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Abstract
The thermal response of nonequilibrium systems requires the knowledge of concepts that go beyond
entropy production. This is showed for systems obeying overdamped Langevin dynamics, either in
steady states or going through a relaxation process. Namely, we derive the linear response to
perturbations of the noise intensity,mapping it onto the quadratic response to a constant small force.
The latter, displaying divergent terms, is explicitly regularisedwith a novel path-integralmethod. The
nonequilibrium equivalents of heat capacity and thermal expansion coefficient are two applications of
this approach, as we showwith numerical examples.

1. Introduction

The determination of response functions is arguably one of themost topical issues in statistical physics. Even
though its history dates back to theworks of Einstein, Nyquist andOnsager [1–4], it was Kubo [5, 6]who
subsumed the later developments [7–9] under a general theory. For a system slightly driven off equilibrium, the
Kubo formula gives the linear response of an observable in terms of the equilibrium time-correlation between
the observable itself and the entropy produced by the perturbation. Thefirst systematic application of Kubo’s
theory—alongwith kinetic theories based on generalised Boltzmann equations—underscored the endeavor to
calculate the transport coefficients ofmoderately dense gasses [10]. These efforts culminated in the discovery of
the algebraic decay in time of the correlation functions entering Kubo formulas [11–13], which prevents the
existence of transport coefficients in low dimensions.

Later, the possibility to performprogressivelymore efficient computer simulations and thus to compute
response functions numerically, led to the extension of the original theory to thermostatted systems arbitrarily
perturbed froman initial equilibrium state [14]. Remarkably, it was established that the (nonlinear) response to
an external driving is largely insensitive to the choice of the thermostattingmechanisms [15], represented by the
artificial forces required tomaintain nonequilibrium steady-state conditions [16].

In contrast to suchmajor achievements, the related theory for the response upon perturbation of
nonequilibrium states has progressed farmore slowly. Apart from the obvious obstacle represented by the lack
of knowledge of nonequilibriumphase-space distributions, further difficulties aremetwhen dealing rigorously
with deterministic dynamical systems, owing to the fractal nature of their invariant distribution [17–20].
Nonequilibrium response theories have rather flourished for stochastic dynamics [21–36], which is applicable to
awide variety of complex systems in physics as well as in related sciences. However,most of these results are
usually restricted tomechanical perturbations and do not consider thermal perturbations. Thus, they do not
allowone to compute quantities such as nonequilibriumheat capacities and thermal expansions coefficients,
whichwould arise as the (integrated) linear response to step variations of the temperature, i.e., of the noise
intensity in the stochastic dynamical equations. Besides some previous formal results [29, 37], only recently
there appeared formulas for the thermal response of driven stochastic systems, which are given in terms of
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correlations between state observables calculated in the unperturbed state. Apparently, themathematical
difficulties entailed by handling noise variations require either to introduce an explicit time-discretisation to
avoid divergences in the response [38, 39] or to rely on a rescaling of the stochastic dynamics in order to derive
regular results [40].

The present work is devoted to show that neither of these expedients is actually necessary. Awell-defined
thermal response formula can be derived by standard path integral techniques, in close analogy to the case of
deterministic perturbations. After introducing themodel equations in section 2, we define in section 3 the linear
response to a temperature perturbation of a generic observable of the system. In section 4 after a brief
explanation of the formal differences from the ordinary response to a deterministic forcing, we tackle the
problem first showing that the thermal response is equivalent to a portion of the quadratic (i.e. second-order)
response to a constant force. Such expression, which displays divergent terms, is then explicitly regularised in
section 5 and is showed to be equivalent to aKubo formula in equilibrium. In section 6we illustrate two
applications of these results: the energy susceptibility of a driven quenched particle (that is the non-equilibrium
specific heat for zero driving) and the thermal expansion coefficient of an anharmonic lattice subjected to large
heatflows.Moreover, in the simplest tractable case of a freely diffusing particle we connect our formulas to the
Einstein relation. A summary and an outlook are finally given in the conclusions.

2.Overdamped Langevin dynamics

The overdamped diffusive systemwe consider consists ofN degrees of freedom, denoted = { }x x x,... N1 . For
instance, xjmay be a component of a particle position vector in d-dimensions, so that =N nd if the system is
composed by n particles. The dynamics is given by the overdamped Langevin equation

m m x= +˙ ( ) ( ( )) ( ) ( )xx t F t T t2 , 1j j j j j j

where eachGaussianwhite noise xj is uncorrelated from the others

x x d dá ¢ ñ = - ¢¢ ¢( ) ( ) ( ) ( )t t t t . 2j j jj

The jth bath temperatureTj andmobility mj (which is the inverse of a damping constant) determine the strength
of the noise term,while the drift depends on mj and on themechanical force ( ( ))xF tj . Such structure respects
local detailed balance and thus assumes that the baths are noninteracting with each other and always in
equilibrium, regardless of the nonequilibrium conditions experienced by the system. Temperatures and
mobilities in our formalismdo not depend on the coordinates, hence there is no ambiguity in the interpretation
of the stochastic equation. Throughout this paper wewill always consider the Stratonovich convention, that is
themidpoint rule is employed to discretise in time (1) [41], whichmeans that none of the integrals will be of the
Ito type and the rules of standard calculus can be applied. See appendix A formore details.

The Fiʼs are generic nonconservative forces thatmay bring the system arbitrarily far from equilibrium. In the
resulting statistical averages, denoted á¼ñ, there is an understood dependence on the initial density of states
r ( )x0 0 , with = ( )x x 00 . Thismay coincide or notwith the steady state density. Finally, we introduce the
backward generator of theMarkovian dynamics (1), written as a sumof ‘one-coordinate’ operatorsj,

å m m= = ¶ + ¶
=

( ) ( )   xF Twith , 3
j

N

j j j j j j j j
1

2

wherewe set ¶ º ¶x jj
to avoid clutter. It gives the average time derivative of a state observable ( ) t as

á ñ = á ñ( ) ( ) t t
t

d

d
. Hereafter for any state observable we use the shorthand notation º( ( ) ) ( ) x t t t, to

indicate the implicit (and possibly explicit) dependence on the time t.

