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Abstract

Background: Enhancers are stretches of DNA (100–1000 bp) that play a major role in development gene expression,
evolution and disease. It has been recently shown that in high-level eukaryotes enhancers rarely work alone, instead
they collaborate by forming clusters of cis-regulatory modules (CRMs). Although the binding of transcription factors is
sequence-specific, the identification of functionally similar enhancers is very difficult and it cannot be carried out with
traditional alignment-based techniques.

Results: The use of fast similarity measures, like alignment-free measures, to detect related regulatory sequences is
crucial to understand functional correlation between two enhancers. In this paper we study the use of alignment-free
measures for the classification of CRMs. However, alignment-free measures are generally tied to a fixed resolution k.
Here we propose an alignment-free statistic, called EP∗

2 , that is based on multiple resolution patterns derived from the
Entropic Profiles (EPs). The Entropic Profile is a function of the genomic location that captures the importance of that
region with respect to the whole genome. As a byproduct we provide a formula to compute the exact variance of
variable length word counts, a result that can be of general interest also in other applications.

Conclusions: We evaluate several alignment-free statistics on simulated data and real mouse ChIP-seq sequences.
The new statistic, EP∗

2 , is highly successful in discriminating functionally related enhancers and, in almost all
experiments, it outperforms fixed-resolution methods. We implemented the new alignment-free measures, as well as
traditional ones, in a software called EP-sim that is freely available: http://www.dei.unipd.it/~ciompin/main/EP-sim.
html.

Keywords: Alignment-free, Sequence comparison, Entropic profiles

Background
How to measure the degree of similarity between biologi-
cal sequences is one of the foremost questions on themind
of bioinformaticians. This problem relates to the identifi-
cation of homologous sequences like proteins and, to this
end, the use of tools like BLAST is nowadays a standard
procedure. In this paper we study the same question but
for regulatory sequences such as promoters or enhancers
of genes. The detection of similarities between coding
sequences is a widespread approach to estimate functional
correlations. Indeed, there is a general belief that similar
binding site contents in regulatory sequences are expected
to drive similar expression patterns [1]. Moreover, large
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collections of regulatory sequences have become available
after the advent of ChIP-seq technologies and the identi-
fication of sequences regulating the same cell-type in the
analysis of ChIP-seq data is definitely a crucial step.
Many articles [1] discuss recent views on enhancers

or cis-regulatory modules (CRMs), one of several types
of genomic regulatory elements, and their coordinated
action in regulatory networks. Enhancers are stretches
of DNA (100–1000 bp) that play a major role in the
development of gene expression. They can upregulate, i.e.
enhance, the transcription process driving animal devel-
opment. A single cell can give rise to a multitude of
different cell types and organs which will acquire different
functions by expressing different sets of genes [2]. These
modules are known to play a key role in the regulation of
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the transcription process, for example in Human [3] and
in Drosophila [4].
Here we summarize the main features of CRMs. First,

they contain several short (6–15 bp) DNA motifs that
act as binding sites for transcription factors (TFBSs) and
often allow different nucleotides at some of the bind-
ing positions. In other words, there may be mutations
on TFBSs. Second, these TFBSs act seemingly indepen-
dently of the distance and orientation to their target genes
as a consequence of looping. It follows that the strand
to which a CRM under study belongs is unknown so
both cases need to be considered. Third, they maintain
their functions independently of the sequence context,
are modular and contribute additively and partly redun-
dantly to the overall expression pattern of their target
genes. Finally, enhancers with similar transcription factors
binding sites content have a high probability of bearing
a similar function. This is why predictions and classifica-
tions of enhancers can be addressed by similarity searches.
However, the presence of multiple binding sites, with dif-
ferent spacing between them, can make the comparison
of two CRMs very difficult. For these reasons biologists
need first to screen ChIP-seq datasets to select cell-
specific regulatory sequences on the basis of common
contents.
A similarity measure for regulatory sequences is crucial

to detect and understand functional similarities between
two enhancers and will facilitate large-scale analyses like
clustering, prediction and classification. As opposed to
traditional methods that output a list of putative TFBSs,
alignment-free methods [5–7] do not try to find any
candidates. Instead, they analyze many long regulatory
regions, which are composed by several TFBSs along
with the background, in order to group together those
sharing a similar content in terms of TFBSs. If the iden-
tification and positioning of TFBSs are of concern, then
well-known tools like MotifSampler [8] can be applied as
a post-process.
The comparison of sequences can be carried out with-

out the need of costly alignments. A sequence can be
represented by its word distribution. It has been shown
that the word content and distribution can be effectively
used to compare sequences in a number of applica-
tions [9]. This recent research field is usually referred
as alignment-free. In the context of CRMs, where it is
assumed that a similar function is driven by the presence
of different binding site contents, the idea to describe a
sequence by its word distribution still works just as well.
In addition, alignment-freemethods are receiving increas-
ing attention because they are computationally efficient
and can provide attractive alternatives when alignment-
based approaches fail. For example the study of organism
evolution using whole-genome sequence is impossible to
conduct with traditional alignment techniques [10, 11].

