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Abstract

We discuss two methods for the compression of multivariate discrete
measures, with applications to node reduction in numerical cubature and
least-squares approximation. The methods are implemented in the Matlab
computing environment, in dimension two.
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1 Node reduction

Consider a multivariate discrete measure ν supported at a finite set X = {Pi} ⊂
Rd, i = 1, . . . ,M , with correspondent weights (masses) ω = {ωi} (to speak of a
measure the weights should be positive, but the construction can be used also
in general). “Compression” of the measure means that we try to compute the
finite sum corresponding to integration of a function, by extracting a subset of
the mass points and re-weighting them

S(f) =

∫

Rd

f(P ) dν =

M
∑

i=1

ωi f(Pi) ≈
N
∑

k=1

wk f(Qk) (1)

where
{Qk} ⊂ X , N = card({Qk}) ≤ V = dim(Pd

n) < M ,

in such a way that the formula is exact, or nearly exact, on total-degree polyno-
mials up to a degree n. Here and below, Pd

n denotes the space of d-variate total-
degree polynomials of degree not exceeding n, with dimension V = V(n, d) =
(

n+d
d

)

.

∗Work partially supported by the “ex-60%” funds and by the biennial project CPDA124755
of the University of Padova, and by the GNCS-INdAM.
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The discrete measure could typically correspond itself to a cubature formula
for some absolutely continuous measure on a compact domain containing the
points, possibly exact on polynomials of the same degree, but also to different
situations, e.g. discrete least-squares approximation at the set X ; see Sections
3-4 below.

As it well-known from cubature theory, the quality of approximation (1)
depends mainly on two features: that

∑ |wk| remains bounded, or at least
increases very slowly with n, and how accurately the function can be (uniformly)
approximated by polynomials of a given degree, say in some compact domain
K ⊃ X . The first property, which ensures also stability, certainly holds when the
weights are positive, since in this case

∑

|wk| =
∑

wk is equal to
∑

ωi =
∫

1 dν.
The second property can be related to multivariate Jackson-type results, which
in turn depend on the geometry of K and on the regularity of f ; cf., e.g., [30].

From the computational point of view, we should find an algorithm that
extracts points and computes weights, such that

S(p) =
M
∑

i=1

ωi p(Pi) =
N
∑

k=1

wk p(Qk) , ∀ p ∈ P
d
n . (2)

A possible approach is to require moment matching on a total-degree poly-
nomial basis, say {φj}, j = 1, . . . ,V , which gives the Vandermonde-like system
in the unknowns w∗ = {w∗

i }

V tw∗ =m , V = (vij) = (φj(Pi)) , m = V tω , (3)

1 ≤ i ≤ M , 1 ≤ j ≤ V , where m = {mj} are the discrete moments of the
basis {φj}. Observe that such a system is underdetermined., and that V (and
hence V t) has full rank if and only if the discrete set X is Pd

n-determining, i.e.,
a polynomial in Pd

n vanishing there is identically zero.
A first way to solve the system, is to ask that it be satisfied in the classical

sense, by setting to zero M − N components of w∗. This can be conveniently
done via the QR algorithm with column pivoting proposed in 1965 by Businger
and Golub [6], which is implemented for example by the Matlab “backslash”
operator. It is equivalent to a greedy selection of the columns in order to
maximize the successive volumes, and eventually the (absolute value of the)
determinant (the column selection problem being NP-hard, cf. [8]). If the
matrix has full rank, the final result is a weight vector w∗ where only N ≤ V
components are nonzero, so that we can extract the points {Qk} from X by
the column indexes corresponding to such components. A drawback is that the
resulting weights w = {wk} are not all positive, in general, but typically the
negative ones are few and of small size, so that the relevant stability parameter

σ =

∑ |wk|
|∑wk|

≥ 1 (4)

is not far from 1.
We recall that this is exactly the approach adopted in [32] in the framework

of multivariate polynomial interpolation, to extract the so-called “Approximate
Fekete Points” from a given mesh of points of a compact set, in particular from
a polynomial “admissible mesh” in the sense of Calvi and Levenberg [7].
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This approach has been further developed for example in [3, 4], where it is
also proved that (Fekete and) Approximate Fekete Points extracted from ad-
missible meshes behave asymptotically like the true Fekete points, in the sense
that the corresponding discrete probability measures with equal weights con-
verge weakly to the pluripotential theoretic equilibrium measure of the compact
set.

The use of Approximate Fekete Points in cubature formulas has already been
explored for example in [21], but still in the framework of polynomial admissible
meshes. Here we extract Approximate Fekete Points directly from the support
of a discrete measure, for example from the nodes of an algebraic cubature
formula as in Section 2, in order to reduce by re-weighting the number of nodes.

A second way to extract the points, which ensures positivity of the weights,
is to solve the NNLS (Non Negative Least Squares) problem

‖m− V tw∗‖2 = min ‖m− V tu‖2 , u ∈ R
M , u ≥ 0 . (5)

This quadratic programming problem can be conveniently solved in Matlab by
the lsqnonneg function, which is based on a variant of the active set optimiza-
tion algorithm by Lawson and Hanson [25], and ensures sparsity of the solution
w∗. The residual of such a solution, say

εmom = ‖m− µ‖2 , µ = {µj} = V tw∗ , µj =

N
∑

k=1

wk φj(Qk) , (6)

will not be zero, in general, but if it is sufficiently small we can speak of a
“nearly exact” formula (whose nodes {Qk} and weights w = {wk} are extracted
correspondingly to the nonzero components of w∗). Of course this does not
mean that we expect the same error size in the integration of any polynomial,
as it will be clear from the error analysis developed below, cf. (15)-(16).

This kind of approach for positive formulas is of course not new in numer-
ical quadrature. It dates back at least to the 50’s and 60’s, cf., e.g., [15, 37]
and the survey [9] with references therein. Recently, it has been successfully
adopted for example in [24], where univariate instances are considered and Mat-
lab lsqnonneg is used in the implementation. Here we apply the method sys-
tematically for the first time to the compression of general multivariate discrete
measures.

Both the approaches sketched above suffer from ill-conditioning of the ma-
trix V , so the use of a well-conditioned polynomial basis, especially at increasing
exactness degrees, becomes mandatory in practice. Finding well-conditioned
polynomial bases is still a challenging problem, in multivariate instances. It
is well-known that the standard monomial basis becomes rapidly extremely ill-
conditioned. Better results are obtained with bases orthogonal with respect to
some measure, for example the total-degree Chebyshev basis of a rectangle con-
taining the computational domain, but still the conditiong of the Vandermonde
matrix becomes intractable already at moderate degrees. We recall that the
total-degree Chebyshev orthogonal basis of a rectangle [a1, b1]×· · ·×[ad, bd] ⊃ X
is (cf. [17])

{

d
∏

i=1

Thi
(ti)

}

, ti = ti(xi) =
2xi − bi − ai

bi − ai
, hi ≥ 0 , 0 ≤

d
∑

i=1

hi ≤ n , (7)
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where Th(·) = cos(h arccos(·)) is the Chebyshev polynomial of the first kind of
degree h.

