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Neutral dynamics with environmental noise: Age-size statistics and species lifetimes
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(Received 15 March 2015; published 31 August 2015)

Neutral dynamics, where taxa are assumed to be demographically equivalent and their abundance is governed
solely by the stochasticity of the underlying birth-death process, has proved itself as an important minimal
model that accounts for many empirical datasets in genetics and ecology. However, the restriction of the model to
demographic [O(

√
N )] noise yields relatively slow dynamics that appears to be in conflict with both short-term and

long-term characteristics of the observed systems. Here we analyze two of these problems—age-size relationships
and species extinction time—in the framework of a neutral theory with both demographic and environmental
stochasticity. It turns out that environmentally induced variations of the demographic rates control the long-term
dynamics and modify dramatically the predictions of the neutral theory with demographic noise only, yielding
much better agreement with empirical data. We consider two prototypes of “zero mean” environmental noise, one
which is balanced with regard to the arithmetic abundance, another balanced in the logarithmic (fitness) space,
study their species lifetime statistics, and discuss their relevance to realistic models of community dynamics.
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I. INTRODUCTION

The theory of population and community dynamics is a
central mathematical tool in many branches of life science,
including genetics, ecology, and evolution. This broad field of
research is dominated by two competing and complementary
paradigms. Darwinian natural selection suggests that the
fitness of phenotypes and species is different and stresses de-
terministic effects like the survival of the fittest, downplaying
the role of noise and fluctuations. On the other hand, neutral
theories assume that selective effects are relatively weak and
different taxa (or haplotype etc,) admit almost identical fitness,
so that the main driver of population dynamics is stochasticity.

Within the neutral framework, first Kimura’s theory of
molecular evolution [1] and more recently Hubbell’s universal
neutral theory of biodiversity (UNTB) [2–4] have both
attracted a lot of attention. In the latter case, the successful
explanation of empirical species abundance distribution curves
by a simple theory with only two parameters [5,6] appears
as a very appealing minimalistic model, especially when
compared to niche-based approaches that usually require
the reconstruction of many parameters (such as the relative
fitness of species), a very difficult task in high-diversity
assemblages [7].

These neutral models assume that the main driver of com-
munity dynamics is demographic stochasticity, i.e., the noise
embodied in the birth-death process of individual agents, with
(if the whole community has to keep a fixed size) the expected
number of descendants for each individual being precisely 1.
Accordingly, a population of N individuals will produce N

offspring on average, and the per-generation fluctuations will
be proportional to

√
N , which is quite a weak noise in the

limit of large N . This restriction of the neutral model to pure
demographic noise leads to a few severe difficulties when its
predictions are compared with empirical patterns.

On evolutionary time scales, the two main unsolved
problems are the age-size relationships and species extinction
time. In a neutral theory with pure demographic noise both

the age (measured in generations) of a species and its time
to extinction are proportional to its abundance. This time
scale is ridiculously long for, inter alia, various species of
trees (with generation time of 50 y) and for passerine birds
(generation time 3 y), as noted by many authors [8–11]. The
fossil data, which indicate that species lifetime is typically a
few million years, is again in contradiction to the N generation
estimate for common species. As Robert Ricklefs summarized
his findings [9], “drift is simply too slow to account for the
rate of turnover of passerine birds.” The idea of protracted
speciation [12], suggested to account for the apparent under-
representation of rare species and their relatively long lifetime,
cannot resolve these difficulties.

On the ecological time scale, empirically observed fluctu-
ations in abundance are usually too strong to be explained
by UNTB [13–16]. Moreover, UNTB cannot explain the
scaling of fluctuations variance with population size: with
pure demographic noise the theory predicts a linear scaling
but empirical analyses show a prevalence of superlinear
dependence [17]. The decay of community compositional
similarity is again much faster than the UNTB predictions [18].