Similarly, the comparison of genomes from next-
generation sequencing data can be performed only with
alignment-free methods [12–14]. Several alignment-free
methods have been devised for the identification of cis-
regulatory modules [5–7].
In general alignment-free method are based on statis-

tics of words with fixed-length k. The problem with these
methods is that the performance depends dramatically
on the choice of the resolution k [10]. For example in
the analysis of enhancers using simulated data [5, 6],
the best performing k is usually equal to the length
of the implanted TFBS. In real cases its choice is crit-
ical because it is not possible to know the enhancer
length in advance. Moreover, in the presence of sev-
eral TFBSs, it is simply not feasible to select the k that
best fits enhancers of different lengths. The statistical
profile of variable length words in known CRMs has
been used for the identification of potential CRMs in
[15]. However, this method is supervised, in the sense
that it uses orthologs of the known CRMs. In this
paper we extend the idea of alignment-free measures
accounting for multiple resolutions and without depend-
ing neither on any knowledge nor accurate prediction of
TFBSs.
The Entropic Profile (EP) is a function of the genomic

location that captures the importance of that region with
respect to the whole genome [16, 17]. This method proved
useful for the identification of conserved genomic regions.
The score EP is based on the distribution of variable
length words. For each position, it computes a function
that represents the deviation from the known distribution.
This function is a good candidate to be transformed into
an alignment-free measure based on variable length word
counts. However, EP can be computed only for a single
sequence, and it cannot be directly applied as a mean for
comparison. The main contributions of this paper are the
followings:

• we extend the function EP for pairwise sequence
comparison;

• as a byproduct, given that the word counts are not
independent because of overlaps, we provide a
formula for computing the exact variance of variable
length word counts;

• we will show that pairwise sequence similarity of
regulatory sequences is able to estimate similar in
vivo activity.

In the next Sections “Previous work on alignment-
free measures” and “Entropic profiles” we review the
previous work on alignment-free statistics and present
the original definition of Entropic Profile. Then, in
Section “Methods”, their statistical properties are studied
and particular attention is paid to the role of the variance.
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The extension of the well-known alignment-free measures
is discussed in Section “New alignment-free measures
derived from Entropic Profiles”, and implemented in a tool
called EP_sim. In Section “Results and Discussion” the
results are discussed and compared with the state of the
art. Conclusions and future work are reported in Section
“Conclusions”.

Previous work on alignment-free measures
The common way to identify homologous sequences is
sequence alignment, for which many algorithms have
been proposed in literature [18, 19]. Nevertheless they
are unsuitable for predicting and classifying enhancers
through the matching of transcription factor binding sites
for many reasons [9, 20]:

• transcription factor binding sites are short motifs so
they frequently match to genomic or even random
DNA sequences so enhancer similarity or
dissimilarity may be due primarily to their
background;

• enhancer location and orientation do not matter so
no reliable alignment can be obtained;

• they are time-consuming and inadequate for
comparing sequences in realistically large datasets,
e.g. large ChIP-seq datasets;

• enhancers do not work alone and their coordinated
action cannot be fully explored with a single
alignment.

On the contrary, alignment-free approaches provide
viable alternatives [9, 20]. With the aim of effectively sum-
ming up sequence content they are usually based on k-mer
counts.
Historically, D2 [21], see Formula 1, is one of the first

proposed similarities and is defined as the inner prod-
uct of the k-mer frequency vectors. Consider two genome
sequences A and B, of length n, and let Aw and Bw be
the frequencies of word w, of length k, in A and B. Let
Ãw = Aw−(n−k+1)∗pw, where pw is the probability ofw
under the null model. Despite its simplicity and distance
properties, D2 can be dominated by the noise caused by
the randomness of the background and has low statistical
power to detect potential relationship. As a result, more
powerful variants, DS

2 and D∗
2 [22], see Formulas 2 and 3,

have been developed by standardizing the k-mer counts
with their expectations and standard deviations.

D2 =
∑
w

AwBw (1)

Ds
2 =

∑
w∈�k

ÃwB̃w√
Ã2
w + B̃2

w

(2)

D∗
2 =

∑
w∈�k

ÃwB̃w
(n − k + 1)pw

. (3)

An implementation of D2, D∗
2 and Ds

2 is provided by
ALF [5], which, by default, uses another similarity mea-
sure named N2, one of the best available methods for the
analysis of regulatory sequences. N2 aims at overcoming
the limitation of exact word counts by taking into account
word neighbourhood counts. N2 is defined similarly toD∗

2
except that every word w is replaced with a set n(w) of
words somehow linked to w, e.g. reverse complement and
mismatches.
Several other alignment-free statistics have been pro-

posed recently for different applications: multiple align-
ment [23], phylogeny [11, 24], classification of NGS data
[12, 13], reads clustering [25, 26], and many others.
The major drawback of alignment-free measures is that

they are all tied on the choice of the resolution k, which
crucially influences performances but cannot be known
in advance. Entropic Profiles, which are based on vari-
able length word counts by definition, can be extended to
create new alignment-free measures accounting for mul-
tiple resolutions. In particular we will show that Entropic
Profiles pave the way to more robust but still efficient
alignment-free methods.