3. Linear response in path integral formalism

We imagine to perturb the system (1) varying the noise amplitude through a time dependent parameter
q ( )t 1 switched on at time t=0, namely

q Q º +( ) ( ) ( )T t T t , 4i i i i

where i is a constant determining the ith amplitude of the perturbation. This renders (1) for a perturbed degree
of freedom into the form

m m x= + Q˙ ( ) ( ( )) ( ) ( ) ( )xx t F t t t2 . 5i i i i i i

Without loss of generality we assume themobility to be independent of temperature. The extension to the case
where m m= Q( )i i i does not involve particular difficulties, since the linear response would be just the sumof the

2
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temperature response here described plus a standard response to a deterministic perturbation [34, 35], which
arises linearising the termm Fi i.

The aim is to calculate the linear response of a generic observable ( ) t to the just introduced temperature
change, defined by

ò
d
dq

d
dq

r¢ º
á ñ

¢
=

¢q
q

q
q q

q= =

( ) ( )
( ) ( )

( ) [ ] ( ) ( )
  x x x xR t t

t

t t
t P, d . 6,

0

0 0 0

0

Here á ñq... denotes an average performed in the perturbed dynamics (5) starting from the state r ( )x0 0 , which
is unaltered by the perturbation. The associated pathweight, proportional to the probability of a trajectory

º[ ] { ( ) } x x s s t: 0 solution of (5), is expressed as [42]

=q q[ ] [ ] ( )x xP exp , 7

with the action functional

ò òå
m

m

m
= -

-

Q
+ ¶q

=

[ ]
( ˙ ( ) ( ))

( )
( ) ( )

⎪

⎪

⎪

⎪

⎧
⎨
⎩

⎫
⎬
⎭

x s
x s F s

s
s F sd

4 2
d . 8

j

N t j j j

j j

j t

j j
1 0

2

0

The last term in (8) appears as the functional Jacobian in deriving the path-weight for [ ]x from theGaussian
path-weight associated to the noise xi, and depends on the convention used to discretise (5) (e.g. it would be
absentwith the Ito convention). In the followingwewill alsomake use of the unperturbed action º q q=∣  0,
which amounts to replacingQj withTj in (8).

Deep physical insights come from separating any action of the form (8) into time-antisymmetric ( ) and
time-symmetric ( , 0) components:

= - -[ ] [ ] [ ] [ ] ( )   x x x x
1

2
90

with

òåº
=

[ ] ( ) ˙ ( ) ( ) x
T

sF s x s
1

d , 10
j

N

j

t

j j
1 0

òå
m

º + ¶
=

[ ] [ ( ) ( )] ( ) x s
T

F s T F sd
4

2 , 11
j

N t j

j
j j j j

1 0

2

òå m
º

=

[ ]
˙ ( )

( ) x s
x s

T
d

4
. 12

j

N t j

j j
0

1 0

2

The integrated entropyflux [ ] x is the antisymmetric part of the action under the time-reversal
transformation  -( ) ( )x s x t sj j . It is defined consistently with thermodynamics as the sumof the individual
heatfluxes into the reservoirs, eachweighted by the respective bath temperature [41]. The time-symmetric terms
have been studied in connectionwith the notion of dynamical activity, formerly introduced in the context of
jump systems [43–45], where it counts the number of jumps and provides important informations, e.g., on the
state of glassy systems. Both [ ] x and [ ] x0 in factmay quantify an amount of activity in the diffusive systemwe
are considering [46]. Being [ ] x0 related to themean square displacement of theN degrees of freedom, it offers
a direct estimate of the trajectory frenzy. Nevertheless, this kinetic-like term should be understood as part of the
functionalmeasure [42, section 2.2], as it selects from all possible trajectories the Brownian paths thatmake 0

finite in the limit sd 0 (i.e. those that satisfy ~x sd dj
2 ). The functionals  and  are then the statistical

weights of such selected trajectories. Therefore, in the followingwewill reserve the name dynamical activity for
, whichwas shown to be a goodmeasure of the system activity [46].Written as

òº[ ] ( ( )) ( ) x xsV sd , 13
t

0
eff

itmay be seen as a time-integral of a state variable ( )xVeff that, for systemswith interactions deriving from an
energy potential ( )xU andwith a global bath temperatureT, would read

åm= ¶ - ¶( ) [( ( )) ( )] ( )x x xV
T

U T U
1

4
2 . 14

j
j j jeff

2 2

Such quantity was called effective potential [47, 48] and is proportional to the escape rate from a configuration x,
as the probability to remain in x for a short timeDt is~ - D( ( ) )xV texp eff . For our nonequilibrium systemswe
generalise such concept bywriting l= å =( ) ( )V s sj

N
jeff 1 , with

3
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l
m

º + ¶( ) [ ( ) ( )] ( )s
T

F s T F s
4

2 . 15j
j

j
j j j j
2

The escape rate of the degree of freedom xj, denoted lj , follows from evaluating the action atfixed x along a very

short trajectory of durationDt 1 , that is, l+ D D = -åD  =( )( ∣ ) ( )x xs t s t slim Prob , , expt j
N

j0 1 .

In the following sections wewill sometimes also use the name frenesy for describing correlation functions in
the response formulas involving time-symmetrical features. This alternate naming originated in the response-
theory framework [49] and usually refers to quantities akin to—more specifically, to its excess generated by a
perturbing force—namely to quantities assessing the system impatience for changing its state (rather than direct
measures of the trajectory zigzags). Hopefully the double terminology is guiding the reader through the
connections with the recent literature.