A very plausible (and one in any case necessitated by
biological reality) generalization of the neutral theory that
may resolve many of these problems while preserving the
minimalistic character of the model is to add environmental
stochasticity to the dynamics. In nature the demographic
response of individuals to environmental variations is (at least
partially) correlated within species, while different species
may show transient fitness advantage at various times due
to differences in their temporal niches. In our proposed
generalized neutral model all individuals are demographically
equal on average but the relative fitness of a population
fluctuates in time. Environmental stochasticity generatesO(N )
short-term fluctuations in population abundance, closer in size
to those observed in reality.

To provide an order of magnitude estimate for the
strength of environmental noise in empirical systems, the
variance through time plot of the logarithmic abundance
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FIG. 1. (Color online) Variance through time plots for three empirical datasets: (a) Trees of the tropical forest in Barro Colorado Island
(BCI), considering trees with diameter >10 mm (data are from www.ctfs.si.edu) from 1990 to 2005 (every 5 y). (b) Fish samples collected
from the cooling-water filter screens at Hinkley Point B Power Station in Bristol, from 1980 to 2008 [19]. We only consider estuarine fish
species (not crustaceous organisms). (c) Herbaceous plant dataset [20] comprising a series of 51 quadrats of 1 m2 from mixed Kansas grass
prairies where all individual plants were mapped every year from 1932 to 1972. In all cases we gathered ln(Nt+�t/Nt ) (natural logarithm was
used) from every two same species abundance observations that are �t apart, and plotted the variance of this quantity vs �t (the details of
this technique are presented in Ref. [15]). m denotes the angular coefficient of the linear fit of data points [m = 4 × 10−3 for (a), 5.5 × 10−2

for (b), and 0.01 for (c)], while Pval [0.01 for (a), P < 10−4 for (b) and (c)] and R2 [0.97, 0.72 and 0.97 for (a), (b), and (c) correspondingly]
give the significance and the goodness of the fit, respectively. In all three cases the variance appears to grow linearly in time, as suggested for
a system with logarithmically balanced environmental noise, where the slope m indicates the value of the effective D defined in Eq. (3). The
intercept of the linear fit is above zero for the fish and the grassland, indicating the effect of sampling errors [15]. The negative intercept for
trees indicates a delayed response of the system to the changing environment. Since the time scales are relatively small, the same analysis for
arithmetically balanced noise, where the variance of (Nt+�t − Nt )/Nt is plotted against t , yields almost the same results (not shown).

ratio is presented in Fig. 1 for three empirical datasets,
showing the linear increase characteristic of environmental
stochasticity. As discussed in Ref. [15], the slope of this curve
is proportional to the strength of environmental variations.
In the discussion section we plug this number into our
mathematical expressions to show that realistic noise indeed
solves the UNTB time-scale problem.

Our first major result, then, is that a neutral model with
both demographic and environmental noise may solve the
mismatch between the predictions of the purely demographic
UNTB and the empirical evidence, shortening significantly
the number of generations needed for the ancestry of a single
founder to reach large abundance. The linear scaling of time (in
generations) with the abundance N is replaced by logarithmic
scaling, yielding reasonable age-size estimations. Our second
result is that the time to extinction of an abundant species
is shortened significantly. As described below, the various
possibilities obtained for species lifetime statistics correspond
to previous, evidence-based suggestions.

The implementation of environmental stochasticity into a
neutral model poses an important conceptual problem. As
noticed a while ago [21] there are two different scenarios for
balanced (zero mean) environmental stochasticity: the balance
may be either arithmetic (i.e., the noise statistics is such that
the mean abundance is kept fixed; for example if during a bad
year the population shrinks by 1/2, during a good year it grows
by 50%) or logarithmic (in a bad year it shrinks to 1/2, say, and
in a good year the population doubles). These two scenarios
are analogous to the use of Ito or Stratonovich calculus in the
white noise limit [22,23].

For a fixed-size community, where different species are
playing, more or less, a zero sum game, none of these
scenarios provide a satisfactory description of the dynamics.
Under arithmetically balanced noise all species eventually go
extinct with probability 1, while under log-balanced noise the
size of the community grows exponentially, both in contrast

with the fixed size requirement. Introducing environmental
stochasticity into the UNTB is a delicate task, in which the in-
terplay between environmental and demographic fluctuations
and other effects should be taken into account. Here we do
not solve this problem, although we provide some preliminary
considerations in the discussion section.