Entropic profiles
The concept of Entropic Profiler (EP) was introduced to
analyze DNA sequences, in particular to detect excep-
tional motifs [16]. The Entropic Profiler takes a genome
in input and evaluates a function of the genomic location
that captures the importance of that region with respect to
the whole genome. It proceeds through three steps. First,
it calculates the distribution of each word up to a maxi-
mum length. Second, for each position in the genome, it
evaluates a function based on the distribution of the words
ending there with length up to the maximum. Third, for
each position, it computes the z-value representing the
deviation of that position from the known distribution.
This score is based on the Shannon entropies of the word
distribution. The formal definition of entropic profiles
[16, 17] comes from the use of the CGR representation
to estimate the sequence Renyi entropy on the basis of
the Parzen window density estimation method. The EP is
defined for every location i of the entire sequence S as:

f̂L,ϕ(xi) = 1 + 1
l
∑L

k=1 4kϕk · c ([i − k + 1, i])∑L
k=0 ϕk

(4)

where l is the length of the entire sequence, L the res-
olution, i.e. the k-mer length, ϕ is a smoothing param-
eter, and c([ i − k + 1, i] ) is the number of occurrences
of xi−k+1 . . . xi, i.e. the suffix of length k that ends at
position i.
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EP values are standardized with their arithmetic mean
mL,ϕ and standard deviation sL,ϕ :

EPL,ϕ(xi) = f̂L,ϕ(xi) − mL,ϕ
sL,ϕ

, where (5)

mL,ϕ = 1
l

l∑
i=1

f̂L,ϕ(xi) (6)

sL,ϕ =
√√√√ 1

l − 1

l∑
i=1

(
f̂L,ϕ(xi) − mL,ϕ

)2
(7)

Entropic Profilers proved to be useful for the discov-
ery of patterns in genome [17] and they can be computed
efficiently in linear time and space [27–29]. By defini-
tion Entropic Profiles are based on multiple resolution
k-mers counts, thus they are not tied to a fixed resolu-
tion k, as almost all alignment-free measures. Our intent
is to extend this function for developing new alignment-
free measures for the prediction and classification of
enhancers.

Methods
From Entropic Profiles to multiple resolution
alignment-free measures
In order to establish a suitable alignment-free measure,
first we need to study the statistical properties of Entropic
Profiles. We can simplify the original Formula 4 and con-
sider the main term, that we call simple entropy SEw of a
word w = (w1, . . . ,wL) of length L :

SEw =
∑L

k=1 akcw,k∑L
k=1 ak

(8)

where cw,k is the number of occurrences of the k-mer
suffix sw,k and the weights ak have been generalized.
The statistical properties of SEw have not been carefully

studied yet. In the previous works [27], only the expecta-
tion of this function has been explored. In addition, in [16,
17], the standardization is done with respect to the arith-
metic mean and standard deviation (see Formula 6 and
7). This procedure can introduce biases due to the noise
present in the input sequence. Indeed, the standardization
does not depend on the word w that we want to score, but
instead it is applied regardless of the particular wordw, see
Formula 5 where mean and variance are computed once
and for all from the sequence under examination. Differ-
ent words have different probability to occur, for example
the string AAAA has more chance to appear than ACGT,
because of its autocorrelation. Thus the number of occur-
rences of a word should be standardized with respect to
the word statistics, as inD∗

2 already reported in Formula 3.
In order to replicate the same scheme we first need to
study the statistical properties of the simple entropy SEw.

Computing the expected entropy
Without loss of generality the entire sequence S =
(X1,X2, . . . ,Xi, . . . ,Xl) can be modeled by a stationary
Markov chain [30]. Here, we use a first-order Markov
chain, but all results can be extended to any other order.
Thanks to the stationarity of the Markov chain, the prob-
ability μ(w) that a word w occurs does not depend on
the position i, and it is: μ(w) = μ (w1)

∏L
j=2 π

(
wj−1,wj

)
,

where μ (w1) is the probability that the first letter occurs
and π(wj−1,wj) is the transition probability from letter
wj−1 to wj.
It is useful to define the variable Yi(w), which indicates

if w occurs at position i:

Yi(w) =
{
1, if (Xi, Xi+1, . . . ,Xi+L−1)=(w1, w2, . . . ,wL),
0, otherwise.

(9)

For each i, Yi(w) is a Bernoulli variable with parame-
ter μ(w) so its expectation is E[Yi(w)]= μ(w) and its
variance is Var[Yi(w)]= μ(w)[ 1 − μ(w)]. This indicator
provides a way to define the number of occurrences cw of
word w: cw =∑l−L+1

i=1 Yi(w).
Now, based on the variables Yi(w), the expected entropy

E[ SEw] of the word w can be defined as in the following:

E[ SEw]= E
[∑L

k=1 akcw,k∑L
k=1 ak

]
=
∑L

k=1 akE
[
cw,k
]

∑L
k=1 ak

where

E[ cw,k]= (l − k + 1)μ(sw,k)

Note that, as opposed to Formula 3, where the expected
number of occurrences of the word w is estimated as
(l − k + 1)μ(w) (see definition of Ãw), here SEw accounts
for multiple words of different lengths, and thus its expec-
tation is computed accordingly.

Computing the variance of entropy
In this section we continue to study the statistical prop-
erty of entropies SEw. If we consider the standard-
ization proposed in Formula 3, we can note that the
denominator does not contain the exact variance but
an approximation. The variance is replaced by the esti-
mated mean of the word occurrence across the two
sequences. If the probability of the word pattern is small,
this approach can be justified by considering a Pois-
son approximation for the individual word counts. Here
instead we are interested in deriving the exact variance of
entropies SEw.
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The varianceVar[ SEw] is important to take into account
the dependence between entropies of overlapping words:

Var[ SEw]= Var
[∑L

k=1 akcw,k∑L
k=1 ak

]

=
∑L

k′=1
∑L

k′′=1 ak′ak′′Cov
[
cw,k′ , cw,k′′

]
(
∑L

k=1 ak)2

where the derivation of the covariance of the counts
is non-trivial. There are two cases which need to be
explored. If k′ = k′′ ≡ k there is only one suffix of fixed
length, and Cov

[
cw,k′ , cw,k′′

] = Var[ cw,k]. Otherwise, if
sw,k′ �= sw,k′′ , one word is the suffix of the other. For the
first case we need to extend and adapt the formula for
Var[ cw] in [30]. The latter case is more involving because
it deals with overlapping words of variable lengths. Here
below we provide the exact formulas of the two cases.