4. Response to heating as response to a force

Weare now in the position to develop the thermal linear response theory, butwe immediately find an obstacle.
Since the pathweight (7) is normalised to one, ò =q q [ ]x xP 1, the functionalmeasure qx in (6) contains the
noise temperaturesQj (see e.g. [42, 50]), and therefore depends itself on the external parameter θ. This is amajor
difference with respect to an external perturbation of the deterministic forces, which leads to the formal
difficulties reported in [38], namely the introduction of an explicit time-mesh to avoid singularities in the
results. To overcome this problemwefirst seek amoremanageable expression for the path average. That is
obtained through anHubbard–Stratonovich transformation [51] of the action that, introducing an auxiliary
variable y , linearises the quadratic term in (8) and removes the θ dependence from the functionalmeasure of the
pathweight (see e.g. [50]). By doing so, it is easy to bring(6) in the form (see appendix B)

å
d
dq m
á ñ

¢
= ¢ ¢q

q=

( )
( )

( ) ( )( )


t

t
R t t t, , . 16

i

i

i
f

0
,

2

i

Here ( )
R f,

2
i
is the second-order response function to a constant force perturbation fi of the ith degree of freedom

[52], namely

d
d d

¢  º
á ñ
¢ 

=

( )
( )

( ) ( )
( )( ) 

R t t t
t

f t f t
, , , 17

f

f

f
i i

,
2

2

0
i

where á ñ... f nowdenotes the averagewith respect to the perturbed dynamics

m m x= + +˙ ( ( ) ) ( )xx F f T2 . 18i i i i i i i

Formal calculation of response functions to external forces poses no technical difficulty [23, 32, 34]. After
integrating out the auxiliary variable y , it is straightforward tofind for (16)

d
d

m m

m m d

¢ ¢ =
¢
á ¢ - ¢ - ¢ ñ

= á ¢ - ¢ ñ - á ñ

=

( )
( )

( ˙ ( ) ( ) ( )) ( )

[ ( ˙ ( ) ( )) ( ) ( ) ( ) ] ( )

( ) 

 

R t t t
T f t

x t F t f t t

T
x t F t t T t

, ,
1

2

1

4
2 0 . 19

f

f

f
i i

i i i i i

i
i i i i i

,
2

0

2
2

i

Summing up, a standardHubbard–Stratonovich transformation has allowed us towrite the linear response of
an observable to a temperature change as the second-order response to a state-independent force, thus
arriving at the intermediate result

å
m

m m m d¢ = á ¢ - ¢ ¢ + ¢ ñ - á ñq ( ) [ ( )( ˙ ( ) ˙ ( ) ( ) ( )) ( ) ( ) ] ( )
 R t t

T
t x t x t F t F t T t,

4
2 2 0 . 20

i

i

i i
i i i i i i i i, 2
2 2 2

As anticipated, this result is slightly different from that of a previous approach [38]where the Ito conventionwas
adopted for the path-integrals.

Let us add an alternative, intuitivemapping between linear thermal response and quadratic force response,
through a less formal derivation of (16). To the purpose, it is sufficient to consider only one degree of freedom.
Defining the small parameter m mqº( ) ( )f t t2 and splitting the noise into two independent, zero-mean and
whiteGaussian noises η andχ, equation (5) reads

m m h m c= + +˙ ( )x F T f2 . 21i

In view of equation (21), all trajectories can be regarded as generated by the noise η and perturbed by the external
random force m cf . The corresponding response is obtained by further averaging overχ. Essentially, wewish to
connect the average response to m cf with the response to the deterministic force mf .We thuswrite the path
weight associated to (21) for a single realization ofχ, and expand it up to second order in the perturbing force:

4
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ò ò

ò ò

ò ò

c
m

m m c
m

m
m c m

m
m c

m
m m c c m m

= - - - + ¶

+ - -

+ ¢ ¢ ¢ - ¢ - ¢

q [ ∣ ] ( ˙ )

[ ] ( ) ( )( ˙ ( ) ( )) ( ) ( )

( ) ( ) ( ) ( )( ˙ ( ) ( ))( ˙ ( ) ( )) ( )

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

P x
T

s x F f s F

P x
T

s f s s x s F s
T

s f s s

T
s s f s f s s s x s F s x s F s

exp
1

4
d

2
d

1
1

2
d

1

4
d

1

8
d d . 22

t t

x

t t

t t

0

2

0

0 0

2 2

2 2 0 0



Recalling that cá ñ =c 0 and c c dá ¢ ñ = - ¢c( ) ( ) ( )s s s s , averagingχ out gives

ò ò
d
m

m
m

m m- + -q [ ] [ ] ( ) ( ) ( ) ( ˙ ( ) ( )) ( )
⎛
⎝⎜

⎞
⎠⎟P x P x

T
s f s

T
s f s x s F s1

0

4
d

1

8
d . 23

t t

0

2
2 2 0

2 2

We recognise the latter as the equal-time ( )O f 2 term in the pathweight associated to (18). So, upon application
of d d ¢( )f t2 2, it yields the quadratic force response (17)with ¢ = t t . At the same time, since m q=f 22 , the
temperature response is also obtained by applying d dq ¢( )t to (23), andwe arrive at equality (16).

5. Regularization of the response

In(20) the divergence caused by theDirac delta formally compensates the divergence in the squared velocity.
This can be heuristically understood recalling that(20), despite being formally expressed in continuous time
notation, can be interpreted in terms of discrete, albeit small, time intervalsDt [42, 53]. Therefore one has

~ Dẋ t1i
2 , being the dynamics diffusive at short times, and clearly d ~ D( ) t0 1 . However, it would be

convenient to recast(20) as an explicit result devoid of singular terms. In the followingwe perform such
operation,first for a single degree of freedom (N= 1), and then extending the result to arbitraryN.