However, any model with balanced noise must be some-
where between the log-balanced and the arithmetic-balanced
extremes considered here and, as will be shown below, in
both cases the abundance-age relationships are logarithmic
so the species lifetime problem is solved in any case. On
the other hand, the log and the arithmetic dynamics differ
dramatically with respect to species lifetime: the t−2 tail
of lifetime statistics predicted by the purely demographic
theory [24] is replaced by a slower (t−3/2) decay if the noise
is log balanced and by much faster exponential decay for
arithmetically balanced stochasticity. In the literature one can
find empirical evidence for all these behaviors [25,26]; the
combination of demographic and environmental stochasticity
is endowed with the required flexibility to account, in the
appropriate regime of parameters, for many observed patterns
of species and genus lifetime statistics.

II. THEORETICAL FRAMEWORK

Demographic noise reflects variability in reproductive
success which is uncorrelated among individuals in the popu-
lation. This noise is fully characterized by Pn, the probability
of an individual to produce n offspring during its lifetime.
The average number of offspring is

∑
n nPn = Ro, and for a

fixed size population Ro = 1. Another important parameter is
the variance of the number of offspring σ 2, which measures
the differences in reproductive success among individuals: in
animal and human populations, where the number of offspring
is between 0 and 10, say, and Pn decays sharply with n, the
variance is of order unity; for a virus population, where some
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viruses infect a cell and produce 10 000 offspring while the
others die childless, the variance is much larger.

The theory of a fixed-size population under pure de-
mographic noise traces back to the work of Galton and
Watson [27]. In Appendix A we present a generating function
analysis of this case. Species lifetime statistics are reflected in
δ(t), the chance of the lineage of a single individual to survive
until t (time is measured in units of generations), which is
shown to satisfy

dδ

dt
∼ −σ 2

2
δ2(t). (1)

This implies that the survival probability of a species decays
at long times like 1/t and that the statistics of species lifetime
admits a 1/t2 tail [24]. Since the average abundance of a
species is constant, the fact that only a fraction 2/(σ 2t) of the
species survive by time t implies that their mean abundance
should grow linearly with t ,

Nsurv(t) ∼ σ 2

2
t, (2)

where Nsurv(t) is the average population abundance at t ,
conditioned on survival. These results demonstrate the two
main problems of a neutral theory with pure demographic
noise, when confronted with empirical findings and a pri-
ori considerations: First, the time needed for a species to
reach abundance N (starting with one individual, i.e., point
speciation) is typically of order N generations. Second, the
typical time to extinction of a species of abundance N is again
of order N generations, since the theory is neutral and the
ancestry of any individual evolves independently (formally the
average time to extinction diverges due to the 1/t2 tail). Slight
modification of the model, like implementing a zero-sum game
in the community (such that the size of the community is kept
fixed in the strong sense, as opposed to keeping the average
size fixed by assuming Ro = 1), does not significantly change
these conclusions [11].

Adding environmental stochasticity to this model implies
that, as the environmental conditions vary, the demographic
success of the whole population varies accordingly, so the
average reproductive success Ro becomes time dependent. In
some cases, discussed in Ref. [18], the addition of environ-
mental noise leads to a stabilization of the populations around
some equilibrium value because of the (quite counterintuitive)
storage effect. This paper deals with models that have no
such effect, a set which includes any environmental noise
generalization of the dynamics considered in Ref. [5].