Case 1: variance of the count
If k′ = k′′ ≡ k, the covariances can be simplified as
Cov

[
cw,k′ , cw,k′′

] = Var[ cw,k]. From [30], in order to derive
Var[ cw,k] we need to sum three terms which respectively
take into account:

1. self-overlap of the word with itself;
2. partial self-overlap, the suffix of the word with its

prefix or vice-versa;
3. disjoint occurrences.

Formally:

Var[cw,k]=(l−k+1)μ(w)(1−μ(w))+2μ(w)

k−1∑
d=1

(l−k−d+1)∗

∗
⎡
⎣εk−d(w)

k∏
j=k−d+1

π(w[ j − 1] ,w[ j] ) − μ(w)

⎤
⎦

+2μ2(w)

l−2k+1∑
t=1

(l−2k− t+2)
[

π t(w[ k] ,w[ 1] )
μ(w[ 1] )

− 1
]

where εu(w) is the asymmetric overlap indicator

εu(w) =
{
1 if w[k-u+1. . . k] = w[1. . . u]
0 otherwise ,

and t = d − k + 1 and π t(w[ k] ,w[ 1] ) is the probability
that the last letter of w is separated from an occurrence of
w[ 1] by t − 1 letters.

Case 2: covariance of the counts of words of different length
In this second case, w′ = sw,k′ �= w′′ = sw,k′′ so one word
is the suffix of the other. First of all, it can be assumed that
|w′′| = k′′ < |w′| = k′ so, in this case, w′′ is a suffix of
w′. This assumption is without loss of generality because
of the symmetry of the covariance, Cov

[
cw,k′ , cw,k′′

] =
Cov

[
cw,k′′ , cw,k′

]
. For simplicity of notation, let cw,k′ =

cw′ and cw,k′′ = cw′′ . The covariance can be expressed
with respect to the random indicator variables, Yi(w), and
developed by applying its well-known properties:

Cov
[
cw,k′ , cw,k′′

] = Cov [cw′ , cw′′ ] =

= Cov

⎡
⎣l−k′+1∑

i=1
Yi(w′),

l−k′′+1∑
j=1

Yj(w′′)

⎤
⎦ =

l−k′+1∑
i=1

l−k′′+1∑
j=1

Cov
[
Yi(w′),Yj(w′′)

] =

=
l−k′′+1∑
i=1

l−k′′+1∑
j=1,j �=i

Cov
[
Yi(w′),Yj(w′′)

]+
l−k′′+1∑
h=1

Cov
[
Yh(w′)Yh(w′′)

]
(10)

Note that the indices vary between 1 and l − k′′ + 1, so
the last k′ − k′′ values of Yi(w′) are all zero since there are
not enough letters to make the word w′. The two terms in
Formula 10 can be interpreted as follows:

1. the former stands for all the terms due to two words
of different length that do not start at the same
position;

2. the latter stands for all the terms due to two words of
different length that start at the same position
(yellow words in Fig. 1).

To reformulate the former and to study overlaps, we can
always fix the firstw′ (the longest) andmovew′′ (the short-
est, i.e. its suffix). In particular, let d be the shift of the

Fig. 1 Possible overlaps between w′ and w′′
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moving wordw′′ with respect to the fixed wordw′. A sum-
mary of the possible overlaps between w′ and w′′ is shown
in Fig. 1, so as to make the subsequent analysis of the two
parts easier.
Part 1 of Eq. 10 can be reformulated by exchanging the

sums over i and d. This way, i is fixed and d varied in order
to consider the positions before i (left overlap) and after
(right overlap).

l−k′′+1∑
i=1

l−k′′+1∑
j=1,j �=i

Cov
[
Yi(w′),Yj(w′′)

] =

=
l−k′′+1∑
i=1

⎛
⎝ i−1∑

d=1
Cov

[
Yi(w′),Yi−d(w′′)

]+
l−k′′+1−i∑

d=1
Cov

[
Yi(w′),Yi+d(w′′)

]⎞⎠ =

=
l−k′′∑
d=1

⎛
⎝l−k′′+1∑

i=d+1
Cov

[
Yi(w′),Yi−d(w′′)

]+
l−k′′+1−d∑

i=1
Cov

[
Yi(w′),Yi+d(w′′)

]⎞⎠
The last formula has been rewritten to highlight the left
and right overlaps. Note that the second part 2 of equation
10 simply represents the case d = 0.
Under a first-order Markov model (or greater), the indi-

cators Yi(w′) and Yj(w′′) are not independent, not even if
the corresponding positions are more than k′ letters away
from each other [30]. Thus,

Cov
[
Yi(w′),Yj(w′′)

]=E
[
Yi(w′)Yj(w′′)

]−E
[
Yi(w′)

]
E
[
Yj(w′′)

]
may be different from zero. Especially, there are three

cases (see again Fig. 1):

• left shift, d ≥ 1 (red words);
• right shift, d ≥ 1 (blues and green words);
• zero shift, d = 0 (yellow word).

Left shift This case is represented in red in Fig. 1.

Cov
[
Yi(w′),Yi−d(w′′)

] = E
[
Yi(w′)Yi−d(w′′)

]− E
[
Yi(w′)

]
E
[
Yi−d(w′′)

]
where the first term comprehends two parts that respec-
tively represent:

1. prefix - suffix overlap: two overlapping words, the
latter of which (red words in Fig. 1) starts before the
beginning and ends before the end of the former.