5.1.One degree of freedom
With one degree of freedom the parameter i is superfluous and is thus set to 1.Wefirst focus on the kinetic-like
termby startingwith the rewriting (valid for > ¢t t )5

á ¢ ñ =
¢
á ¢ ñ - á ¢ ¢ ñ˙ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )  x t t

t
x t t x t x t t

1

2

d

d
¨ , 242

2

2
2

and by seeking a replacement for the correlation function á ¢ ¢ ñ( ) ( ) ( )x t x t t¨ . This can be achieved recalling that
the integral of a total derivative involving the pathweight is null. Therefore, wemay exploit the identity

ò
d

d
d

d
d

d
=

¢
=

¢
+

¢( )
[ ] [ ]

( ) ( )
( ) 





x

x t
x P x

x t x t
0 , 25

where  is any functional of { ( ) } x s s t: 0 , and [ ] x is the unperturbed action

ò òm
m

m
= - - - ¶[ ] ( ˙ ( ) ( )) ( ) ( ) x

T
s x s F s s F s

1

4
d

2
d , 26

t t

x
0

2

0

corresponding to (8) calculated at q = 0, withN=1. First, we evaluate the second term in (25)making use of
the expression for the functional variation of the action derived in appendix C, see(C.3). The entropy variation
is shown to vanish, while the variation of [ ] x expressed in terms of the backward generator  gives

d
d

d
d m

m
¢

=
¢

= á ¢ - ¢ ñ
( ) ( )

[ ( ) ( )] ( )





 
x t x t T

x t F t
1

2
¨ . 27

Hereafter we restrict to the case inwhich F does not depend explicitly on time, but only via x. In order to extract
from(27) the sought substitute for á ¢ ¢ ñ( ) ( ) ( )x t x t t¨ , we choose = ¢( ) ( )  t x t and thefirst term in(25)
becomes

d
d

d
d

d
¢

=
¢

¢ + á ñ
( )

( )
( )

( ) ( ) ( ) ( ) 


x t

t

x t
x t t 0 . 28

If is a state observable, i.e., it depends only on the trajectory endpoint, the first termon the right hand side
of(28)drops for all ¢ ¹t t , since it reads d= ¶ - ¢d

d ¢ ( ) ( )( )
( )

 t t tt

x t x . Putting all the pieces together we get the

compact expression

m m dá ¢ ¢ ñ = á ¢ ¢ ñ -( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )  x t x t t t x t F t T¨ 2 0 , 29

5
Note that average values and time derivatives commute in the Stratonovich convention [42].
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which, plugged in the response formula(20), gives finally

m
m¢ =

¢
á ¢ ñ + á ¢ ñ

- á ¢ ¢ ñ - á ¢ ¢ ñ

q ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ˙ ( ) ( ) ( )

 

 





⎡
⎣⎢

⎤
⎦⎥

R t t
T t

t x t t F t

t x t F t t x t F t

,
1

4

1

2

d

d

2 , 30

, 2

2

2
2 2

for ¢ <t t . This is a regularised version of (20) valid forN=1 and any state observable .We have traded the
kinetic-like term and theDirac delta in (20)with a second-order time derivative and a correlation involving the
backward generator. The second-order time derivative, even tough unusual for a linear response formula (but
not for a second-order response function [52]), is indeed necessary to obtain the correct result, as it can be easily
verified in the analytically solvable case of a particle in free diffusion (see section 6.3).

If one is interested in the response of path-dependent observables (namely, is a functional of the trajectory
up to time t), thefirst summand in (28) is non-zero and hence(30)has to be supplemented by the term

m- ¢d
d ¢ ( )( )

( )
T x t2 t

x t
. As an examplewemay consider the heat exchangedwith the thermal bath in a time t,

òº[ ] ( ) ˙ ( ) x sF s x sd
t

0
. It turns out that the response formula (30) requires no additional term in this case, since

ò
d
d

d
¢

= ¶ ¢ ¢ + - ¢

= ¶ ¢ ¢ - ¶ ¢ ¢ =

( )
( )

( ) ˙ ( ) ˙ ( ) ( )

( ) ˙ ( ) ( ) ˙ ( ) ( )

 t

x t
F t x t s s t F s

F t x t F t x t

d

0. 31

x

t

x x

0

5.2.Many degrees of freedom
The procedure is easily extended to a system composed of >N 1degrees of freedom. Equations (24),(25) and
(28) are still valid replacing xwith xi, and taking the action (corresponding to (8) calculated at q = 0)

ò òå m
m

m
= - - + ¶

=

[ ] ( ˙ ( ) ( )) ( ) ( )
⎪

⎪

⎪

⎪

⎧
⎨
⎩

⎫
⎬
⎭

x
T

s x s F s s F s
1

4
d

2
d , 32

j

N

j j

t

j j j
j t

j j
1 0

2

0

wherewe reverted to the notation accommodating the particle labels. Equation (27) is then generalised to (see
appendix C)

d
d m

d
d

d
d¢

= á ¢ ñ -
¢

+
¢( )

( )
( ) ( )

( )


 





x t T
x t

x t x t

1

2
¨

1

2
. 33

i i i
i

i i

In the followingwe focus on systemswith two-body potential interactions, deferring themore general result
(valid for arbitrary d, generic driving and interactions) to appendix C. Yet, the results reported here are general
enough to describe the thermal response of a broad class of non-equilibrium systems, such as heat conducting
lattices in contact with different heat baths (equation (38)), and aging systems (equation (40)). Under the above
assumption, the variation of [ ] x in(33) is given by

d
d ¢

= ¢
( )

( ) ( )( ) 
x t

F t , 34
i

T
i

i

wherewe identified the operator

å å mº = ¶ + ¶
= =

( )( ) 
⎛
⎝⎜

⎞
⎠⎟

T

T

T

T
T 35T

j

N
i

j
j

j

N
i

j
j j i j

1 1

2i

which acts on the observables as if all temperatures were equal toTi and all forces Fjwere rescaled byT Ti j.
Interesting, this rescaling is found by rewriting the Langevin dynamics in terms of a new time variable, the

thermal time t º tj
T

T

j

i
, bywhich (1) reads

t
m m x= + ( )

x T

T
F T

d

d
2 . 36

j

j
j

i

j
j j i j

While  is the generator of the stochastic dynamics in the kinematic time t, in view of (36), the operator ( ) Ti acts
as the generator of the corresponding dynamics in thermal time coordinates. This permits to rationalise the
variation of the dynamical activity(34) as the tendency to change Fimeasuredwith respect to the thermal time.