A possible approach to get a well-conditioned basis is to orthogonalize with
respect to a discrete measure, computing discrete orthogonal polynomials. In
our case, it makes sense to orthogonalize with respect to a discrete measure
with the same support X of ν, for example the measure with unit mass at each
point of X . Some clever numerical linear algebra algorithms have been proposed
for discrete orthogonalization of the bivariate monomial basis, e.g. in [23] and
more recently in [36]. However, they become slow already at moderate degrees
when the support cardinality is high, and in addition, [23] can suffer of loss of
orthogonality (and thus needs some kind of re-orthogonalization), so their use
should be probably reserved to situations where no alternative is possible.

In this paper, we start from the total-degree Chebyshev orthogonal basis of
a rectangle (parallelepiped) containing the (Pd

n-determining) discrete set X , and
manage ill-conditioning by a standard QR orthogonalization of the multivariate
Chebyshev-Vandermonde matrix. If

τ (P ) = (τ1(P ), . . . , τV(P )) (8)

is the suitably ordered (for example lexicographically) total-degree Chebyshev
basis of the rectangle (in a row vector notation) and V its Vandermonde matrix
at the discrete set X , V = (τj(Pi)) ∈ RM×V , we compute the QR factorization

V = QR , Q ∈ R
M×V , R ∈ R

V×V , (9)

and replace the matrix V with Q in (3)-(5), which corresponds to work with the
discrete orthogonal basis

ψ(P ) = τ (P )R−1 . (10)

In contrast to interpolation processes where a similar approach has been used,
(cf., e.g., [4, 32]), there is no need to compute the new orthogonal basis out of X ,
so there is no need to compute and store the inverse matrix R−1 (observe that
R retains the conditioning of V ). In practice, due to increasing ill-conditioning
of V with the degree, the matrix Q (and thus the basis ψ) might not be or-
thogonal, but in any case is much better conditioned than V . If orthogonality
is seeked, a second QR factorization Q = Q1R1 suffices to get orthogonality up
to machine precision, a phenomenon known as “twice is enough” in numerical
Gram-Schmidt orthogonalization, cf., e.g., [22]. Such an approach works until
the conditioning of V is not too far from the reciprocal of machine precision,
and in our numerical experiments allows to reach moderate exactness degrees
(order of the tens) with an acceptable computing time, as it is shown in the
next Sections.

The core of the Matlab implementation of the two compression algorithms in
the bivariate case is given by the Matlab functions in the appendix. In the next
Sections, we first give some error estimates, showing in particular the effect of
the moment error εmom. Then, we discuss two applications of the compression
procedures just described, with several examples.

The first one concerns node reduction of algebraic cubature formulas, where
we consider recently proposed formulas for integration over polygons, and over
circular sections. An interesting situation is when we have a finite disjoint (even
disconnected) union of domains, where we know an algebraic cubature formula
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on each. We stress that our approach to node reduction is based on the under-
determined linear system (3), where the unknowns are the weights. Nonlinear
node reduction techniques have been explored in numerical quadrature, which
compute minimal or near minimal formulas by considering also the nodes as
unknowns of a nonlinear system. These techniques are usually based on a clever
use of Newton’s method, have some heuristic features, and typically require the
use of orthogonal polynomial bases, together with good low cardinality initial
guesses to reduce the computational effort; see, e.g., [18, 28, 29, 35, 38] and
references therein. From this point of view, both the algorithms discussed in
the present paper can be seen as an initial step for such more sophisticated node
reduction methods. Indeed, being implemented by basic Matlab routines, they
provide low cardinality cubature formulas with a reasonable computational cost.

The second application is devoted to compression of standard polynomial
least-squares on suitable meshes, in order to obtain a weighted least-squares
method with comparable error estimates, and a great reduction of the number
of sampling points.

All the numerical tests have been made in Matlab 7.7.0 with an Athlon 64 X2
Dual Core 4400+ 2.40GHz processor. The relevant Matlab codes are available
at [11].

2 Error estimates

Computing the weights by solving (3)-(5) in an orthogonal polynomial basis
with respect to some measure λ supported in a compact set Ω ⊇ X , allows also
to estimate the effect of the moment error in integrating a function, at least
when the integrand f is defined on the whole Ω. For this analysis, the measures
ν supported in X ⊆ Ω and λ supported in Ω could be even arbitrary. We term
φ = (φ1, . . . , φN ) such an orthogonal basis in dλ, for convenience, having in
mind the Chebyshev case φ = τ with Ω = [a1, b1] × · · · × [ad, bd] ⊃ X and dλ
the product Chebyshev measure of the rectangle

dλ =
2d

∏d
i=1 (bi − ai)

1
∏d

i=1

√

1− t2i
dP ,

cf. (7). On the other hand, we can consider also the fully discrete case Ω = X ,
λ = ν and φ = ψ.

First, observe that
∫

Rd

p(P ) dν =

∫

Ω

p(P ) dν =

∫

X

p(P ) dν = 〈c,m〉 , ∀p ∈ P
d
n , (11)

c = {cj}, m = {mj}, 1 ≤ j ≤ V , where

cj =

∫

Ω p(P )φj(P ) dλ
(∫

Ω
φ2
j (P ) dλ

)1/2
, mj =

∫

Ω

φj(P ) dν =

∫

X

φj(P ) dν ,

are the Fourier coefficients of p in the dλ-orthogonal basis φ and the dν-moments
of φ, respectively. Moreover,

N
∑

k=1

wkp(Qk) = 〈c,µ〉 , (12)
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where µ are the approximate moments, the moment error being estimated by
εmom, cf. (6). Then we can write the “near exactness” estimate

∣

∣

∣

∣

∣

∫

Ω

p(P ) dν −
N
∑

k=1

wkp(Qk)

∣

∣

∣

∣

∣

= |〈c,m− µ〉|

≤ ‖c‖2 ‖m− µ‖2 = ‖p‖L2

dλ
(Ω) εmom . (13)

Now, take f ∈ C(Ω), and define

En(f ; Ω) = min
p∈Pd

n

‖f − p‖L∞(Ω) = ‖f − p∗n‖L∞(Ω) , (14)

i.e., p∗n is the best uniform approximation polynomial of degree not greater than
n for f on Ω. By a classical chain of inequalities in quadrature theory and (13)
we get

∣

∣

∣

∣

∣

∫

Ω

f(P ) dν −
N
∑

k=1

wkf(Qk)

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∫

Ω

f(P ) dν −
∫

Ω

p∗n(P ) dν

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∫

Ω

p∗n(P ) dν −
N
∑

k=1

wkp
∗
n(Qk)

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

N
∑

k=1

wkp
∗
n(Qk)−

N
∑

k=1

wkf(Qk)

∣

∣

∣

∣

∣

≤
(

ν(Ω) +

N
∑

k=1

|wk|
)

En(f ; Ω) + ‖p∗n‖L2

dλ
(Ω) εmom .

