed that tendon structure and properties after detraining are 48 

compromised, with an alteration in the tissue structural organization and mechanical properties. 49 

Clinical studies usually showed a lesser extent of tendon alterations, probably because preclinical 50 

studies permit an in-depth evaluation of tendon modifications, which is hard to perform in human 51 

subjects. In conclusion, after a period of sudden detraining (e.g. after an injury), physical activity 52 

should be taken with caution, following a targeted rehabilitation program. However, further 53 

research should be performed to fully understand the effect of sudden detraining on tendons. 54 

 55 

Key words: tendon, tenocyte, detraining, sudden detraining, systematic literature review  56 
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INTRODUCTION 62 

Tendons are a specialized tissues that join muscle to bone and are composed by extracellular 63 

collagen fibers arranged in regular arrays (Aslan, 2008). This mechanosensitive tissue shows 64 

detailed mechanical properties that allow it to adapt and respond to loading transmitted by muscles 65 

(Fang, 2015). This load transfer provide the principal mechanical stimulus for tendon cells 66 

(Kondratko-Mittnacht 2015). These tensile loads are diverted to tendon cells through different 67 

matrix compartments and components. At cellular level, by various transmembrane structures and 68 

pathways, they are transduced from the exterior to intracellular biochemical responses (Maeda, 69 

2015; Kondratko-Mittnacht 2015). 70 

While physiologic loads are required to maintain tendon homeostasis, (Galloway, 2013) unusual 71 

loading could direct to tendon injury, either through an acute traumatic injury or chronic, 72 

degenerative process (i.e., tendinopathy) resulting from an increase of microdamages and an altered 73 

cell/matrix response (Arnoczky, 2007; Magnusson, 2010). Histopathologicaly, tendinopathy is a 74 

unsuccessful healing response, represented by altered tenocytes proliferation, disruption and 75 

impaired organization of collagen fibers, increase in non collagenous matrix and 76 

neovascularization (Maffulli, 2011). In the chronic stage of tendinopathy, inflammation is 77 

absent or minimal, nevertheless it could play a role only in the initiation, but not in the 78 

propagation and progression, of the disease process (Maffulli, 2010). Even if tendinopathies 79 

also comprise conditions of damage to the tendon without symptoms, these pathologies 80 

frequently occur with pain in the injured tendon, which is accentuated or appears during 81 

palpation of the affected area or during active and passive movements involving the tendon 82 

(Franceschi, 2014). Tendon injury may not only lead in the lack of mobility or irregular joint 83 

kinematics, but could also result in damages to tissues adjacent to the joint. Muscle atrophy 84 

subsequent to tendon rupture is a frequent complication found by physicians and orthopedic 85 

surgeons. This condition proves significantly weaker musculature resulting in unfavorable 86 

functional consequences, with a consequent reduction in muscle force generation (Sandri, 87 

2008; Zhang, 2013). Despite previous studies showed complete histological and biochemical 88 

characteristics of tendons rupture and some of these have been included into the clinical 89 

scenario, little is known concerning the mechanical response of muscles to tendon injury 90 

(Sandri, 2008; Zhang, 2013; Jamali, 2000; Charvet, 2012). However, recently Zhang et al. 91 

demonstrated that tendon rupture has a supplementary influence on muscle biomechanics in 92 

comparison to disuse (Zhang, 2013). 93 

Due to their poor healing ability, tendon injuries represent an increasing problem in orthopedics as 94 

physicians are faced with a growing demand in sports and recreation and in the aging population 95 
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(Kaux, 2011). Thus, primary disorders of tendons are a widely distributed clinical problem in 96 

society and hospital evidence and statistical data suggest that some tendons are more susceptible to 97 

pathology than others; these are the rotator cuff, Achilles tibialis posterior and patellar tendons. 98 

Although there are no specific figures in relation to tendon disease, several studies show that 16% 99 

of the population is affected from tendon pain (Urwin, 1998) and this rises to 21% when the 100 

statistics shift to elderly hospitals and community populations (Urwin, 1998, Chard, 1991). These 101 

numbers supplementary enhance in the sports community, in fact it was reported that 30 to 50% of 102 

all sporting injuries involve tendons (Kannus, 1997). Ordinarily, the major conditions affecting 103 

tendons are tendinitis and tendinosis; the first assumed to be accompanied by inflammation and 104 

pain, whereas the second can be caused by tendinous degeneration (Maffulli, 1998). It is assumed 105 

that these conditions are seldom spontaneous (Gibson, 1998) and are not caused by single factors. 106 