Coming back to the regularization of (20)we operate as before.We choose = ¢( ) ( )  t x ti and obtain, by
means of(25),(28) and (33)

m m
d

d
m dá ¢ ¢ ñ = á ¢ ¢ ñ + ¢

¢
-( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( )
( ) ( )( )  

t x t x t t x t F t T t x t
x t

T¨ 2 0 , 37i i i i
T

i i i i
i

i i
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where a state observable was considered. Finally, using the explicit formof the entropy variation (C.10), we
find for the response function ( ¢ <t t )

å

å

m

m m

¢ =
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+ á ¢ ñ - á ¢ ¢ ñ
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i i
i i

T
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i i i i i
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i j j i
i

j

, 2

2

2
2

2

1

i

This equation simplifies if the system is isothermal before the perturbation is applied, i.e., the heat reservoirs are
all at the same temperature = "T T jj . In this case d

d


xi
vanishes and(33) boils down to

d
d m

m
¢

= á ¢ - ¢ ñ
( )

[ ( ) ( )] ( )


 
x t T

x t F t
1

2
¨ , 39

i i i
i i i

oncewe recognise = å= =∣( ) T
T T j

N
j1

i
j

as the total generator of the dynamics in the complete state space.

Consequently, for isothermal systems the response formula takes the simpler form ( ¢ <t t )

å m

m
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2

which is a straightforward generalisation of (30) to amany-body system.
As noted above, if is a path-dependent observable one needs to include in the response formula the

additional term

m
d
d

-
¢

¢( )
( )

( ) ( )
T

t

x t
x t2 , 41i i

i
i

coming from the first summand of (25). For the example of the total heatflux into the reservoirs,

òº å =[ ] ( ) ˙ ( ) x sF s x sdj
N t

j j1 0
, the supplementary term contains

åd
d ¢

= ¶ ¢ - ¶ ¢ ¢
=

( )
( )

( ( ) ( )) ˙ ( ) ( ) t

x t
F t F t x t , 42

i j

N

i j j i j
1

and thus vanishes when the interactions derive from a two-body potential.

5.3. Susceptibility
Upon integration of (38)we get an equation for the susceptibility of the system

òc º ¢ ¢ = + + +q q( ) ( ) ( ) t t R t t S S K Kd , 43
t

,
0

, 1 2 1 2

with
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T
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d , 44
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t
t

T
x t d

d

d 8
, 44

i

i

i i
i

t

t t

2 2
2

0

wherewe recall that integrals are in the Stratonovich sense and ( ) Ti was introduced in (35). The term S1 is the
standard correlation between observable and entropy production, appearingwith a 1/2 prefactor with respect to
the equilibrium version (see next section), inwhich it would be the only correlation relevant for determining the
linear response. The term S2 is a novel correlation between observable and a time-antisymmetric quantity,
proportional to the functional variation of the bath entropy d

d
[ ] x

x
, whichmay be non-zero only if ¹T Tj i for

some j. The remaining correlations, the frenetic terms [49]K1 andK2, collect correlations between the observable
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and time-symmetric dynamical features. As in previous studies of force perturbations, both Sʼs andKʼs contain,
respectively, the entropy and frenesy [49] in excess due to the perturbation.

In order to correctly evaluate the time derivative of the correlation inK2, when dealingwith data it is
important to avoid taking discrete-time derivatives with ¢ >t t because cusps are not unusual in correlation

functions for ¢ t t . To compute numerically á ¢ ñ¢ ¢=( ) ( ) ∣x t t
t i t t
d

d
2 , in the examples of the following sectionwe

have estimated the slope of data for á ¢ ñ( ) ( )x t ti
2 with ¢ t t .

Only if averages are evaluated in a steady state,K2 can bemodified as

å
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0 44s
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2
0

A steady state susceptibility c = + + +q ( ) t S S K Ks s
, 1 2 1 2 is associatedwithK2

s .

5.4. A steady state formula and its reduction to theKubo formula at equilibrium
Every thermal response formulation should reduce to the standardKubo formulawhen the system is under
complete equilibrium conditions at temperatureT. These conditions aremet if conservative forces = -¶F Ui i

(with ( )xU the system’s energy) are present, if = "T T ii and the perturbation is applied to a thermalised
system, namely r ( )x0 is the canonical distribution at temperatureT. In equilibrium, theKubo formula expresses
the response function as

- ¢ =
¢
á ¢ ñq ( ) ( ) ( ) ( )R t t

T t
t U t

1 d

d
, 46,

Kubo
2

and the corresponding susceptibility is

c = á - ñ

= á ñ

q ( ) ( )[ ( ) ( )]

( ) ( ) ( )



 

 t
T

t U t U

T
t t

1
0 ,

1
, 47

,
Kubo

2

2

where = -( ) ( ) ( ) t U t U 0 is the heat transferred to the system in the time interval [ ]t0, . This formula shows
that the temperature response in equilibrium is totally determined by the correlation between observable and
the entropy ( ) t T paid by the reservoir to change the system energy.

When a global perturbation is applied to an isothermal steady state regime, saywith = " i1i , equation (40)
may be recast in an alternative form, that correctly reduces to theKubo formula(46) in equilibrium, as we show
in the following. In the derivationwe stay in a generic steady state condition until the very end, so that in turnwe
obtain another quite general formula for the response function, equation (51) below, inwhich the genuine
nonequilibrium contribution is well distinguished from theKubo correlation. A possible practical issue of such
elegant separation is that it can be computed explicitly only if one knows themicroscopic probability density of
states.

We start noticing that the last term in(40) is in equilibriumhalf of the expected result:

åá ¢ ¶ ¢ ñ =
¢
á ¢ ñ( ) ˙ ( ) ( ) ( ) ( ) ( ) 

T
t x t U t

T t
t U t

1

2

1

2

d

d
. 48

i
i i2 2

The remaining frenetic terms yield an analogous contribution at equilibrium. To show that, we first use that the
system is in a stationary state. This implies that correlations are functions of the time difference only, hence ¢t

d

d

can be exchangedwith-
t

d

d
.Moreover, the backward generator can be expressed in terms of the generator of the

time-reversed dynamics, * , through the relation = + å ¶=*  v2 j
N

j j1 , where rºv Jj j
s s is the state velocity,

that is the probability current J sj associated to xj, over the steady state density of the system rs [49, 54].Wewill
ultimately exploit the time-reversal invariance of equilibrium states, which formallymanifests in the equality