2. two non overlapping words.

Thus we can write:

E[Yi(w′)Yi−d(w′′)]=

⎧⎪⎨
⎪⎩

ε
left
k′′−d(w

′′,w′) μ(w′′)
∏k′

j=k′−k′′−d+1π(w′
j−1,w′

j) if 1≤d<k′′

μ(w′′)μ(w′)
[

πd−k′′+1(w′′
k′′ ,w

′
1)

μ(w′
1)

]
if d ≥ k′′

where ε
left
u (w′′,w′) is the asymmetric overlap indicator

ε
left
u (w′′,w′) =

{
1 if w′′[ k′′ − u + 1 . . . k′′]= w′[ 1 . . .u]
0 otherwise

(11)

Since the expectation does not depend on the position i
we can write:
E[Yi(w′)]E[Yi−d(w′′)]= μ(w′)μ(w′′).

Right shift Analogously (but not symmetrically),

Cov
[
Yi(w′),Yi+d(w′′)

] = E
[
Yi(w′)Yi+d(w′′)

]− E
[
Yi(w′)]E[Yi+d(w′′)

]
where the first term comprehends three parts that respec-
tively represent:

1. substring - string overlap: two overlapping words, the
latter (blue words in Fig. 1) starts after the beginning
and ends before the end of the former.

2. substring - prefix overlap: two overlapping words, the
latter (green words in Fig. 1) starts before the end of
the former and ends after it.

3. two non overlapping words.

E[Yi(w′)Yi+d(w′′)]=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ε
right
k′−d(w

′,w′′)μ(w′) if 1≤d≤k′−k′′

μ(w′)εrightk′−d(w
′,w′′)

∏k′′
j=k′−d+1π

(
w′′
j−1,w′′

j

)
if k′−k′′<d<k′

μ(w′)μ(w′′)
[

πd−k′+1(w′
k′ ,w

′′
1 )

μ(w′′
1 )

]
if d ≥ k′

where ε
right
u (w′,w′′) is the asymmetric overlap indicator

ε
right
u (w′,w′′) =

⎧⎪⎨
⎪⎩

1 if u < k′′ ∧ w′[ k′ − u + 1 . . . k′]= w′′[ 1 . . .u]
1 if u ≥ k′′∧ w′′ is a substring of w′

0 otherwise

(12)

Zero shift This case considers the prefix - string over-
lap, in other words two overlapping words starting at the
same position the latter of which ends before the end of
the former.
E
[
Yh(w′)Yh+d(w′′)

]=E
[
Yh(w′)Yh+0(w′′)

]=μ(w′)∗1+(1−μ(w′)) ∗ 0=μ(w′)

Finally, we can put them all together so as to derive
the exact formula for the covariance of the counts of two
words with different length:

Cov
[
cw,k′ , cw,k′′

] = (l − k′′ + 1)(μ(w′) − μ(w′)μ(w′′))+

+
k′−k′′∑
d=1

(l − k′′ + 1 − d)μ(w′)
(
ε
right
k′−d(w

′,w′′) − μ(w′′)
)

+

+
k′∑

d=k′−k′′+1
(l−k′′+1−d)μ(w′)

⎡
⎣εrightk′−d(w

′,w′′)
k′′∏

j=k′−d+1
π
(
w′′
j−1,w′′

j

)
−μ(w′′)

⎤
⎦+

+
k′′∑
d=1

(l − k′′ + 1− d)μ(w′′)

⎡
⎣εleftk′′−d(w

′′,w′)
k′∏

j=k′−k′′−d+1
π
(
w′
j−1,w′

j

)
−μ(w′)

⎤
⎦+

+
l−k′′∑
d=k′′

(l−k′′+1−d)μ(w′′)μ(w′)
[

πd−k′′+1 (w′′
k′′ ,w′

1
)

μ
(
w′
1
) − 1

]
+

+
l−k′′∑
d=k′

(l−k′′+1−d)μ(w′)μ(w′′)
[

πd−k′+1 (w′
k′ ,w′′

1
)

μ
(
w′′
1
) − 1

]
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This is the exact formula that, together with the other
case, can be used to compute the variance of SEw. Unlike
previous approaches that approximate the variance of
equal length word counts, we have also provided a chal-
lenging formula for computing the exact variance of vari-
able length word counts. For the sake of simplicity, as done
in [5], the last two terms, i.e. the non-overlapping terms,
will be neglected thereby assuming that the occurrence of
non-overlapping words is independent of the sequence in
between.
We believe that this result can be of general interest, and

that it can be used also in other applications. For example
exact word statistics are fundamental for the discovery of
surprising/over-represented patterns [30, 31].