Using the inequality

‖p∗n‖L2

dλ
(Ω) ≤ ‖p∗n − f‖L2

dλ
(Ω) + ‖f‖L2

dλ
(Ω) ≤

√

λ(Ω) ‖f − p∗n‖L∞(Ω) + ‖f‖L2

dλ
(Ω) ,

we obtain the final cubature error estimate
∣

∣

∣

∣

∣

∫

Ω

f(P ) dν −
N
∑

k=1

wkf(Qk)

∣

∣

∣

∣

∣

≤ C En(f ; Ω) + ‖f‖L2

dλ
(Ω) εmom , ∀f ∈ C(Ω) ,

(15)
with

C = ν(Ω) +

N
∑

k=1

|wk|+
√

λ(Ω) εmom = ν(Ω) + σ

∣

∣

∣

∣

∣

N
∑

k=1

wk

∣

∣

∣

∣

∣

+
√

λ(Ω) εmom

≤ ν(Ω) + σ

(

ν(Ω) +

∣

∣

∣

∣

∣

N
∑

k=1

wk −
∫

Ω

1 dν

∣

∣

∣

∣

∣

)

+
√

λ(Ω) εmom

≤ ν(Ω)+σ
(

ν(Ω) +
√

λ(Ω) εmom

)

+
√

λ(Ω) εmom = (1+σ)
(

ν(Ω) +
√

λ(Ω) εmom

)

where (13) has been used with p ≡ 1 and the roles of the moment error εmom

and of the stability parameter σ are explicit, cf. (6) and (4). Observe that (15)
englobes (13) since En(f ; Ω) = 0 for f ∈ Pd

n. Moreover, dividing the right-hand
side of (15) by the dν-integral of f when it does not vanish, we see that

Emom(f) = α(f) εmom , α(f) =

(∫

Ω
f2(P ) dλ

)1/2

∣

∣

∫

Ω f(P ) dν
∣

∣

,

∫

Ω

f(P ) dν 6= 0 , (16)

gives an upper bound for the moment error effect in a relative cubature error
estimate.
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3 Compressed algebraic formulas

Consider an algebraic cubature formula with positive weights on a domain K ⊂
Rd

∫

X

p(P ) dν =
M
∑

i=1

ωi p(Pi) = I(p) =

∫

K

p(P )ω(P )dP , ∀p ∈ P
d
n , (17)

with respect to some absolutely continuous measure with density ω(P ), where
X ⊂ K, M and ν (i.e., the weights) depend on n, M > V = dim(Pd

n). We
can try to reduce the cardinality of such a formula, by extracting nodes and re-
weighting as in (3) or (5). Below we present some examples in dimension d = 2
with ω(P ) ≡ 1, related to recently developed cubature formulas on nonstandard
domains.

3.1 Circular sections

In some recent papers, algebraic cubature formulas have been obtained for sev-
eral domains related to circular arcs, such as circular segments, sectors, zones,
lenses, lunes; cf. [10, 13, 14]. These formulas are of product Gaussian type, and
are based on “subperiodic” trigonometric approximation (cf. [5]), namely new
trigonometric Gaussian quadrature formulas on subintervals of the period [12],
like

∫ α2

α1

t(θ) dθ =

n+1
∑

j=1

λj t(θj) , ∀t ∈ Tn ,

where T1
n denotes the 2n+1-dimensional space of univariate trigonometric poly-

nomials of degree not greater than n. The angular nodes {θj} are obtained by
a nonlinear transformation of algebraic Gaussian nodes for a suitable measure
on [−1, 1], and the weights {λj} are positive.

The construction of the product Gaussian formulas exact on bivariate poly-
nomials relies on the observation that many circular sections, sayK, are suitable
blending transformations K = T (R), R = [0, 1]× [α1, α2], of the form

T (s, θ) = sP1(θ) + (1− s)P2(θ) , s ∈ [0, 1] , θ ∈ [α1, α2] ,

with P1(θ) and P2(θ) first degree trigonometric polynomials with vector coeffi-
cients (linear trigonometric arcs), and constant sign Jacobian J(s, θ) ∈ P1

1

⊗

T1
2

(i.e. the transformation is injective). Then, for any total-degree bivariate poly-
nomial p ∈ P2

n we have that p ◦T ∈ P1
n

⊗

T1
n and (p ◦ T ) |J | ∈ P1

n+1

⊗

T1
n+2, so

that
∫

K

p(P ) dP =

∫ 1

0

∫ α2

α1

p(T (s, θ)) |J(s, θ)| dsdθ

=

n+3
∑

j=1

⌈(n+2)/2⌉
∑

h=1

Whj p(T (sh, θj)) , Whj = γhλj |J(sh, θj)| , (18)

where {sh} and {γh} are the Gauss-Legendre nodes and weights for [0, 1], cf.
[19, 20].

Then we have a formula of the form (17) with {ωi} = {Whj} and {Pi} =
{T (sh, θj)} (by a suitable bi-index ordering), and M = ⌈(n + 3)⌈(n + 2)/2⌉.
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In some situations M could be slightly smaller, namely when the Jacobian is
independent of s or θ, but still greater than V = dim(P2

n) = (n + 1)(n + 2)/2;
we refer the reader to [10] for a full discussion and several examples of such
blending formulas.