Environmental conditions admit some correlation time T .
Speaking about a good or bad year (in terms of precipitation,
winds, etc.) one assumes that the environment (in the general
sense, including the effects of competition with other species)
was, in general, favorable or hostile to a specific species during
this period. If the demographic rates are kept fixed during T

and the abundance of a certain species at time s is Ns , then
typically Ns+1 = eγs Ns where γs = (Ro − 1)T . The simplest
way to define a “balanced” environmental noise is to assume
that γs (the fitness parameter, or the deviation of Ro from unity)
is an identically distributed random variable with zero mean
and variance,

γ 2
s ≡ 2D, (3)

where the overbar denotes an average. In this scenario the
steps are balanced in the logarithmic space [the expectation
value of ln(N ) is kept fixed] but the arithmetic mean of N is
growing in time, since exp(γ ) > 1. The reason for this is the
asymmetry between growth and decline: since the per capita
growth (or decay) rate is kept fixed for some time, the overall
demographic benefit for the population includes not only the
birth originated from the individuals that were present at s, but
also from the individuals that were born between s and s + 1,
and the opposite is true in the case of decline. The response
of the population to varying environmental conditions has an
“inertia” that increases the overall demographic benefit during
good times relative to the loss suffered during bad times, hence
producing a net bias towards growth.

However, in many scenarios the per-capita growth rate
decreases when the population increases. For example, in a
fixed size community with a zero sum game like the one
considered in Ref. [28], the fitness of a species determines
its chance to replace an individual of another species by its
own offspring; the more abundant a species is, the greater the
chance of intraspecific competition so the inertia is weaker.
In its extreme limit one can model this kind of behavior by
taking Ns+1 = γsNs , where γs is again a balanced noise. Now
it is the expectation value of N [rather than ln(N )] which is
kept fixed. We define these two types of environmental noise
as logarithmically balanced (case A, where the “opposite” of
N → N/2 is N → 2N ) and arithmetically balanced (case B,
the “opposite” of N → N/2 is N → 3N/2). Realistic systems
with environmental stochasticity are, most likely, somewhere
between these two extremes, but the solutions we present
below for these two scenarios provide the basic insights needed
for consideration of the generic case, as explained in the
discussion section.

III. AGE-ABUNDANCE RELATIONSHIPS
AND LIFETIME STATISTICS

Within the above theoretical framework, we have developed
and solved a model of population dynamics under both
environmental and demographic noise, making a distinction
between logarithmically balanced (case A) and arithmetically
balanced (case B) stochasticity. The results have been derived
for a model with a geometric distribution of offspring, but, as
explained in Appendix C, they are valid for any realization of
the demographic noise provided that one is interested in the
long-term behavior of the system.

A. Survival probability

First we consider the survival probability, assuming a
single individual (point speciation) at t = 0. It turns out (see
Appendixes B and C) that the survival probability at long times
is governed by the equations

dδ(t)

dt
= γtδ(t) + Dδ(t) − σ 2

2
δ2(t), case A,

(4)
dδ(t)

dt
= γtδ(t) − σ 2

2
δ2(t), case B.

In the limit γ = D = 0 both equations reduce to (1), the
equation obtained previously for pure demographic noise, as
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(c)(a)

Time [t]Time [t]

FIG. 2. (Color online) (a) A plot of δt , the chance to survive at time t for a certain levels of overall diffusion coefficient D [log-log scale,
the lines correspond to different D values in the legends are ordered from bottom (low) to top (high D) in both panels]. The simulated process
is the standard Wright-Fisher process with nonoverlapping generations. (b) Plotting δt t vs time in linear-log scale. (c) A plot of δt t against tD.
In this case the data collapse as predicted by Eq. (B7). This collapse suggests that the proper scaling of the cumulative survival probability is
δt = F(tD)

t
, with F(x) ∼ x1/2 for x → ∞ and F(x) ∼ const when x → 0.

expected. Moreover, substituting δ = 2Dδ̃/σ 2, changing the
time units with t = τ/D, and rescaling the noise term to unit
white noise, one finds a D independent equation. This implies
that a plot of δt ∼ δ̃τ vs Dt = τ should be independent of the
strength of the environmental noise.

From Eq. (B7) one may extract the long-time asymptotics of
the survival probability. When the environmental stochasticity
is relatively weak the short-time chance of extinction is
controlled by the demographic noise. This leads us to propose
that, for both the logarithmic and the arithmetic case,

δ(t) = F(tD)

t
, (5)

where the form of F(tD) is obtained analytically in
Appendix B 2.