New alignment-free measures derived from Entropic
Profiles
Entropies and counts are very much alike, as already
described in the previous section. The basic intuition is
that Entropic Profiles can be used instead of k-mer counts,
so that one can build alignment-free statistics that are
not based on the fixed length k, but that are multiple
resolution. This suggests that the adaptation of the state-
of-the-art measures can be done by replacing the vector
of k-mer counts with the vector of entropies.
Consider two genome sequences A and B and let ASEw

and BSEw be the entropies of word w in A and B. We can
redefine classical alignment-free measures as:

EP2 =
∑
w

ASEwBSEw (13)

EP∗
2 =

∑
w

(
ASEw − E

[
ASEw

]) (
BSEw − E

[
BSEw

])
Var

[
ABSEw

] (14)

While the implementation of EP2 is straightforward,
EP∗

2 instead is based on the statistical properties of
entropies. The theory developed in the previous section is
preliminary to the implementation of EP∗

2.
Note that Entropic Profiles, expectations and variances

can be pre-computed in linear time and space by adapting
the implementation in [27]. Thus, the proposed statistics,
as many others, can be computed efficiently.
We implemented these alignment-free measures, as well

as traditional ones, in a software called EP-sim that is
freely available1. It is based on the library SeqAn [32]
that provides efficient string primitives. Among the differ-
ent options available, the possibilities to include reverse
complements and to compute an approximated version
of the variance are of note. In particular one can extend
the formulas for the mean and variance to include also
reverse complements. There are several ways to incor-
porate reverse complements into the score. The method
we selected consists in taking the maximum between
the entropies of a word and its reverse complement. In

practice the fact that only the strongest signal is taken
makes the effect of exceptional words more incisive. This
solution is only one of the possibilities. In N2 [5], the k-
mer counts from the reverse and forward strand can be
combined in many ways. There are four options: both-
strands, to calculate the pairwise score using both strands
from the input sequences, mean, min and max. In gen-
eral, the use of reverse complements will be of help for the
detection of enhancers and in other applications.

Results and Discussion
This section deals with the testing procedures for the
study of the statistical power of the proposed multi-
resolution sequence similarity measures. The task of pair-
wise comparison of regulatory sequences is much harder
than traditional pairwise alignment since only very few
shared words might lead to a similar activity. In this
section we want to test if pairwise sequence similarity of
regulatory sequences is able to estimate similar in vivo
activity.
The same biological problem has been addressed in

[5–7] and we chose to compare with these methods using
the same experimental setup. Here, we report experi-
ments on simulated and real regulatory sequences, by
using the same evaluation procedure. In each experiment
two equal-length sets of sequences, which are named neg-
ative and positive set, are built. Sequences in the former
are dissimilar while those in the latter similar. The positive
predictive value (PPV) is evaluated in two steps: first sim-
ilarity scores are computed for each pair of sequences in
the two sets; then similarity scores are sorted in descend-
ing order, and the PPV is the percentage of pair of
sequences from the positive set in the first half of the
chart. The best PPV is 1 and means a perfect separation
between negative and positive sets while a PPV close to
0.5 implies no statistical power. Performances will depend
on the choice of the background model, the k-mer length
and the weights ak . For the latter we will use a Gaussian
kernel with standard deviation σ , which is centered about

k = L, i.e. ak = e−
(L−k)2
2σ2 .

In order to study the influence of the parameter σ on
the performance curves, we devise a simple test. First, we
randomly generate a set of sequences as negative set, then
we create the positive set by implanting a set of similar
motifs, of average length 5 (AGCCA, GCCA, TAGCCA,
CCAG, AGCCAG), in those of the negative set. Figure 2
shows the results of the study of the influence of the stan-
dard deviation. In this example the sequence length is 500
and the insertion probability 0.01. An high standard devi-
ation positively impacts performances when the k-mer
length is overestimated, because high values of the stan-
dard deviation make short motifs to have bigger weights.
To exemplify the idea, if the standard deviation is 1.5, the
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Fig. 2 PPV as a function of standard deviation and k-mer length. In this
experiment the sequence length is 500 and the insertion probability is
0.01. The implanted motifs are AGCCA, GCCA, TAGCCA, CCAG, AGCCAG

four biggest weights are 1, 0.80, 0.41 and 0.13 and perfor-
mances are influenced while if the standard deviation is
0.1, the Gaussian bell is so thin that EP∗

2 is equivalent to
D∗
2. As expected the performances worsenwhen the k-mer

length is underestimated.

Implanted motifs on Drosophila genome
In this simulation study, the sequences in the negative set
are randomly picked from a real genomewhile those in the
positive set are built by implanting a set of motifs in those
of the negative set, since random sequences are unrealis-
tic backgrounds. Thus, as in [33], we chose theDrosophila
genome, whose intergenic sequences, which are regions
containing functionally important elements such as pro-
moters and enhancers, are downloadable from FlyBase2.
Patterns can be artificially implanted via the pattern trans-
fer model [22] or the revised one [33] with the aim of
mimicking the exchange of genetic material. While, under
the former model, only strings of the same length, e.g 5,
are considered, under the latter, also strings of different
length, e.g. 4, 5 and 6 are implanted.
The goal of this experiment is to assess the influence

of the background model so as to use the best one in the
next tests. It has been performed varying many parame-
ters such as implanted motifs, insertion probability, entire
sequence length and k-mer length. Generally, first-order
Markov model (M1) outperforms the Bernoulli model
(M0). This is outlined by Fig. 3, which shows perfor-
mances as a function of background model and k-mer
length. In this example, only one motif AGCCAG, of
length 6, has been implanted, the insertion probability
has been set to 0.004, the sequences length is 2000 and
the standard deviation is 0.5. It is important to observe
that EP∗

2 is better than N2 if the k-mer length is overesti-
mated, i.e. k ≥ 6, as a consequence of the multi-resolution
property of entropic profiles.
Considering our limited knowledge of regulatory

sequences [5], it is interesting to evaluate performances
when implanting similar motifs of different length via the