Now, we can reduce the number of nodes by compression and re-weighting
as in as in (3) or (5), the compression ratio being N/M <∼ (n+1)/(n+3). A first
example appears in Figure 1 and Tables 1-2, concerning a circular zone of the
unit disk (the region cut by two parallel lines) with angular interval [π/6, π/2].
In this case, a suitable transformation is T (s, θ) = (s cos θ, 1 + 2s sin θ) with
J(s, θ) = 2s. We report all the relevant parameters, including the coefficient α
in (16), rounded to the displayed digits: notice that Emom is a large overestimate
of the actual effect of the moment error. Moreover, the value of α stabilizes, as
it is expected since

lim
n→∞

α(f) = lim
n→∞

(∫

Ω f2(P ) dλ
)1/2

∣

∣

∣

∑M
i=1 ωi f(Pi)

∣

∣

∣

=

(∫

Ω f2(P ) dλ
)1/2

∣

∣

∫

K
f(P ) dP

∣

∣

,

by positivity of the weights {ωi} and exactness in Pd
n, which ensure conver-

gence of the denominator (the numerator has been computed by a high-degree
Gauss-Chebyshev product formula, Ω being the smallest rectangle containing
the domain).

In Table 2 we show the behavior of the compressed formulas on three test
functions with different degree of regularity, a polynomial, a Gaussian, and a
C2 function with a singularity of the third derivatives

f1(x, y) = (x+ y)n , f2(x, y) = e−((x−x0)
2+(y−y0)

2) ,

f3(x, y) = ((x− x0)
2 + (y − y0)

2))3/2 , (x0, y0) = (0.5, 0.5) . (19)

The reference values of the integrals I(f1) are computed at machine preci-
sion by the original exact blending formula, whereas the reference values of
the other two integrals, computed adaptively by the blending formula, are
I(f2) = 0.9461023217911515 rounded to 16 digits and I(f3) = 0.88384114
rounded to 8 digits.

Here, and in all the examples below, the singularity (x0, y0) for f3 lies inside
the integration domain and is bounded away from the boundary (where the
cubature nodes cluster). We stress that in this example, and also in all the
ones below, the behavior of compression by QR with column pivoting (QRpiv)
is quite satisfactory. The moment error is extremely small, the weights are
not all positive but the stability parameter (4) remains close to 1, and the
computing time is significantly lower than that of NNLS-based compression
(which, however, guarantees positivity).

As a second example, with a more consistent node reduction, we consider
special circular sections arising in the framework of optical design. Recently,
Bauman and Xiao [1] have introduced quadrature methods based on prolate
spheroidal wave functions, to treat for instance optical apertures (pupils) that
are obscured and vignetted (a feature that occurs in optical astronomy). We
consider an example of circular pupil (the unit disk) which is obscured by a
central smaller disk and clipped by a circular arc of larger radius, similar to
that appearing in [1]; see Figure 2.
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The resulting domain can be split into a standard annular sector (the un-
vignetted portion) and a vignetted region that cannot be treated directly by a
blending formula (18), since the arcs correspond to different angular intervals.
Such a region, however, can be conveniently split for example into three gener-
alized sectors, as shown in Figure 2. Collecting together nodes and weights of
the corresponding blending formulas, we obtain a composite cubature formula
of polynomial degree of exactness n on the obscured and vignetted pupil, with
4(n2/2 + O(n)) = 2n2 + O(n) nodes and positive weights. Our compressed
formulas for the pupil have then a compression ratio N/M <∼ 1/4.

The numerical results appear in Tables 3 and 4. In this example I(f2) =
0.8508514261060272 rounded to 16 digits and I(f3) = 3.2003163 rounded to 8
digits. We note that the compressed formulas on the obscured and vignetted
pupil seems even slightly more efficient with respect to the number of sampling
points, than the formulas proposed in [1]. Indeed, for n = 13 the results in
[1, §2.4] give a set of 112 nodes, whereas we have N = dim(P2

13) = 105 nodes.
On the other hand, the numerical results in Table 3 show high accuracy of the
compressed formulas, with a moment error not exceeding 10−14 up to degree
n = 30.

3.2 Polygons

In the recent literature on cubature methods, some attention has been devoted
to integration over polygons; see, e.g., [21, 26, 31, 34, 38]. Indeed, despite the
importance of polygons (and polyhedra) in computational geometry as well as
in a wide range of applications, there was a gap in the numerical literature
concerning cubature formulas tailored on polygons, emerged in particular in
connection with the recent field of polygonal finite elements [28].

For the purpose of illustration, we apply the compression algorithms to the
cubature formula proposed in [31]. As already observed, the present compression
procedure can be seen as an initial step for more sophisticated node reduction
methods, for example that proposed in [38].

The cubature formula of [31] is based on Green’s integration theorem (the
divergence theorem) and product Gaussian quadrature, and works by implicit
trapezoidal panelization, avoiding explicit a priori partition of the polygonal
domain into triangles or quadrangles. It applies to convex polygons, and more
generally to a class of polygons (even nonconvex) with the following geometric
property: there exists a special line (say ℓ), termed reference line, whose in-
tersection with the polygon is connected, and such that in addition each line
orthogonal to it (say q) has a connected intersection (if any) with the polygon,
containing the point ℓ ∩ q. Clearly such class contains all convex polygons, for
example by taking the line connecting a pair of vertices with maximal distance.
Observe that necessarily the reference line can intersect a polygon side only at
a vertex.

The aspect of such formulas is the following. Given a polygonK with vertices
Vh = (αh, βh), h = 1, . . . , L (counterclockwise ordered), and a suitable reference
line, that up to a rotation we can identify with a line x = ξ parallel to the
y-axis, we have

∫

K

p(P ) dP =

L
∑

h=1

nh
∑

j=1

⌈n/2⌉
∑

l=1

Whjl f(ξhjl, ηhj) , ∀p ∈ P
d
n , (20)

9



where nh = ⌈n/2⌉ if ∆αh = 0 or nh = ⌈n/2⌉+1 if ∆αh 6= 0, and the nodes and
weights are given by

ξhjl =
xh(s

nh

j )− ξ

2
s
⌈n/2⌉
l +

xi(s
nh

j ) + ξ

2
, xh(s) =

∆αh

2
s+

αh + αh+1

2
, (21)

ηhj = yh(s
nh

j ) , yh(s) =
∆βh

2
s+

βh + βh+1

2
, (22)

Whjl =
1

4
∆βh

(

xh(s
nh

j )− ξ
)

γnh

j γ
⌈n/2⌉
l , (23)

∆ denoting the usual forward difference operator, and {sµj }, {γ
µ
j } the nodes and

weights of the Gauss-Legendre quadrature formula of degree of exactness µ on
[−1, 1], cf. [19]. By a suitable multi-index ordering, (20) is of the form (17) with
{ωi} = {Whjl} and {Pi} = {(ξhjl, ηhj)}. It is easily checked that the weights
are all nonnegative, in view of the reference line properties and counterclockwise
ordering of the vertices.