Rather, they are the end result of a variety of pathological processes (Riley, 2004; Rees, 2006) 107 

which can ultimately lead to the main clinical problem: loss of tissue integrity with full or partial 108 

tendon rupture . 109 

Many intrinsic and extrinsic factors such as aging, gender, anatomical variants, obesity, systemic 110 

diseases, estrogen deficiency, drugs, sporting activities, physical loading, occupation, and 111 

environmental conditions could affect the biological and anatomo-physiological characteristics of 112 

the tendon (Sandberg, 2015; Frizziero, 2014; Galdiero, 2014; Oliva, 2014a, 2014b; Snedeker, 113 

2014; Abate 2014; Hast, 2014; Boivin, 2014; Berardi, 2014; Franchi, 2013; Frizziero, 2013; 114 

Malliaras, 2013; Moerch, 2013; Torricelli, 2013; Frey, 2007; Holmes, 2006; Torricelli, 2006; 115 

Nakama, 2005;). Thus, over the past decade, tendon and tenocyte adaptations in  relation to 116 

immobilization, training, aging and medications have been the center of an growing number of 117 

studies (Maffulli, 2003; Sharma, 2005;Stanley, 2008; Torricelli, 2006; Torricelli, 2013).  118 

While proper mechanical loads at physiological levels are typically helpful to tendons in terms of 119 

enhancing its mechanical properties, recent preclinical and clinical studies examining the effect of 120 

detraining on tendon, showed alterations in its structure and morphology and in tenocyte 121 

mechanobiology. However, there is a paucity of data that evaluated the impact that detraining may 122 

have on tendon. Thus, it has not yet been understood how tendons behave to a period of training 123 

followed by cessation of training. Nevertheless, to guide rehabilitation and/or athletic programs it is 124 

necessary to elucidate tendon adaptation after sudden detraining. Therefore, within this descriptive 125 

systematic literature review, we summarize the studies where tendon detraining was examined. 126 

 127 

MATERIALS AND METHODS 128 

Descriptive literature review  129 
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According to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 130 

a systematic search was carried out for this descriptive literature review (see Figure 1 for details) in 131 

three databases (www.pubmed.org, www.webofknowledge.com, www.scopus.com). The keywords 132 

were “tendon detraining”, “tendon detraining associated damage”, “tendon sudden detraining”, 133 

“tendon disuse”, “tendon discontinuous training associated damage”, “tendinopathies and 134 

discontinuous training”, “tendinopathies and detraining”, “tenocytes detraining associated 135 

damage”, “tenocytes discontinuous training associated damage”. We sought to identify studies 136 

in which tendon detraining was examined. Publications from 2005 to 2015 (original articles in 137 

English) were included. The reference lists from the articles included in this review were analyzed 138 

to recognize additional studies that were not found by the initial search. A public reference manager 139 

(“www.mendeley.com”) was used to delete duplicate articles. 140 

 141 

RESULTS 142 

An initial literature search yielded 34 134 references. Seventeen Fifty-three articles were identified 143 

using www.pubmed.org, 9 70 articles using www.webofknowledge.com and 8 11 articles were 144 

found in www.scopus.com.The resulting references were submitted to a public reference manager 145 

(Mendeley 1.13.8, “www.mendeley.com”) to delete duplicate articles. Of the 20 76 remaining 146 

articles, 11 15 publications were extracted based on the title for further analysis. Abstracts and 147 

whole articles were then reviewed to ascertain whether the publication met the inclusion criteria and 148 

seven 8 articles (3 4 preclinical studies, 1 in vitro and 2 3 in vivo, and 4  clinical studies) were 149 

considered appropriate for the review (Figure 1). From the reference lists of the included articles, 150 

no  supplementary publications were identified. We did not perform meta-analyses of the selected 151 

studies, but quoted the results in a descriptive fashion.   152 

 153 

Figure 1:Literature search strategy and criteria. 154 

Preclinical studies 155 

This revised literature comprised 3 4 preclinical studies, an in vitro and two three in vivo reports, 156 

respectively on tenocytes from patellar tendon (Salamanna, 2015) and on patellar (Frizziero, 2011 157 

and 2015) and gastrocnemius (Foutz, 2007) tendon of detrained rats animals (Salamanna, 2015; 158 