= *  , as the probability currents vj are by definition absent at equilibrium.
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The time derivatives in (40) can bemanipulated as
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Togetherwith stationarity, we used that * is the adjoint of , and the equality m= +x F x2 consti i i i
2 in the

last passage.We then turn to the second and third summand in(40), starting with the rewriting m = F F xi i i i
2 :

á ¢ ¢ - ¢ ¢ ñ = á ¢ ¢ - ¢ ¢ ñ
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. 50

i i i i i i i i

i i i i

Herewe introduced the commutator acting as, e.g., º -[ ]  x x x,i i i, and exploit the fact that in the
operator formalism time derivatives within average values are given by =˙ [ ]  , , for any state observable
(see appendixD). Putting together equations (48),(49) and (50)we obtain an expression of the thermal response
valid under stationary isothermal conditions

å åm
¢ = - á ¢ ¢ ñ +

¢
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⎡
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4

d

d
. 51

i
i i

i j
j j i, 2

2

Finally, at equilibrium theKubo formula (46) is retrieved by setting = "v j0j and using the rewriting (48) for
potential forces. Equation (51) is a thermal response counterpart of previous results for the steady-state force
response based on the notion of state velocity [26, 27].

6. Examples

6.1. Specific heat for a quenched toy system
In thisfirst example wewant to highlight that this framework is valid not only for steady states but also for
transient regimes. There is to recall an understood dependence of the statistical averages á¼ñon the initial
density of states r0.

Let us consider a paradigmaticmodel of nonequilibriumoverdamped systems, namely a single particle in a
periodic potential =( )U x xcos and subject to an additional constant force f, for simplicity withmobility
m = 1. Thus = +( )F x x fsin , in the evolution equation (1) of the unperturbed system. The backward
operator acts on the force as = -( )F x x x T xsin cos sin .

To generate a transient conditionwe choose to thermalise the particle at ¹T T0 and to switch toT only at
t=0, when the perturbation is also applied. In this way, even for f=0 one cannot apply theKubo formula for
equilibrium systems, as the initial state in not in equilibrium at temperatureT. Due to the periodic potential, as
an arbitrary procedure for obtaining awell defined r ( )x0 , we shift to the interval p[ ]0, 2 any x obtained from a
long simulation run.However, averages such as á ¢ ñ( ) ( )x t t2 need to be computedwith x interpreted as a non-
periodic coordinate.We adopted aHeun scheme [41] to integrate the stochastic equation, because it yields
trajectories that are consistent with the Stratonovich path-weights used in our theory.

Infigure 1we show examples of susceptibilities of the internal energy ( = U ) to a change ofT for =T 50

andT= 0.3, both for f=0 and f= 0.7.We compare the susceptibility c q ( )tU , from (43)with that computed
directly as

c =
á ñ - á ñ

q
q q= =( ) ( ) ( ) ( )t

U t U t

h
52U

h h
,

0

with =h T 100 active from t=0 on.Wenote that, for f=0, the force F is potential and thus the heat
exchangedwith the bath reduces to an energy difference, ò= - ¢¶ ¢ ¢ = -( ) ˙ ( ) ( ) ( ) t U t x t U U td 0

t
x0

.

Therefore, the susceptibility of the energy gives in the long-time limit the specific heatC of the system:
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C t
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t
tlim d lim . 53

t

t

t
U

0 0
,

If a Kubo formula (46)were valid, twice the entropic term (44a)would yield the response. One can note that this
is not the case, rather all terms in the response formula are relevant for determining the correct formof the
susceptibility. In these examples, in particular, the term (44d) is especially important. Being the derivative of a
correlation function, it is however the noisiest one. One could resort to some high-frequency filtering for better
results. In the example of the following subsectionwewill show that (44e) is a good alternative to (44d) in case
one is dealingwith steady states.

6.2. Thermal expansion in a temperature gradient
In equilibrium at a given temperatureT, the correlation function between the heat absorbed by a system and its
lengthmay be used to predict the thermal expansion response. In this example we showhow this picture breaks
downout of equilibrium,where, as exposed in the previous sections, one needs to know also correlations
between length and time-symmetric observables, given by (44c) and (44d) or (44e), as well as the new entropic
form (44b) due to temperature unbalances. This example specialises to steady state conditions but, with respect
to the previous examples, it includes themore general setup ofmultiple heat baths, inwhich one can exploit the
general formulationwith perturbation amplitudes i.

Let us consider theN degrees of freedomarranged in a one-dimensional chain. The systemhas an energy

å= + - =
-

+ -
=

-

+( ) ( ) ( ) ( ) ( )xU
x

u x x u r
r

r
2

, with
1

4

1

4
54

i

N

i i
1
2

1

1

1

4

which determines the forces, = -¶( ) ( )x xF Ui i , and againmobilities mi are set equal to 1 for simplicity. The
x 21

2 term is a pinning potential on the first site, and xiʼs represent the displacements from the average positions.
The length of the system in excess with respect to the length at zero temperature, º -X x xN 1, increases on
average for increasingTiʼs due to the asymmetric two-body potential u(r) (see the inset offigure 2(b)). As a
paradigmof nonequilibrium conditions, the system is driven by a set of temperatures varying linearly fromT1
to >T TN 1.

We study the response of the lengthX to temperature variations, in the formof (a) a global constant increase
of the temperatures given by a constant = 1i , and (b) an increment of the gradient -T TN 1, chosen so that the
average temperature is unaltered by varying i linearly from = - 11 to = 1N . For both cases, infigure 2we see
that the susceptibility c qX

s
, computedwith the steady state term (44e) agrees fairly well with the direct estimate of

the response

c =
á ñ - á ñ

q
q q= =( ) ( ) ( ) ( )t

X t X t

h
, 55X

h h
,

0

obtainedwith a constant h=0.005 turned on at t=0. Fromfigure 2 one also sees that the entropic and frenetic
terms have opposite trends, between each other andwith switched roles in the two cases, complementing each
other to sumup to the correct response level. Infigure 2(b)we also show the response c qX , obtained by an

Figure 1.Temperature susceptibility of the energy =( )U x xcos of a single particle, computedwith the formula c( ) and by actually
perturbing the system c( )h . Also the single terms of the formula are shown. The system is out of equilibriumbecause of a quench at
time t=0 from an initial =T 50 toT= 0.3. Consistently, the response is not given by twice the correlation S1 between entropy
produced and observable. In (a) there is no additional constant force ( f = 0), while f=0.7 in (b) generates a nonequilibrium steady
state previous to the quench. Averages are over ´4 107 trajectories, integratedwith finite time step = ´ -td 2.5 10 3.
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evaluation of the time-derivative in (44d) (the local variation in time of the correlation function is obtained
through a linearfit of data relative to four nearby time steps). It resultsmore noisy than the estimate via c qX

s
, .