We present two examples, where we apply the compressed formulas to inte-
gration of the three test function (19) over the nonregular convex hexagon of
Figure 3, and over the nonconvex nonagon of Figure 4. The numerical results
are collected in Tables 5-8. Since M ≥ L⌈n/2⌉2 and N ≤ V = (n+1)(n+2)/2,
we expect a compression ratio N/M <∼ 2/L. The reference values of the integrals
are I(f2) = 0.4850601470247102 rounded to 16 digits and I(f3) = 0.020571741
rounded to 8 digits for the hexagon, and I(f2) = 0.4374093366938109 and
I(f3) = 0.017301869 for the nonagon (again, the values of I(f1) are computed
at machine precision by the original exact cubature formula).

Remark 1 (disconnected union). It is worth observing that nothing prevents
using the compressed formulas on domains that are disconnected finite union of
compact subregions. If an algebraic cubature formula is known on each subre-
gion, we can collect together nodes and weights to get a “composite” cubature
formula on the whole union. In order to reduce the number of nodes, we can
then apply the compression algorithms, obtaining a formula for the union which
much fewer nodes than before on each subregion. An example of this type is
given in Figure 5 and Tables 9-10, where the union of six disconnected disks of
different radius is concerned. A new phenomenon here appears. While the QR-
piv algorithm gives results similar to those of the previous examples, the NNLS
approach shows at degree 25 a moment error much larger than the others, of the
order of 10−8. This occurrence of course affects the integration errors of Table
10, even though, as already observed numerically, the moment error effect is
much lower than Emom in (16).

4 Compressed least-squares

Consider the classical discrete least-squares polynomial approximation in Pd
n of

a function f at a discrete set X ⊂ Rd,

X = {Pi}1≤i≤M , M = card(X) , (24)
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where X is Pd
n-determining (or equivalently the Vandermonde like matrices cor-

responding to the polynomial space Pd
n have full rank). The discrete least-

squares polynomial approximation is an orthogonal projection Lnf on the poly-
nomial space, with respect to the scalar product induced by the discrete measure
ν with unit mass at each point

‖f − Lnf‖ℓ2(X) = min
p∈Pd

n

‖f − p‖ℓ2(X) . (25)

The discrete error of such an approximation is easily estimated

‖f − Lnf‖ℓ2(X) ≤ ‖f − p∗n‖ℓ2(X) ≤
√
M ‖f − p∗n‖ℓ∞(X)

≤
√
M ‖f − p∗n‖L∞(K) =

√
M En(f ;K) , K ⊃ X , (26)

for f ∈ C(K), where p∗n is the best uniform approximation polynomial for f
on a compact domain K containing X (for example K could be the closure of
the convex hull of the points). If K is a Jackson compact, (26) estimates the
approximation quality through the regularity of f , cf. [30].

IfM > V(2n, d) = dim(Pd
2n), and X is Pd

2n-determining, we can approximate
the scalar product in ℓ2(X) by the scalar product induced by the NNLS com-
pression procedure for (near)exactness degree 2n (the resulting weights being
positive). Let us term

A = {Qk}1≤k≤N ⊂ X , M > V(2n, d) =
(

2n+ d

d

)

≥ N (27)

the set of extracted nodes, and w = {wk} the corresponding weights: the
compressed scalar product is

〈f, g〉ℓ2
w
(A) =

N
∑

k=1

wk f(Qk)g(Qk) ≈
∫

X

fg dν =
M
∑

i=1

f(Pi)g(Pi) = 〈f, g〉ℓ2(X) ,

(28)
and the corresponding Euclidean norm

‖f‖ℓ2
w
(A) =

√

〈f, f〉ℓ2
w
(A) ≈

√

〈f, f〉ℓ2(X) = ‖f‖ℓ2(X) . (29)

In practice, (28) and (29) are not exact even when f and g are in Pd
n, but

the error can be bounded by (13) with p = fg in the fully discrete case Ω = X ,
λ = ν.

Then, we can consider, instead of the orthogonal projection Lnf in ℓ2(X),
the orthogonal projection Lnf in ℓ2

w
(A), that is

‖f − Lnf‖ℓ2
w
(A) = min

p∈Pd
n

‖f − p‖ℓ2
w
(A) . (30)

Such an orthogonal projection is well-defined and unique, whenever the square
Vandermonde-like matrices in Pd

2n corresponding to the extracted node set A
have full rank, since their rectangular restriction to P

d
n has still full rank. Ob-

serve that (30) is a weighted least-squares approximation at the discrete set A,
cf. [2].

In order to compare Lnf with Lnf , let us now estimate the error made by
Lnf in reconstructing f at the original discrete setX . In this respect, we assume

11



that the weights are computed working with the discrete orthogonal basis φ = ψ
in the analysis of Section 2, namely in the fully discrete case Ω = X , λ = ν.

First, we estimate the ℓ2(X)-norm of Lnf . Observe that, setting

E =

∫

X

(Lnf)
2 dν −

N
∑

k=1

wk (Lnf)
2(Qk) ,

we have by (13)

‖Lnf‖2ℓ2(X) =

∫

X

(Lnf)
2 dν = E +

N
∑

k=1

wk (Lnf)
2(Qk)

= E + ‖Lnf‖2ℓ2
w
(A) ≤ |E|+ ‖Lnf‖2ℓ2

w
(A)

≤ ‖(Lnf)
2‖ℓ2(X) εmom + ‖Lnf‖2ℓ2

w
(A) .

Moreover,

‖(Lnf)
2‖ℓ2(X) ≤

√
M ‖Lnf‖2ℓ∞(X) ≤

√
M ‖Lnf‖2ℓ2(X) ,

where we have used the fact that we are in a fully discrete situation, so we get

‖Lnf‖ℓ2(X) ≤
‖Lnf‖ℓ2

w
(A)

√

1−
√
M εmom

(31)

provided that
√
M εmom < 1. Now, Ln itself is an orthogonal projection oper-

ator on Pd
n, and hence by the Pythagorean theorem

‖Lnf‖ℓ2
w
(A) ≤ ‖f‖ℓ2

w
(A) ≤

√
M ‖f‖ℓ∞(A) ≤

√
M ‖f‖ℓ∞(X) ≤

√
M ‖f‖L∞(K) ,

which gives

‖Lnf‖ℓ2(X) ≤
√

M

1−
√
M εmom

‖f‖L∞(K) . (32)

Finally, we obtain the estimate

‖f − Lnf‖ℓ2(X) ≤ ‖f − p∗n‖ℓ2(X) + ‖Ln(f − p∗n)‖ℓ2(X) ≤
√
M ‖f − p∗n‖ℓ∞(X)

+

√

M

1−
√
M εmom

‖f − p∗n‖L∞(K) ≤
√
M

(

1 +

√

1

1−
√
M εmom

)

En(f ;K) ,

(33)
that is, the reconstruction error in ℓ2(X) by the “compressed” least-squares
operator Ln can be bounded by En(f ;K) times a constant that has the same
order of magnitude of that appearing in (26) for the original “complete” least-
squares operator Ln.