Frizziero, 2011 and 2015) . Concerning the in vitro study patellar tendon tenocytes from rats 159 

subjected to training and to sudden detraining were examined. Rats were trained for 10 weeks on a 160 

treadmill (speed of about 25 m/min, corresponding to ~65–70% VO2max) and successively caged 161 

without exercise for further 4 weeks. Tenocytes from patellar tendon were cultured to evaluate  162 

morphology, viability, proliferation and metabolic activity. It was found that detraining in the short-163 
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term alters tenocyte synthetic and metabolic activity (C-terminal-propeptide of type I collagen, 164 

collagen III, fibronectin, aggrecan, tenascin-c, interleukin-1β, matrix-metalloproteinase-1 and-3). 165 

These results indicated that tenocytes do not merely have a passive role but play an important 166 

function during detraining (Salamanna, 2015). Similarly results were found by the same authors 167 

also when the patellar tendons of detrained rats were studied by histology and histomorphometry 168 

(Frizziero, 2011 and 2015). In fact, the studies showed alteration in tendon morphology and also in 169 

its enthesis due to discontinuation of training. These alteration involved proteoglycan content, 170 

collagen fiber organization with an increase of collagen III and a decrease of collagen I, which 171 

means less resistance to stress, and a related increased risk of rupture. Differently from the above 172 

mentioned studies, Foutz et al. investigated the mechanical adaptability responses due to 173 

disuse on the biomechanical properties of the gastrocnemius tendon of chicks (Foutz, 2007). 174 

Chicks were trained for 3 weeks on a treadmill (speed of 0.22 m/s, for 5 min) and successively 175 

immobilized in a whole body suspension system for further 2 weeks. It was found that 176 

structural strength and toughness of the gastrocnemius tendon were reduced by 10 and 30%, 177 

respectively, whereas the material strength, material toughness, and material stiffness of the 178 

tendon increased by approximately 75, 65, and 70%, respectively. These results showed that 179 

the chicken gastrocnemius tendon reacts to mechanical disuse as foretold by the 180 

mechanobiology process (Foutz, 2007). 181 

 182 

Clinical studies 183 

The PubMed, Web of Knowledge and Scopus search strategy identified 4 clinical papers that 184 

examined the impact that detraining may have on tendons. Several studies showed that tendon 185 

characteristics influence the performances during stretch-shortening cycle exercises (Bojesen-186 

Moller, 2005; Kubo, 2007; Stafilidis, 2007); thus, information on the time course of changes in 187 

tendon characteristics during training and detraining is critical for the progress of performances in 188 

the athletic field. To evaluate the time course of modifications in mechanical and morphological 189 

properties of tendon during detraining, Kubo et al (Kubo, 2010) examined these variables in eight 190 

volunteered men that executed unilateral knee extension exercise in a seated position. Subjects were 191 

trained 4 times per weeks for 3 months and detrained for the following three months. Results of this 192 

study showed that tendon stiffness was significantly increased after 3 months of training, while the 193 

maximal elongation was unaltered. Conversely, during the detraining period, tendon showed greater 194 

values of maximal elongation compared to the post-training, and tendon stiffness decreased to the 195 

pre-training levels after 2 months of detraining (Kubo, 2010).With a similar methodology, the same 196 

authors in 2012 focused more specifically on the alterations found in the human Achilles tendon 197 
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during training and detraining (Kubo, 2012). In addition, they measured the blood volume and 198 

oxygen saturation of tendon, and evaluated the serum concentrations of markers of collagen type I 199 

synthesis. Results were similar to the previous study ones: the elongation values did not change 200 

after training but increased significantly during detraining; tendon stiffness increased only after 201 

three months of training and rapidly decreased during detraining. Thus, Authors showed that during 202 

detraining, the sudden decrease in tendon stiffness might be linked to modifications in the structure 203 