Fig. 3 Background model M1 outperforms M0. In this experiment the
sequences length is 2000, the standard deviation is 0.5, the insertion
probability is 0.004 and the implanted motif is AGCCAG

more realistic pattern transfer model revised. The motifs
implanted are similar to each other, in the sense that they
share common subsequences (AGCCA,GCCA, TAGCCA,
CCAG, AGCCAG), with average length of 5. We have per-
formed many experiments varying both k-mer and entire
sequence length. Figure 4 shows the results when the
entire sequence length is 4000, the insertion probability
0.008 and the standard deviation 0.6. EP∗

2 outperforms N2
and both variants of D2, which do not take into account
the statistical properties of counts or entropies, have no
statistical power. The worse performance of D2 and EP2
are consistent throughout all experiments, thus we will
concentrate on the comparison of EP∗

2 and N2. If a differ-
ent set of motifs is implanted, the absolute performance
can vary. However, the relative performance between the
methods remains unaltered. In the previous Figure the
pick is at k-mer length 5, which is the selected value for
the next experiment. Figure 5 shows that these results
hold also varying the entire sequence length. Perfor-
mances tend to increase with the length of the sequence,
because the number of implanted motifs also increases, as
expected.

Fig. 4 PPV as a function of k-mer length and method. In this
experiment the sequence length is 4000, the standard deviation is 0.6,
the insertion probability is 0.008 and the implanted motifs are AGCCA,
GCCA, TAGCCA, CCAG, AGCCAG
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Fig. 5 PPV as a function of entire sequence length and method. In
this experiment k = 5, the sequence length is 4000, the standard
deviation is 0.6, the insertion probability is 0.008 and the implanted
motifs are AGCCA, GCCA, TAGCCA, CCAG, AGCCAG

Comparison of mouse regulatory sequences
The above simulations deal with artificial CRMs from
unrelated sequences. The next series of experiments
involves neither artificial enhancers nor implanted tran-
scription factor binding sites. The positive set is build
from ChIP-seq data of real enhancers, which have been
already identified in a genome-wide manner using the
co-activator protein p300 by [34, 35]. More precisely, it
consists in sequences of length between 350 and 1000 that
are issue-specific enhancers of mouse embryos active in
one of the following tissues: forebrain, midbrain, limb or
heart. These studies [34, 35] have identified 2543, 561,
2105 and 3597 peaks from forebrain, midbrain, limb and
heart respectively. For the purpose of this study we select
the top 200 peaks for each tissue.
In the first experiment, we want to assess if in-vivo iden-

tified enhancers can be distinguished from randommouse
genome sequences. To this end, the negative set con-
tains sequences taken at random from the mouse genome,
which is downloadable from Ensembl 3. To obtain accu-
rate estimations, we calculated the average over 10 sam-
ples, each time drawing 20 sequences from the positive
set of tissue specific enhancers. Using the same evalua-
tion measures as in the previous section, we tested the
ability of alignment-free sequence comparison methods
to detect functional similarity of regulatory sequences.
Given that no artificial motif is implanted, which implies
that the best motif length is unknown and function of
the tissue, the chosen standard deviation is 0.7 so short
motifs have bigger weights. The purpose is to take advan-
tage of the multi-resolution property. The results for EP∗

2
and N2, while varying the k-mer length, are reported in
Table 1. A summary of the average over all tissues is in
Fig. 6. In general the performance of EP∗

2 is better than
N2 for different k-mer lengths. If one considers the statis-
tics of single bases, k = 1, regulatory sequences can be
detected with a PPV of 60 %. Probably because the GC
content of regulatory sequences is different from random

Table 1 Comparison of mouse tissue-specific enhancers versus
randommouse genomic sequences. Values in the table
represents the average PPV, over all tissues, varying the k-mer
length. The standard deviation is 0.7

EP∗
2 k-mer length

Tissue 1 2 3 4 5 6 7

Limb 0.61 0.68 0.77 0.82 0.82 0.81 0.8

Forebrain 0.59 0.71 0.78 0.8 0.83 0.82 0.82

Midbrain 0.58 0.69 0.72 0.84 0.81 0.78 0.79

Heart 0.63 0.73 0.81 0.85 0.83 0.81 0.81

Average 0.60 0.70 0.77 0.83 0.82 0.80 0.80

N2 k-mer length

Tissue 1 2 3 4 5 6 7

Limb 0.6 0.66 0.71 0.74 0.75 0.69 0.66

Forebrain 0.59 0.68 0.7 0.73 0.76 0.72 0.68

Midbrain 0.58 0.63 0.68 0.71 0.72 0.69 0.65

Heart 0.62 0.66 0.73 0.75 0.74 0.71 0.68

Average 0.6 0.66 0.70 0.73 0.74 0.70 0.67

mouse regions. If larger k are considered the performance
of both methods increase up to a maximum obtained for
k = 4. It is interesting to note that, as the parameter k
increases the performance of both methods worsen, how-
ever, due to the multi resolution property the PPV of EP∗

2
decreases less rapidly.
The previous test shows that tissue-specific enhancers

have similar word content. However, the comparison with
random genomic sequences can be biased by the technol-
ogy, e.g. when it more likely extracts sequences with high
or similar GC-content, as already described in [33] and
[5]. To avoid this bias, different regulatory sequences are
compared with each other. In other words, the positive set
contains the enhancers active in one of the tissues while

Fig. 6 Comparison of mouse tissue-specific enhancers versus random
mouse genomic sequences. Values in the graph represents the
average PPV, for all tissues, for various k-mer lengths. In this
experiment the standard deviation is 0.7
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the negative set contains the enhancers active in all the
other. This is a much more challenging test, that can be
used by biologists to select enhancers that drive a similar
expression pattern. The results are averaged over 10 runs,
the number of sequences per set is 35 and the standard
deviation is 0.7 as before. The results in Table 2 show that
EP∗