We stress two facts. First, we have obtained for compressed least-squares a
reconstruction error estimate in the original space ℓ2(X) comparable to that of
“complete” least-squares, with a reduction of the sampling points, which can
be extremely relevant when N ≪ M , as in the examples below. Moreover, it is
clear that the constraint

√
M εmom < 1 is quite weak, since it does not require

extremely small residuals to keep the approximation quality, differently from the

12



compression of algebraic cubature formulas of Section 3. These features make
compressed polynomial least-squares attractive in applications.

An example of the behavior of compressed least-squares is given in Figure
6 and Table 11. The domain K is the union of three overlapping disks, and
the discrete set X is made by the intersection of 5000 Halton points (a low-
discrepancy sequence, cf. e.g. [16])) of the smallest rectangle containing the
domain, with the domain itself (the resulting cardinality is about 3700).

In Table 11 we display the relative ℓ2(X)-errors in the reconstruction of
the three test functions (19), by least-squares on the whole X , and by com-
pressed least-squares via the NNLS algorithm, as discussed above. To compute
the least-squares approximants, we have solved the overdetermined Chebyshev-
Vandermonde system V c = f = {f(Pi)} with V = (τj(Pi)) (cf. (7)-(8)), and
the weighted system DWccompr = Df compr = D{f(Qk)} with W = (τj(Qk)),
D = diag(

√
wk), by the standard Matlab backslash operator [27]. The relative

ℓ2(X)-errors on f are ‖f − Lnf‖ℓ2(X)/‖f‖ℓ2(X) = ‖f − V c‖2/‖f‖2 for stan-
dard least-squares and ‖f − Lnf‖ℓ2(X)/‖f‖ℓ2(X) = ‖f − V ccompr‖2/‖f‖2 for
compressed least-squares.

It is manifest that the errors have the same order of magnitude (often they
are very close to each other, closer than what could be expected from the error
estimates). Observe that the moment error εmom is not as small as in the
cubature examples of Section 3. Nevertheless, this does not affect the quality of
the compressed approximation, in practice a much higher moment error could
be allowed until

√
Mεmom ≪ 1.

Compressed least-squares turn out to be quite efficient: at degree n = 12 we
have a reasonable error even for the less regular function f3 with 325 nodes, as
if we had sampled on 3700 nodes, that is with only about 9% of the sampling
values. We stress that the compression procedure is function independent, so
we can select a priori the re-weighted sampling sites on a given region, and
then apply the compressed LS formula to different functions. This approach to
polynomial least squares could be very useful in applications where the sampling
process is difficult or costly.

Remark 2 (LS approximation on Weakly Admissible Meshes). An
interesting situation occurs when X = Xn is a Weakly Admissible Mesh (WAM)
of a compact set K, because in such a case we are able to get an estimate of the
uniform norm of the least-squares projection operators. We recall that WAMs
are sequences of finite norming sets for a compact set K ⊂ Rd (or more generally
K ⊂ Cd), such that a polynomial inequality holds of the form

‖p‖L∞(K) ≤ Cn ‖p‖ℓ∞(Xn) , ∀p ∈ P
d
n , (34)

where both Cn and card(Xn) increase at most polynomially with n. When Cn

is bounded we speak of an Admissible Mesh. Among their properties, we quote
that WAMs are preserved by affine transformations, and can be constructed
incrementally by finite union and product. Moreover, they are well-suited for
uniform least-squares approximation, and for polynomial interpolation at suit-
able extremal subsets, which are approximate versions of Fekete and Leja points.
Concerning these and other basic features of WAMs, we refer the reader to the
seminal paper [7], and to [3, 4] among recent developements.
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Observe that from the definition of WAM and the Pythagorean theorem we
get the chain of inequalities

‖Lnf‖L∞(K) ≤ Cn‖Lnf‖ℓ∞(Xn) ≤ Cn‖Lnf‖ℓ2(Xn)

≤ Cn‖f‖ℓ2(Xn) ≤ Cn

√
M ‖f‖ℓ∞(Xn) ≤ Cn

√
M ‖f‖L∞(K) , ∀f ∈ C(K) ,

which gives immediately an estimate of the norm of Ln as a projection operator
(C(K), ‖ · ‖∞) → P

d
n

‖Ln‖ ≤ Cn

√
M . (35)

On the other hand, concerning the compressed least-squares operator Ln, from
the definition of WAM and (32) we have

‖Lnf‖L∞(K) ≤ Cn‖Lnf‖ℓ∞(Xn) ≤ Cn‖Lnf‖ℓ2(Xn)

≤ Cn

√

M

1−
√
M εmom

‖f‖L∞(K) , ∀f ∈ C(K) ,

from which we obtain the operator norm bound

‖Ln‖ ≤ Cn

√

M

1−
√
M εmom

, (36)

which is close to (35) when εmom ≪ 1/
√
M . A standard computation for

projection operators Pn : (C(K), ‖ · ‖∞) → Pd
n shows that

‖f − Pnf‖L∞(K) ≤ (1 + ‖Pn‖)En(f ;K) , (37)

where either Pn = Ln and (35) applies, or Pn = Ln and (36) applies.
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Figure 1: 21 = 3× 7 product quadrature nodes (·) of algebraic exactness degree
4 on a circular zone of the unit disk with, and compression into 15 points, by
QR with column pivoting (top, (�)) and NNLS (bottom, (◦)).
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Figure 2: 69 cubature nodes (·) of algebraic exactness degree 4 on an obscured
and vignetted pupil, and compression into 15 points (◦) by NNLS.
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Figure 3: 72 cubature nodes (·) of algebraic exactness degree 4 on a convex
hexagon, and compression into 15 points (◦) by NNLS.
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Figure 4: 108 cubature nodes (·) of algebraic exactness degree 4 on a nonconvex
nonagon, and compression into 15 points (◦) by QR with column pivoting.
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Figure 5: 90 cubature nodes (·) of algebraic exactness degree 4 on the union of
six disconnected disks, and compression into 15 points (◦) by QR with column
pivoting.
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Figure 6: 153 nodes (◦) for compressed least-squares of degree 8, extracted by
NNLS from about 3700 Halton points (·) of the union of three disks.
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Table 1: Compression of the algebraic cubature formula on the circular zone of
Figure 1; M is the cardinality of the original formula, N that of the compressed
formula, εmom the moment reconstruction error in (6).