of collagen fibers within the tendon. In addition, no significant alterations in blood supply or 204 

collagen synthesis were observed (excluding an increase in procollagen peptides after 2 months of 205 

training) (Kubo, 2012).  206 

Recently McMahon et al (McMahon, 2013) evaluated the patella tendon properties during 207 

detraining (1 months), after a 3-months period of training with different strains. The patella moment 208 

arm, the perpendicular distance between the tibiofemoral contact point and the mid-portion of the 209 

tendon, was estimated using dual-energy x-ray absorptiometry (DEXA) scan images. Tendon 210 

elongation and stiffness were measured by ultrasonic analyses and tendon forces were calculated as 211 

the ratio between the measured torque and the patella moment arm. Furthermore, they evaluated the 212 

circulating transforming growth factor (TGF)-β1 levels as it is associated to exercise-induced 213 

response to mechanical loading of muscle and tendon. The authors found no significant alterations 214 

in patella tendon dimensions or circulating TGF-β1 levels following training or detraining. 215 

However, the training groups with the muscle-tendon complex at a lengthened position or over a 216 

wide range of motion better maintained adaptations compared to the training in a shortened position 217 

subsequent to detraining, with a pattern of slower loss of progress at the early phase of detraining in 218 

all training groups. 219 

Finally Kannas and colleagues (Kannas, 2014) analyzed the effect of 4 weeks of detraining on the 220 

mechanical properties of medial gastrocnemius aponeurosis into two groups that performed 221 

plyometric training on incline and plane ground. They evaluated the aponeurosis strain of medial 222 

gastrocnemius and found that it decreased after detraining; the ankle muscle tendon complex 223 

properties withdrew to the pre-training values with lower performances.These findings suggested 224 

that after four weeks of detraining, ankle muscle tendon complex properties withdraw to the pre-225 

training values with lower performance (Kannas, 2014).  226 

 227 

DISCUSSION 228 

The tendon is a connective tissue responsible for the transmission of force from the muscular tissue 229 

to the bones, promoting body movement. It is not a static tissue, preferentially it adapts itself in 230 
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compliance to the level, direction and frequency of the load that is applied to it with a process of 231 

remodeling possibly executed by tenocytes. 232 

It was shown that appropriate mechanical loads are useful to tendons by improving their anabolic 233 

processes and it is undertaken or prescribed for different reasons such as sports performance, 234 

general health, functional maintenance, recovery (e.g., following injury, illness/diseased states) and 235 

also to compensate the effects of ageing. However, extreme mechanical loads are harmful to 236 

tendons by bringing catabolic processes such as matrix degradation. Immobilization or disuse of 237 

tendons also leads catabolic effects on it. Differently there are few data that examined the impact 238 

that detraining may have on tendons. Thus, the present descriptive systematic literature review tried 239 

to summarize the effects of discontinuing physical activity on tenocyte metabolism and/or in tendon 240 

morphology in order to elucidate the mechanism behind these changes.  241 

All examined studies, both preclinical and clinical, observed that discontinuing activity negatively 242 

influence tendon structure and morphology, albeit with differences in the training and/or detraining 243 

protocols, in the types of tendons, in subjects involved, in the study design or in the experimental 244 

setting involved. The results of all these studies suggested that after a period of sudden detraining 245 

(such as after an injury) physical activity should be restarted with caution and with appropriate 246 

rehabilitation programs because cessation of activity causes modifications in tenocytes and tendons 247 

metabolism, morphology, i.e. in collagen type I and III synthesis, collagen organization, cellularity, 248 

vascularity, proteoglycan content, tear density, mechanical properties.  249 

Notwithstanding the alterations highlighted in the reviewed articles after tendon detraining, some 250 

limitations of the examined studies should be also considered. In fact, this systematic review has as 251 

its main focus not only to bring together major works involving major changes in morphological 252 

and structural properties of tendons during detraining, but also to examine the methodological 253 

process on which the articles were based to assess the trustworthiness of the results found. 254 