In case A (log balanced) F(x) approaches
√

x/π when
x → ∞ and unity when x → 0. Accordingly, the chance of
extinction at the t th generation crosses over from the Galton-
Watson universal limit (characterizing a process with pure
demographic noise) t−2 to the first passage time asymptotics
t−3/2 at t∗ ∼ 1/D.

The intuition behind this result is clear. In the absence
of demographic noise, the population performs an unbiased
random walk in the logarithmic space, hence it will survive
until it reaches a threshold at, say, ln(N ) = 0 (a single
individual). The theory of first-passage time for a 1d random
walker tells us that at long time the chance to survive decays
like t−1/2. Since populations that stay alive for a long time
typically reach high abundance, the long-time behavior is
controlled by this term [29], while at shorter time scales
environmental stochasticity is too weak and the behavior is
controlled by the t−1 term of the purely demographic process.

Figure 2 shows simulation results for the survival prob-
ability in case A, i.e., the chance that the system did not
go extinct until t , δ(t). Indeed, this quantity decays like t−1

when the process is purely demographic, and it switches to
t−1/2 behavior at long times when the system is subject to
environmental noise. Moreover, when tδ(t) is plotted against
Dt the data collapse as predicted above.

In case B (arithmetic balance) F(x) approaches exp(−x/4)
when x → ∞ and unity when x → 0, as demonstrated
in Fig. 3. Again the short-term behavior is controlled by
demographic noise, but the long-term survival probability is no
longer a power law. The reason is that, unlike the log-balanced
noise, in case B most of the species are shrinking in time (as
can be seen easily by tracing the 1/2-3/2 and 1/2-2 processes
to the next generations).

Returning to the empirical species lifetime problem, for
a neutral theory with pure demographic noise the number
of generations needed for a population to shrink to zero
is typically its abundance, yielding unrealistic lifetimes for
common species. When environmental noise is introduced, the
long-term dynamics (where long is relative to the strength of
the environmental noise, i.e., t ∼ 1/D) is dominated by x =
Dt , so a decent amount of environmental stochasticity will
shorten significantly the lifetime and will solve the problem
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FIG. 3. (Color online) The survival probability of a species δ vs
time in case B (arithmetically balanced noise). The logarithm of
tδ(t) is plotted against t (inset), showing an exponential decay with
D dependent slope. When plotted against Dt (main panel) the data
collapse, indicating the dependence of F on Dt .
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of O(N ) generations scaling. Regarding the statistics of the
species lifetime distribution, all the possibilities considered
here—scaling with t−3/2 in case A, t−2 for pure demographic
noise and exponential decay—have been suggested in the
literature based on the analysis of fossil data; see [24] and
references therein.

B. Age-abundance relationships

Now let us turn to the dependence of abundance on the
species’ age. In Appendix B we define and calculate ζ̄ (t),
the mean abundance at time t of the ancestry originated
from a single individual at t = 0. However, when examining
an empirical community one considers only the species that
have not yet gone extinct, so the relevant quantity for the
age-abundance relationships is the average size of a species
at t conditioned on nonextinction, Nsurv(t) = ζ (t)/δ(t). As
shown in Appendix B 3, there are strong differences between
logarithmic and arithmetic noise, although the bottom line is
similar.

In case A (log balanced) ζ (t) ∼ 2
D

(eDt/2 − 1). Since δ ∼
t−1/2,

Nsurv(t) ∼ 2

Dt1/2
eDt/2. (6)

Thus the abundance of the surviving species, instead of grow-
ing linearly, is growing exponentially in time. In Appendix B 4
we explain that the average result presented here and the
typical result differ from each other due to the skewness of
the distribution, so in the typical case the growth of Nsurv is
subexponential,

N typ
surv(t) ∼ e

√
2Dt . (7)

For case B, on the other hand, ζ = 1, since the noise is
balanced in the real space. On the other hand δ is decaying
exponentially, so the net result is, again,