deg n 5 10 15 20 25 30
old card M 24 78 144 253 364 528
new card N 21 66 136 231 351 496

QRpiv
∑ |wk|/|

∑

wk| 1.02 1.08 1.11 1.41 1.08 1.06
εmom 1e-15 1e-15 2e-15 2e-15 2e-15 3e-15

cputime (sec) 0.01 0.02 0.07 0.10 0.14 0.79
NNLS εmom 1e-15 1e-15 2e-15 3e-15 6e-15 8e-15

cputime (sec) 0.16 0.04 0.26 1.59 7.83 32.30

Table 2: Relative error in the integration of the three test functions on the
circular zone of Figure 1 by the compressed formulas.

deg n 5 10 15 20 25 30
f1 α 2.3e02 9.3e01 7.0e02 1.6e03 6.3e03 1.7e04

QRpiv 1e-15 1e-15 2e-15 3e-15 1e-14 3e-15
NNLS 2e-15 2e-15 7e-16 9e-15 9e-15 5e-15

f2 α 2.2e00 2.1e00 2.1e00 2.1e00 2.1e00 2.1e00
QRpiv 3e-04 1e-07 2e-10 5e-15 1e-16 1e-15
NNLS 3e-04 1e-07 2e-10 5e-15 0 2e-15

f3 α 3.7e00 5.0e00 5.3e00 5.5e00 5.6e00 5.6e00
QRpiv 3e-03 4e-05 1e-05 9e-08 1e-06 3e-07
NNLS 3e-03 6e-05 1e-05 2e-06 1e-06 2e-07

Table 3: As in Table 1 for the obscured and vignetted pupil of Figure 2.

deg n 5 10 15 20 25 30
old card M 108 282 603 957 1498 2032
new card N 21 66 136 231 351 496

QRpiv
∑ |wk|/|

∑

wk| 1.64 1.15 1.28 1.51 1.14 1.22
εmom 3e-15 5e-15 5e-15 7e-15 8e-15 1e-14

cputime (sec) 0.01 0.07 0.22 0.53 0.88 2.03
NNLS εmom 1e-15 3e-15 5e-15 1e-14 9e-15 1e-14

cputime (sec) 0.02 0.10 0.43 2.35 9.17 42.20
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Table 4: Relative error in the integration of the three test functions on the
obscured and vignetted pupil of Figure 2 by the compressed formulas.

deg n 5 10 15 20 25 30
f1 α 8.0e01 1.1e02 4.8e03 6.2e03 2.2e05 2.9e05

QRpiv 9e-15 5e-15 4e-14 3e-14 3e-12 3e-12
NNLS 9e-15 6e-15 1e-13 1e-13 6e-13 3e-12

f2 α 1.9e00 1.8e00 1.8e00 1.8e00 1.8e00 1.8e00
QRpiv 2e-03 3e-07 4e-12 5e-15 6e-15 7e-15
NNLS 1e-03 2e-07 9e-12 8e-15 7e-15 7e-15

f3 α 2.6e00 3.0e00 3.0e00 3.1e00 3.1e00 3.1e00
QRpiv 6e-04 5e-05 3e-07 7e-07 8e-08 1e-07
NNLS 6e-04 4e-06 1e-06 4e-08 2e-08 5e-08

Table 5: As in Table 1 for the convex hexagon of Figure 3.

deg n 5 10 15 20 25 30
old card M 72 252 432 792 1092 1632
new card N 21 66 136 231 351 496

QRpiv
∑ |wk|/|

∑

wk| 1.20 1.09 1.05 1.16 1.20 1.25
εmom 4e-16 7e-16 8e-16 1e-15 1e-15 1e-15

cputime (sec) 0.01 0.08 0.13 0.55 1.45 3.57
NNLS εmom 2e-16 7e-16 1e-15 2e-15 3e-15 5e-15

cputime (sec) 0.02 0.06 0.43 2.47 10.83 45.71

Table 6: Relative error in the integration of the three test functions on the
convex hexagon of Figure 3 by the compressed formulas.

deg n 5 10 15 20 25 30
f1 α 1.8e01 8.8e01 3.7e02 1.5e03 5.8e03 2.1e04

QRpiv 2e-15 8e-15 1e-14 6e-15 1e-14 1e-13
NNLS 3e-15 8e-15 2e-14 5e-15 3e-14 5e-15

f2 α 5.3e00 5.2e00 5.2e00 5.1e00 5.1e00 5.1e00
QRpiv 2e-05 4e-11 3e-15 1e-15 3e-15 3e-15
NNLS 3e-05 1e-10 2e-15 2e-15 3e-15 2e-15

f3 α 2.1e01 2.4e01 2.4e01 2.5e01 2.5e01 2.5e01
QRpiv 4e-03 1e-04 4e-06 2e-06 3e-06 8e-07
NNLS 6e-03 4e-04 2e-05 3e-06 3e-07 1e-06
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Table 7: As in Table 1 for the nonconvex nonagon of Figure 4.

deg n 5 10 15 20 25 30
old card M 108 378 648 1188 1638 2448
new card N 21 66 136 231 351 496

QRpiv
∑ |wk|/|

∑

wk| 1.20 1.09 1.05 1.16 1.20 1.25
εmom 4e-16 7e-16 8e-16 1e-15 1e-15 1e-15

cputime (sec) 0.01 0.05 0.12 2.54 1.47 3.59
NNLS εmom 2e-16 5e-16 2e-15 3e-15 5e-15 6e-15

cputime (sec) 0.01 0.11 0.50 2.85 11.43 47.97

Table 8: Relative error in the integration of the three test functions on the
nonconvex nonagon of Figure 4 by the compressed formulas.

deg n 5 10 15 20 25 30
f1 α 2.0e01 1.0e02 4.7e02 2.0e03 8.4e03 3.3e04

QRpiv 2e-15 3e-15 3e-15 3e-15 3e-14 2e-13
NNLS 2e-15 2e-15 5e-15 1e-14 3e-14 2e-13

f2 α 5.9e00 5.7e00 5.7e00 5.7e00 5.7e00 5.7e00
QRpiv 1e-05 3e-11 0 1e-15 2e-15 2e-15
NNLS 4e-06 3e-11 1e-16 1e-15 2e-15 2e-15

f3 α 2.3e01 2.8e01 2.9e01 2.9e01 2.9e01 3.0e01
QRpiv 2e-03 1e-04 1e-05 4e-06 1e-07 2e-06
NNLS 2e-03 9e-05 8e-05 1e-05 5e-07 4e-07