In relation to the results obtained in the in vitro study examined in this review (Salamanna, 2015), 255 

that showed a decrease of tendon mitochondrial area, rough endoplasmic reticulum area, C-terminal 256 

propeptide of type I collagen, fibronectin, aggrecan and tenascin-c synthesis and presence of 257 

inflammatory cytokine production, we have to consider that tenocytes from animals subjected to 258 

sudden detraining were studied. In addition, results were obtained in in vitro cultured cells, which 259 

were not any longer structured into tissues, but in monolayer and static conditions. Thus, it is 260 

probable that the performance of explanted tendon cells is not equal to the performance of tendon 261 

cells in their native matrix environment in vivo (Fu, 2008; Leigh, 2008). However, these results 262 

indicated that the tendon does not operate as a inert connector between muscles and bone, but 263 

dynamically responds to mechanical loading. 264 
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The two three preclinical studies examined in this review employed a rat or chicken animal model 265 

that may not be fully representative of human conditions but the invasive analyses conducted in 266 

these studies permitted a depth investigation for the advancement of knowledge of many aspects on 267 

tendon response to detraining (Frizziero, 2011 and 2015; Foutz, 2007)). Moreover, looking at the 268 

literature, rat and rodents are the most used animals when mechanical load with treadmill running is 269 

used (Warden, 2009; Lui, 2011). In fact, the results of these in vivo studies demonstrated that the 270 

adopted running protocol did not induce tendinopathy or other pathologic changes in hindlimbs. 271 

Another methodological process that must be considered is that in these studies all morphometric 272 

parameters were measured by 2D image analysis, while other investigation methods, such as micro-273 

MRI, may allow a more in-depth understanding of tendon structure. However, as for the reviewed 274 

in vitro paper, these in vivo results provide interesting data for both sports medicine practitioners 275 

and orthopedic surgeons, wishing to prevent the pathological or degenerative modification that 276 

affect these structures. 277 

Great variability was noted in the four clinical studies (Kubo, 2010 and 2012;McMahon, 2013; 278 

Kannas, 2014) that analyzed the effects of detraining. In fact, these studies involved different  279 

tendons (Achilles, gastrocnemius, patellar), different types of exercise (isometric knee extention , 280 

resistance training, plyometric training on incline and plane ground), different training and 281 

detraining periods (3 and 4 months) and different types of analyses (Dual Energy X-Ray 282 

Absorptiometry , ultrasonography, electromyography). Furthermore, it is important to point out that 283 

the different effects of detraining on tendons depends not only on the above mentioned variables, 284 

but also on the patient intrinsic characteristics, that are affected by age, gender, drug assumption, 285 

the presence of systemic or genetic or endocrine diseases (i.e. obesity, diabetes, Cushing syndrome, 286 

hypercholesterolemia, osteoporosis). In fact, recently it was shown that proliferation and synthetic 287 

activity of tenocytes are negatively affected by aging and estrogen deficiency (Torricelli, 2013). In 288 

addition, clinical studies did not permit a depth understanding of the alteration in tendon 289 

metabolism and  morphology (i.e. expression of type I collagen, fibronectin, aggrecan and tenascin-290 

c synthesis and/or presence of inflammatory cytokine, cellularity, vascularization, fibers 291 

arrangements ect). However, despite these limitations these clinical studies indicate that tendons 292 

may be susceptible to detraining. These findings could have a direct relevance to functional 293 

rehabilitation practices showing that after a period of sudden detraining, physical activity should be 294 

restarted with caution. 295 

Despite the fact that the examined studies showed a potential negative effect of detraining on 296 

tenocytes and tendons, there is a paucity of preclinical and clinical studies that examined the 297 

importance that cessation of training may have on tendon. These results should be confirmed by 298 
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other preclinical and clinical research in order to completely comprehend the effect of detraining on 299 

tendons. In particular, several aspects should be further studied and refined in order to improve our 300 

understanding on the role of detraining in tenocytes and tendon mechanobiology: 1) standardization 301 

of the training and detraining protocols in both preclinical and clinical research;  2) development of 302 

systems that reproduce tendon detraining in culture with high reliability to native tendon; 3) 303 

comprehend how tenocytes respond to detraining and how they mechano-regulate their response; 4) 304 

evaluate the presence of altered tendon structure and/or morphology due to detraining in its various 305 

stages; 5) evaluation of the role of other tissues (bone, muscle, nerve, vascularity, etc.) on tendon 306 

mechanobiology during detraining. Finally an integrated, collaborative multi-disciplinary multiscale 307 

approach is likely to yield the greatest advances in this field. 308 

 309 

 310 

In review



11 
 

Table 1: 311 

Experimental 

set-up 

Type of tendon Control group Training protocol Detraining protocol Analysis Main results Reference 