Nsurv(t) ∼ eDt/4. (8)

IV. DISCUSSION AND CONCLUSIONS

The failure of the UNTB to account for dynamic patterns
of populations and communities has been known for a
long time [13], and was stressed recently by many authors.
Basically, the O

√
N scaling of the demographic noise makes

it inadequate to account for the observed fluctuations on all
time scales. The tempo of the dynamics may be accelerated if
one assumes a very large value of σ 2 (as suggested, essentially,
in Ref. [10]; see [11]) or by keeping the generation time as a
free parameter (see, e.g., [30]), but any of these approaches
carries its own difficulties.

On the other hand, environmental stochasticity is known to
be ubiquitous in living systems, affecting communities even
under the most stable conditions (see, e.g., [31]). Incorporating
this mechanism into the neutral theory is a required step in
any case [32]. We have already showed that environmental
noise increases substantially the heterogeneity of the species
abundance distribution [see [28], Eq. (3)], a feature that may
account for the empirical results analyzed in Ref. [7]. The fact
that this noise increases temporal fluctuations and decreases
the time scale makes this project even more attractive.

Under environmental stochasticity, the demographic rates
of all individuals belonging to a species (roughly speaking,
their fitness) are fluctuating coherently in time, and the
species abundance varies accordingly. As explained, the
environmental noise may be “neutral” in two different senses.
One scenario is when the relative fitness, when averaged over
time, will be zero, this corresponds to logarithmically balanced
noise or case A considered above. The other scenario, case
B, occurs when the time average of the demographic gain is
zero.

As shown above, these two cases correspond to two
different species lifetime statistics. The chance of a species
to survive decays like 1/t3/2 in case A and exponentially
in case B. All these possibilities, −3/2 law, −2 law, and
exponential, were suggested for the tails of species lifetime
distributions as extracted from fossil data [24]. More important
is the transition of the general scaling from t (measured in
units of generations) to Dt , allowing the environmental noise
to control the extinction times.

For the average abundance of a species at time t after
point speciation conditioned on nonextinction, Nsurv(t), we
obtained exponential growth (in case B) and a typical stretched
exponential growth (in case A). This appears to solve the “age-
size” problem [8,9]: while the time to the most recent common
ancestor scales with abundance in a purely demographic
neutral model, it scales with the logarithm (or logarithm
squared) of N in the presence of environmental stochasticity.
Equations (7) and (8) suggest that the time from speciation
to abundance N scales like ln(N )/D generations (case B)
or with ln2N/(2D) (case A). If, for example, one considers
a set of 109 conspecific trees for a frequent species in the
Amazon basin (this is close to the contemporary figure; see
recent survey in Ref. [33]), with about a 50-y generation time,
the neutral theory suggests 50 × 109 years, more than the
age of the universe. On the other hand, the left panel of
Fig. 1 suggests that, measured in units of a single generation
(50 y) D ∼ 0.1, so the neutral theory with environmental noise
modifies the speciation time to about 50 000 years before
present (case B) or about 150 000 ybp (case A). This, of
course, is an extrapolation since the environmental noise may
be either much smaller (if some of the short-term fluctuations
are averaged out due to balancing effects like the increase of
species specific parasites) or much larger (if extreme events
do not appear in the half-generation window considered), but
the scales are clearly small enough to solve the age-abundance
problem even if the estimation for D is modified by an order
of magnitude.

Finally, we would like to comment about the generic case.
When a community is subject to a stabilizing mechanism
that keeps its size fixed or almost fixed, the dynamics of a
single species must be somewhere between the two extremes
considered in this paper. Pure case A dynamics cannot hold
as the average population increases exponentially, while pure
B dynamics is rejected since all species go extinct with
probability 1 so the size of the community must shrink
eventually to 0. In Fig. 4 we plot the mean of (Nt+�t − Nt )/Nt