Table 9: As in Table 1 for the disconnected disk union of Figure 5.

deg n 5 10 15 20 25 30
old card M 144 396 864 1386 2184 2976
new card N 21 66 136 231 351 496

QRpiv
∑ |wk|/|

∑

wk| 1.05 1.13 1.20 1.09 1.22 1.15
εmom 1e-16 2e-16 4e-16 8e-16 4e-16 2e-15

cputime (sec) 0.01 0.10 0.14 0.46 2.65 3.17
NNLS εmom 9e-17 2e-16 5e-16 9e-16 2e-08 2e-15

cputime (sec) 0.02 0.17 0.46 2.35 12.42 42.35

21



Table 10: Relative error in the integration of the three test functions on the
disconnected disk union of Figure 5 by the compressed formulas.

deg n 5 10 15 20 25 30
f1 α 1.1e02 3.4e02 9.6e02 2.7e03 7.6e03 2.1e04

QRpiv 2e-15 9e-16 4e-15 6e-15 9e-15 8e-15
NNLS 6e-16 2e-16 5e-15 4e-15 4e-08 6e-15

f2 α 7.0e01 7.4e01 7.4e01 7.5e01 7.5e01 7.5e01
QRpiv 2e-05 2e-12 2e-15 4e-15 2e-14 1e-14
NNLS 2e-05 4e-11 3e-15 5e-15 9e-09 1e-14

f3 α 3.6e01 3.5e01 3.5e01 3.5e01 3.5e01 3.5e01
QRpiv 4e-03 9e-05 8e-06 7e-06 2e-06 1e-06
NNLS 3e-03 1e-04 7e-06 2e-06 5e-06 7e-07

Table 11: Relative errors in ℓ2(X) for least-squares approximation of the three
test functions on the disk union of Figure 6; here M = card(X) ≈ 3700.

deg n 2 4 6 8 10 12
N 15 45 91 153 231 325

N/M 0.004 0.012 0.015 0.041 0.062 0.088
εmom 4.9e-14 1.2e-13 3.4e-13 4.3e-13 8.8e-13 2.5e-12

f1 LS 1.2e-15 1.8e-15 1.3e-15 1.5e-15 3.7e-15 4.7e-15
compr 3.1e-16 6.2e-16 8.3e-15 1.2e-15 1.6e-15 2.7e-15

f2 LS 3.0e-03 8.2e-05 1.7e-06 2.7e-08 3.5e-10 3.9e-12
compr 3.3e-03 8.6e-05 1.7e-06 2.7e-08 3.5e-10 3.9e-12

f3 LS 1.2e-01 1.5e-02 4.2e-03 1.6e-03 7.2e-04 3.7e-04
compr 1.3e-01 1.6e-02 4.4e-03 1.7e-03 7.6e-04 3.8e-04
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[30] W. Pleśniak, Multivariate Jackson Inequality, J. Comput. Appl. Math. 233
(2009), 815–820.

[31] A. Sommariva and M. Vianello, Product Gauss cubature over polygons
based on Green’s integration formula, BIT Numerical Mathematics 47
(2007), 441–453.

[32] A. Sommariva and M. Vianello, Gauss-Green cubature and moment com-
putation over arbitrary geometries, J. Comput. Appl. Math. 231 (2009),
886–896.

[33] A. Sommariva and M. Vianello, Computing approximate Fekete points
by QR factorizations of Vandermonde matrices, Comput. Math. Appl. 57
(2009), 1324–1336.

[34] N. Sundararajan, S. Bordas and D. Roy Mahapatra, Numerical integration
over arbitrary polygonal domains based on Schwarz-Christoffel conformal
mapping, Internat. J. Numer. Methods Engrg. 80 (2009), 103–134.

[35] M.A. Taylor, B.A. Wingate and L. Bos, A cardinal function algorithm
for computing multivariate quadrature points, SIAM J. Numer. Anal. 45
(2007), 193–205.

[36] M. Van Barel and A. Chesnokov, A method to compute recurrence re-
lation coefficients for bivariate orthogonal polynomials by unitary matrix
transformations, Numer. Algorithms 55 (2010), 383–402.

[37] V. Tchakaloff, Formules de cubature mécaniques à coefficients nonnégatifs,
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Appendix: Matlab functions for the compression of a bivariate discrete measure

function [pts,w,momerr] = compresscub(deg,X,omega,pos)

% INPUT:

% deg: polynomial exactness degree

% X: 2-column array of point coordinates

% omega: 1-column array of weights

% pos: NNLS for pos=1, QR with column pivoting for pos=0

% OUTPUT:

% pts: 2-column array of extracted points

% w: 1-column array of corresponding weights (positive for pos=1)

% momerr: moment reconstruction error

% total-degree Chebyshev-Vandermonde matrix at X

rect=[min(X(:,1)) max(X(:,1)) min(X(:,2)) max(X(:,2))];

V=chebvand(deg,X,rect);

% polynomial basis orthogonalization

[Q,R]=qr(V,0);

% tiny imaginary parts may appear

Q=real(Q);

% possible re-orthogonalization

% [Q,R1]=qr(Q,0);

% moments of the orthogonal basis

orthmom=Q’*omega;

% weigths computation

if pos == 1

weights=lsqnonneg(Q’,orthmom);

else

weights=Q’\orthmom;

end;

% indexes of nonvanishing weights and compression

ind=find(abs(weights)>0);

pts=X(ind,:);

w=weights(ind);

% moment reconstruction error

% bivariate Chebyshev basis

mom=V’*omega;

momerr=norm(V(ind,:)’*w-mom);

% discrete OP basis

% momerr=norm(Q(ind,:)’*w-orthmom);

end

function V = chebvand(deg,X,rect);

% INPUT:

% deg = polynomial degree

% X = 2-column array of point coordinates

% rect = 4-component vector such that the rectangle

% [rect(1),rect(2)] x [rect(3),rect(4)] contains X

% OUTPUT:

% V = Chebyshev-Vandermonde matrix at X

% couples with length less or equal to deg

j=(0:1:deg);

[j1,j2]=meshgrid(j);

good=find(j1(:)+j2(:)<deg+1);

couples=[j1(good) j2(good)];

% mapping X in the square [-1,1]^2

a=rect(1);b=rect(2);c=rect(3);d=rect(4);

map=[(2*X(:,1)-b-a)/(b-a) (2*X(:,2)-d-c)/(d-c)];

% total-degree Chebyshev-Vandermonde matrix at X

V1=cos(couples(:,1)*acos(map(:,1)’));

V2=cos(couples(:,2)*acos(map(:,2)’));

V=(V1.*V2)’;

end 25