In vitro model  Rat patellar tendon 

tenocyte 

Untrained 

patellar tendon 

tenocyte 

Trained patellar 

tendon tenocyte 

10 week on a treadmill 

(~65–70% VO2max) 

Caged without exercise 

for 4 weeks 

Transmission-

electronic-microscopy, 

C-terminal-propeptide 

of type I collagen, 

collagen III, 

fibronectin, aggrecan, 

tenascin-c, interleukin-

1β, matrix-

metalloproteinase-1 

and-3. 

Altered tenocyte 

synthetic and 

metabolic activity. 

Salamanna et al 

2015 

In vivo model Chicken 

gastrocnemius  

tendon  

No control 

group 

3 week on a treadmill 

(speed of 0.22 m/s, for 

5 min) 

Controls or 

immobilized for 2 

weeks. 

Tendon midregion 

cross-sectional area 

and biomechanical 

properties 

Gastrocnemius 

tendon responds to 

mechanical disuse as 

predicted by the 

mechanobiology 

process 

Foutz et al. 2007 

In vivo model Rat patellar tendon Untrained 

patellar tendon  

Trained patellar 

tendon  

10 week on a treadmill 

(~60% VO2max) 

Caged without exercise 

for 4 weeks 

Collagen fiber 

organization and 

proteoglycan content. 

Low proteoglycan 

content and collagen 

fiber organization . 

Frizziero et al 2011 

In vivo model Rat patellar tendon Untrained 

patellar tendon  

Trained patellar 

10 week on a treadmill 

(~65–70% VO2max) 

Caged without exercise 

for 4 weeks 

Structure and 

morphology  (modified 

Movin score, tear 

Altered structure and 

morphology with the 

highest Movin score 

Frizziero et al 2015 
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tendon density, collagen type I 

and III). 

values, the highest 

percentage of 

collagen III and the 

lowest of collagen I 

 312 

Table 2: 313 

Type of 

tendon 

Patients Training protocol Detraining protocol Analysis Main results Reference 

Patellar 

tendon 

8 (training group); 

6 (control group). 

Unilateral isometric knee 

extension, 4 times/week, 3 

months. 

Return to usual levels of 

physical activity, 3 

months. 

- Tendon elongation by 

ultrasounds; 

- Cross-sectional areaby MRI. 

Greater values of tendon 

elongation, decrease in 

tendon stiffness during 

detraining. 

Kubo et al 2010 

Achilles 

tendon 

9 (training group); 

7 (control group). 

Unilateral (left side) 

isometric plantar flexion 

exercise, 4 times/week, 3 

months. 

Return to usual levels of 

physical activity, 3 

months. 

- Tendon elongation by 

ultrasounds; 

- Cross-sectional areaby MRI; 

- Blood supply and oxygen 

saturation; 

- Serum concentration of BAP and 

P1P by ELISA. 

Tendon elongation 

increased and stiffness 

rapidly decreased after 

detraining. 

Kubo et al 2012 

Patellar 

tendon 

10 (training with the 

MTC at a shortened 

position); 

11 (MTC at a lengthened 

position); 

11 (wide range of 

Resistance training, three 

times per week, 8 weeks. 

4 weeks of detraining - Patella moment arm by DEXA; 

- Tendon elongation and stiffness 

by ultrasounds; 

- Circulating TGF-β1 levels by 

ELISA. 

No significant alterations 

in patella tendon 

dimensions or circulating 

TGF-β1 levels following 

training or detraining in 

any of the groups.  

McMahon 2013 

In review
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motion); 

10 (control group). 

Achilles 

tendon 

10 (training on inclined 

ground) 

10 (training on plain 

ground) 

Plyometric training 4 weeks of detraining Aponeurosis strain of MG Strain was decreased 

from 22.7% (± 0.05) to 

16.3% (± 0.05) after 

detraining period. 

Kannas 2014 

In review
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