2 is again better than N2 for different k-mer lengths.
However, in these experiments the frequency of single
bases is not discriminative, unlike the previous tests. A
comprehensive summary, for different k-mer length, can
be found in Fig. 7. These plots show the performance
of pairwise comparison with alignment-free methods for
enhancers active in the same tissue versus enhancers
active in different tissues. The performance is reduced
compared to randomly selected genomic sequences. Nev-
ertheless, enhancers active in the same tissue have higher
pairwise scores.
These regulatory sequences can be further compared

pairwise. Following the same setup as above, the pairwise
comparison of all tissue-specific enhancers are shown
in Table 3. Although the average results are similar to
those of Table 2, the pairwise accuracy can vary greatly.
Enhancers obtained from Forebrain and Midbrain tissues
are difficult to be distinguished from other tissues. Inter-
estingly Heart enhancers show greater similarities then
all other enhancers. As reported in [35], the vast major-
ity (84 %) of peaks in the heart enhancers do not overlap
any of the other three tissues. These experiments con-
firm that similar tissue-specific enhancers have a higher

Table 2 Comparison of mouse tissue-specific enhancers versus
others tissue-specific enhancers. Values in the table represent the
average PPV, over all tissues, varying the k-mer length. The
standard deviation is 0.7

EP∗
2 k-mer length

Tissue 1 2 3 4 5 6 7

Limb 0.52 0.59 0.68 0.71 0.7 0.69 0.67

Forebrain 0.5 0.58 0.62 0.65 0.63 0.63 0.59

Midbrain 0.51 0.61 0.68 0.69 0.7 0.68 0.66

Heart 0.49 0.6 0.7 0.73 0.72 0.68 0.67

Average 0.50 0.59 0.67 0.69 0.69 0.67 0.65

N2 k-mer length

Tissue 1 2 3 4 5 6 7

Limb 0.51 0.55 0.58 0.59 0.61 0.54 0.53

Forebrain 0.51 0.52 0.54 0.56 0.57 0.51 0.52

Midbrain 0.51 0.5 0.51 0.48 0.52 0.54 0.5

Heart 0.49 0.52 0.55 0.58 0.56 0.53 0.49

Average 0.50 0.52 0.54 0.55 0.56 0.53 0.51

Fig. 7 Comparison of mouse tissue-specific enhancers versus versus
others tissue-specific enhancers. Values in the graph represents the
average PPV, for all tissues, for various k-mer lengths. In this
experiment the standard deviation is 0.7

sequence similarity, and thus they can be detected with
alignment-free methods.

Speed tests
In this section we assess the performance, in terms of run-
ning time, of the two measures EP∗

2 and N2. For a given
word w, both methods need to count not only the occur-
rences of w, but N2 considers also all words at Hamming
distance 1 fromw, whereas EP∗

2 sum up all suffixes ofw. In
the following experiments both methods include reverse
complements as part of the occurrence counts. We cre-
ate a dataset composed by 20 sequences taken at random
from the mouse genome. All sequences have the same
length and we test the running time while increasing the
sequence length. The platform used for these experiments
is a common laptop with Intel i7 and 4 GB of RAM. The
results are summarized in Fig. 8. As expected the running
time of bothmeasures increases linearly with the length of

Table 3 Comparison of mouse tissue-specific enhancers with
each other. Values in the table represent the average PPV, with
k-mer length of 4 and standard deviation of 0.7

EP∗
2 Limb Forebrain Midbrain Heart

Limb X 0.63 0.68 0.78

Forebrain 0.63 X 0.61 0.68

Midbrain 0.68 0.61 X 0.73

Heart 0.78 0.68 0.73 X

Average 0.70 0.64 0.67 0.73

N2 Limb Forebrain Midbrain Heart

Limb X 0.55 0.54 0.66

Forebrain 0.55 X 0.54 0.6

Midbrain 0.54 0.54 X 0.53

Heart 0.66 0.6 0.53 X

Average 0.58 0.56 0.54 0.59
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Fig. 8 Running time as a function of the sequence length (k=7)

the sequences. However, EP∗
2 is about 35 % faster than N2.

This advantage is due to the fact that suffix counts can be
easily recovered by exploiting word hashing properties.

Conclusions
In this paper we studied the use of alignment-free mea-
sures to detect functional or evolutionary similarities
among regulatory sequences. We introduced a multiple
resolution alignment-free method based on Entropic Pro-
files that is designed around the use of variable-length
words combined with statistical properties. To evaluate
the performance of several alignment-free methods, we
devised a series of tests on both synthetic and real data.
In almost all simulations our method EP∗

2 outperforms all
other statistics. Importantly EP∗

2 is also able to detect sim-
ilarities between in vivo identified enhancer sequences,
e.g. of mouse. This will help to better understand the
sequence-dependent code within CRMs, which is respon-
sible for the large diversity of cell types.
As a byproduct we provide a formula to compute the

exact variance of variable length word counts, a result that
can be of general interest also in other applications, e.g.
the discovery of surprising patterns. As a future direc-
tion we plan to implement different methods to incor-
porate reverse complements. Another context where the
these statistics can be of help is the comparison of viral
sequences.

Endnotes
1 http://www.dei.unipd.it/~ciompin/main/EP-sim.html
2 FlyBase, http://flybase.org/
3 ftp://ftp.ensembl.org/pub/release-84/variation/VEP/

mus_musculus_vep_84_GRCm38.tar.gz
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