(positive in pure case A, vanishes in case B) and the mean
ln(Nt+�t/Nt ) (vanishes in pure case A, negative in case B)
vs N as extracted from simulation of a community model
with environmental noise (species specific randomly varying
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FIG. 4. (Color online) The mean of the logarithmic (red) and
arithmetic (black) abundance fluctuations as a function of the
abundance, extracted from simulation of a neutral community model
with both demographic and environmental noise. A Moran-type
continuous time process with discrete individuals was simulated. At
each small time step (dt = 0.1) we generate the number of births and
deaths for each species. The number of births is a Poisson distributed
number with mean αi(t)dt , where αi(t) is the instantaneous growth
rate (fitness) of species i. The number of deaths in the species is
binomially distributed, with the probability Ntot/K per individual,
where Ntot is the instantaneous size of the community and K = 105.
In addition, a Poisson number of new immigrants is drawn, with
mean μdt , where μ = 2. Each immigrant founds a new species. The
birth rates αi are given by αi = exp(γi) where the γi are generated by
an Orenstein-Uhlenbeck process, γ̇i = −γi/τ + η, so that they are
Gaussian distributed with mean 0 and variance 0.001 and correlation
time 2. This way the birth rates are guaranteed positive.

fitness). The situation is clearly between case A and case
B—the arithmetic mean is slightly positive, the log mean is
slightly negative—and shows some nontrivial N dependence.

Our approach shows how a rich behavior may arise in
a simple model where we do not model interaction among
different species. Further works will investigate the effect of
environmental noise when considering a whole ecological
community where species explicitly interact among each
other.
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APPENDIX A: SURVIVAL PROBABILITY IN A MODEL
WITH PURE DEMOGRAPHIC NOISE

We start by considering an event of point speciation, i.e., a
new taxon that appears as one individual, the founder. Let us

denote the chance that a single individual has n descendants
in the sth generation by P (s)

n . In a constant population,
perfectly neutral scenario with pure demographic noise, the
number of offspring n that every given individual produces is
independent of time and identically distributed, given by P (1)

n .
The average number of offspring is unity, i.e.,

∑
n nP (1)

n = 1
and the strength of the demographic noise is characterized by
σ 2 ≡ ∑

n n(n − 1)P (1)
n . This scenario was analyzed by Galton

and Watson (GW), who showed that such a population goes
extinct with probability 1 [27].

To generalize the GW result, one defines the generating
function

G(1)(x) =
∑

n

xnP (1)
n

and its generalization to s generations. For example, P (2)
n

is the chance to have n grandchildren, while G(2)(x) is the
corresponding generating function. The successive generating
functions are given by

G(s)(x) = G(1)[G(s−1)(x)]. (A1)

By definition, G(s)(0) = P
(s)
0 is the probability that the lineage

originating from the founder went extinct by the sth generation,
and G(s+1)(0) − G(s)(0) ≈ dG(s)(0)/ds determines the chance
of extinction at the s generation. After many generations the
chance of extinction is almost 1, so G(s)(0) = 1 − δs , δs 	 1.
Equation (A1) implies that

1 − δs+1 =
∑

n

P (1)
n (1 − δs)

n

≈
∑

n

P (1)
n

[
1 − nδs + n(n − 1)δ2

s /2
]
,

which leads to the recursive equation

δs+1 = δs − σ 2δ2
s /2.

Taking the continuum limit we then obtain that the survival
probability is determined by the differential equation

δ̇(t) ∼ −σ 2δ2(t)/2.

This result implies that the long-time decay of the survival
probability goes like δ(t) ≈ 2/(σ 2t), so the statistics of species
lifetime admits a 1/t2 tail [24].

APPENDIX B: SURVIVAL PROBABILITY AND
AGE-ABUNDANCE RELATIONSHIPS IN A MODEL WITH
BOTH DEMOGRAPHIC AND ENVIRONMENTAL NOISE

1. Neutral dynamics with environmental noise: The geometric
neutral process

In this section we derive our main results, implementing
a model with a geometric distribution of offspring. As
explained in the main text, two cases are considered here: a
logarithmically balanced noise and an arithmetically balanced
noise.