6.3. Free diffusion of one degree of freedom
Let us consider the equations ofmotion (1) for free diffusion of a single degree of freedom, x=˙ ( ) ˆ ( )x t t with

x m x=ˆ T2 . The noise prefactor mT2 comes from assuming the bath to be in equilibrium. In this way the
mean square displacement of a free particle in a time t is simply má ñ = º( )x t Tt Dt2 22 , the response of the
mean velocity to a small force is the free-particlemobilityμ, and the Einstein relation m = D T between
diffusion constantD andmobility is found.One can note that the susceptibility of the observable =( ) ( ) t x t2

to a change ofT is expected to be mt2 , hence the corresponding response function is m2 .We showhowour
formalism reduces to this result.

For free diffusion all terms in(30) drop but the one involving the second derivative. In this case, the response
function can be calculated directly from its definition (6) and one can thus prove analytically that both sides of
(30) are equal to the same quantity. Aswe argued above, the response of themean square displacement to the
perturbation q Q = +( ) ( )T t T t is

ò ò ò
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Herewe used that the initial condition is independent of the perturbation and noise, thus only the noise
autocorrelation contributes. On the other hand, the response formula(30) becomes
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making use ofWick’s theorem to split the four-point correlation into products of two-point correlations. The
latter read

ò ò x x má ¢ ñ = á ñ + á ñ = á ñ + ¢
¢

( ) ( ) ( ) ( ) ( ) ( )x t x t x s u s u x T t td d 2 min , , 58
t t

0
2

0 0
0
2

Figure 2.Temperature steady-state susceptibility of the lengthX of the overdamped chain (N = 11), computedwith the formula c( )s

and by actually perturbing the system c( )h . Also here the single terms of the formula are displayed. In these examples,Ti varies linearly
from =T 11 toTN= 2. In (a) the response is to a global temperature rise, while in (b) it is to an increase of the gradient -T TN 1

preserving the average bath temperature (the inset shows the interaction potential). Averages are over 107 trajectories, integratedwith
finite time step = -td 10 3.
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leading to a result in agreement with the previous calculation:

m
m m m

m
m m m m

m

¢ =
¢

á ñ + ¢ á ñ + + á ñ + ¢

=
¢

á ñ + á ñ ¢ + + ¢ + ¢á ñ + ¢

=

( ) [( )( ) ( ) ]

[ ( ) ( ) ( ) ]
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R t t
T t

x Tt x Tt x Tt

T t
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3 2 2 8 2 2
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2
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2

2
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2 2

0
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2

As expected, interchanging
¢t

d

d
2 with t

d

d 2 would give an incorrect result as the system is not in a steady state. It is

also trivial to verify(16), namely that this result coincides with the second order response to a state-independent
force, giving rise to the dynamics m x= +˙ ( ) ( ) ˆ ( )x t f t t . Indeed, using again the conditions of independency of
the initial condition, onefinds

ò

ò ò

m
d
d m

d
d

m x

m
d

d
m

á ñ
¢

=
¢

-

=
¢

=

( )
( ) ( )

( ( ) ˆ ( ))

( )
( ) ( )

( )

⎜ ⎟⎛
⎝

⎞
⎠

x t

f t f t
s f s s
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s uf s f u

1 1
d

d d

2 . 60
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2

2
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2

2

2 0 0

7. Conclusions

For overdamped stochastic systems far from equilibriumwehave obtained the linear response function of
generic state observables to a change in the temperature of the Langevin heat baths. Improving a previous result
[38], we need not express the response in terms of afinite timemesh, being all the divergencies appearing in the
continuous limit removed, and being all terms in the susceptibility standard integrals or derivatives. This was
achieved by deriving a sort ofDyson–Schwinger equation [42], i.e., a relation between unperturbed correlation
functions involving an arbitrary observable. Thismethod complements and expands our recent results [40]
obtained via a different approach, inwhich the additional noise stemming from the perturbationwas turned
intomechanical forces bymeans of a space rescaling.

As inmany previous examples, in order to describe a nonequilibrium systems, one needs to knowmore than
just the entropy production. The additional information concerns the knowledge of dynamical quantities that
are even under the reversal of the arrow of time (squares of forces, etc). Among themwehave recognised the
change of the time-integral of the effective potential (i.e., the total escape rate integrated along trajectories) upon
variation of the perturbed degree of freedom, d

d


xi
. This quantity emerges from the regularization procedure we

set up, alongwith the change of the total bath entropy flow d
d


xi
, which complements, perhaps surprisingly, the

usual entropy production enteringKubo formula.
For the common scenario of isothermal systems in a steady state, we have also shown how to convert the

results in a formula that separates the Kubo term from anonequilibrium additional correlation that includes the
state velocity, see(51). Such version is complementary to the others in the sense that it requires the knowledge of
the density of states rather than that of dynamical details.

Future developments of this framework should includemultiplicative noise, i.e. those cases where the
temperature experienced by the particle depends on their positions.

AppendixA. Stochastic convention for pathweights

In this context of temperature response, even if equations have a noise prefactor that does not depend on the
system’s state x, it turns out that the choice of using Stratonovich path-weights rather than Ito ones is not trivial.
As discussed previously [39], by differentiatingwith respect to temperature one proves a response formula that
depends on the choice of the path-weight. One can check that the formulas in this paper are indeed different
from those found adopting the Ito convention [38]. The adoption of the Stratonovich convention in the path
weight(8) is reflected in the Stratonovich product ẋF in(20). If we used an Ito convention in(8), then ẋF
in(20)would also be of the Ito type and the same equationwould notmatch the result obtained in the
Stratonovich convention.

Ultimately, the path-weight, and thus the corresponding discretisation of (1), have to be chosen consistently
with the process that generates the sampled trajectory via (1). By sampled trajectorywemean for example a
sequence D D ¼ - D{ ( ) ( ) ( ) ( ) ( )}x x x x xt t t t t0 , , 2 , , , of configurations sampled stroboscopically every time
stepDt . The Ito convention is by construction suitable for numerical data generated by integration of (1)with
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Euler schemewith stepDt [38]. On the other hand, theWong–Zakai theorem [55] ensures the Stratonovich
convention to be adequate to experimental data, for which thewhite noise is an idealised limit of the short
correlation times of themicroscopic degrees of freedom.

Appendix B.Derivation of the second order response function

The derivation of(16) starts with aHubbard–Stratonovich transformation of the pathweight, which is a

functional generalisation of the integral identity ò = p- - -yd e eDy zy
D

i z
D

2 2

4 (below the p D is adsorbed in the

pathmeasure y) valid for real y and >D 0.When applied to(7) and(8) it renders the response (6) in the form
(16) through the followingmanipulations:
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wherewe rewrote (B.1) introducing the derivatives of a state-independent force fi, and recognised in (B.2) the
Martin–Siggia–Rose path-weight [56] associated to the perturbed dynamics (18).

AppendixC. Variation of the action functional

Herewe detail the calculation of the functional variation of the path-weight action [ ] x that was used in
section 5. For the sake of clarity we distinguish the single-particle from themany-particle case.

C.1.One degree of freedom
ForN=1, the action is given by (26) and its variation is

d
d

d
d

d
d m¢

=
¢

-
¢

+
¢

( ) ( ) ( )
( ) ( )  

x t x t x t

x t

T

1

2

¨

2
. C.1

The variation of the bath entropy is identically zero, unless F is an explicit function of time ¢ = ¢ ¢( ) ( ( ) )F t F x t t, :

ò
d

d
d
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.
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0

Since the dynamical activity is independent of ẋ, its variation is simply the derivative of the escape rate from
¢( )x t :

d
d

l m m
¢

= ¶ ¢ = ¢ ¶ ¢ - ¶ ¢
( )

( ) ( ( ) ( ) ( )) ( )
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Therefore, introducing in (C.2) the backward generator , (C.1) becomes

d
d m

m m
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As a side note, plugging this result into (25)with = 1one obtains (if F deepens on x only)

má ñ = á ñ ( )x F¨ , C.4

i.e., themean trajectory satisfiesNewton’s equationwith an effective force mF . In theweak-noise limitT 1 ,
such trajectory becomes themost probable one, being theminimiser of the action. This expression could be
obtained directly by applying the backward generator  to the Langevin equation (1), and using that ξ does not
depend on x.

C.2.Many degrees of freedom
For >N 1, thanks to the independency of the different thermal noises, the action (32) is simply the sumof
‘single-coordinate’ actions: = å =[ ] [ ]( ) x xj

N j
1 with ( ) j following the structure (26). Nevertheless, its

variation is not just equal to (C.3) but in general it will contain additional terms owing to the interactions
between different degrees of freedom.One indeedfindsmodified expressions for the variation of the total
entropy flux into the (unperturbed) reservoirs
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and for the variation of the total dynamical activity
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which in general cannot be cast in terms of the total backward generator . The variation of the action is thus
given by
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Equation (C.7) is completely general, and thus, when combinedwith (33), provides a regularised expression for
the thermal response of overdamped systems under any nonequilibrium conditions:
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Nevertheless, the cross-terms ¶ Fi j with ¹i j appearing in(C.7) simplify considerably if we assume that the
degrees of freedom interact with each others via a two-body potential -({ }) x xi j . Hencewe can exploit the
relation

¶ = -¶ ¶ = -¶ ¶ = ¶ ( ) F F , C.9i j i j j i j i

which is nothing but the action-reaction principle. Equation (C.7) then becomes

åd
d m

m m
¢

= ¢ - ¢ - ¶ ¢ + ¢ ¶ ¢ -¢
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i

We remark that for systems in d=1 (C.9) does not impose any limitation on the driving, that is, one-body non-
conservative forces can be present aswell, they simply donot enter in(C.7), which concerns only the interactions
between different particles. Instead, in >d 1, different indexes i and j in (C.7)may refer to the coordinates of the
same particle, thus (C.7) cannot be simplified to (C.10) in the presence of generic non-conservative forces.

It is worth noting that when the equality ¶ = ¶F Fj i i j holds, the choice = 1 in the identity (25) yields the
effectiveNewton’s equation for themean trajectory
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m m
d
d

á ñ = á ñ - ( )( ) x F T
x

¨ . C.11i i
T

i i i
i

On the other hand, direct application of the operator  to the Langevin equation (1) gives má ñ = á ñx F¨i i i . By
comparison, one concludes that there exists a natural splitting of the effective force, namely

m m
d
d

á ñ = á ñ - ( )( )  F F T
x

, C.12i i
T

i i i
i

where thefirst component originates fromvariations of the force Fi in thermal time, while the second is a
gradient-like force inwhich the entropyflux into the bath acts a free-energy.

AppendixD. Time derivative in operator formalism

Consider the state observables a , that are arbitrary functions of x. In the operator formalism, their (steady-
state) evolution over a time-span - ¢t t is given by the action of the operator - ¢( )e t t . Therefore, the typical
correlation functionswe are interested in are expressed by (with > ¢t t )

ò rá ¢ ¢ ñ = ¢ - ¢( ) ( ) ( ) ( ) ( )( )      x xt t t d e e , D.1t t t
3 2 1 0 0 0 1 2 3

where the dependence of a on x0 is omitted for brevity [49]. In analogy to theHeisenberg picture in quantum
mechanics, onemay include the dependency on time in the observables by the definition ¢ ºa a

¢ - ¢( )  t e et t .
Hence, a time derivative applied to one of the operators in (D.1) gives, e.g.
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