In a neutral model with a geometric distribution but without
any stochasticity, the chance of an individual to produce n

offspring is Pn = 1/2n+1 and the corresponding generating
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function for a single generation is

G(1)(x) =
∑

n

xn Pn = 1

2 − x
.

What makes this model easy to handle is the convenient
structure of the generating function. The generating function
for the population after s generations is obtained by iterating
G(1), and in this specific case the answer is immediate [34],

G(s)(x) ≡
∞∑

n=0

xnP (s)
n = G(G(G . . . s times (G(x))))

= s − (s − 1)x

(s + 1) − sx
. (B1)

Thus the distribution, apart from P0, remains geometric. From
this one can easily derive the results given above for a purely
demographic model for this special case of geometrically
distributed births.

To construct a model combining both demographic and
environmental noise, we consider a discrete time dynamics,
where for convenience we choose the time step to equal the
generation time, so that all individuals of the sth generation
reproduce and then simultaneously pass from the scene.

Now let us consider the two random processes defined
in the main text. The probability for each individual at the
sth generation to produce n offspring conditioned on an
environmental noise determined γs is

P (n|γs) = eγsn

(eγs + 1)n+1
, case A,

(B2)
P (n|γs) = (1 + γs)n

(2 + γs)n+1
, case B,

where case A is the logarithmically balanced noise and case B
corresponds to arithmetically balanced noise.

When γs = 0 for any s one obtains, of course, a purely
demographic process. For nonzero γs the fitness (or the
deterministic growth rate) of the population fluctuates, and
D ≡ γ 2/2 characterizes the strength of the environmental
noise. The model is neutral in the sense that γs is distributed
identically for all species and so considered over long time
scales, all species are demographically equivalent.

The generating functions in the two cases are then

G(1)(x|γs) = 1

1 + eγs − xeγs
, case A,

(B3)
G(1)(x|γs) = 1

2 + γ − x(1 + γ )
, case B.

Using the recurrence relation Eq. (A1) and the offspring
generating function Eq. (B3), one can obtain [34] the general
form of G(s)(x|γs) as

G(s)(x|γs) = as + bsx

cs + dsx
, (B4)

where the values of the constants as, bs, cs , and ds satisfy [for
a log-balanced noise (case A)] the recurrence relation⎡
⎢⎣

as+1

cs+1

bs+1

ds+1

⎤
⎥⎦

=

⎡
⎢⎣

0 1 0 0
−eγs+1 eγs+1 + 1 0 0

0 0 0 1
0 0 −eγs+1 eγs+1 + 1

⎤
⎥⎦

⎡
⎢⎣

as

cs

bs

ds

⎤
⎥⎦ (B5)

with the initial conditions a1 = 1, b1 = 0, c1 = eγ1 + 1 and
d1 = −eγ1 . The corresponding equations in case B are obtained
by replacing eγ by 1 + γ in all the above expressions.

The chance of survival until the sth generation δs ≡ 1 −
Gs(0) is simply

δs = 1 − as/cs.

Accordingly, the survival probability satisfies the stochastic
recursion relations:

δs+1 = δs

e−γs + δs

, case A,

(B6)
δs+1 = (1 + γ )δs

1 + (1 + γ )δs

, case B.

When δs 	 1, it satisfies δs+1 = δse
γs − δ2

s in case A and
δs+1 = (1 + γ )δs − δ2

s in case B. One has to be careful in
translating the equation for case A to a stochastic differential
equation, as exp(γs) has a nonzero expectation value, namely
cosh

√
2D. Thus, in terms of δ there is an extra term driving

δ to larger values. Taking this into account, in the weak
environmental noise limit, γs 	 1, one gets the stochastic
differential equations that were quoted in the main text:

dδ(t)

dt
= γtδ(t) + Dδ(t) − δ2(t), case A,

(B7)
dδ(t)

dt
= γtδ(t) − δ2(t), case B.

2. Long-time asymptotics

The Langevin equations (B7) should be interpreted in
the Ito sense, since they were derived as the white noise,
continuous time limit of a nonoverlapping generation model
that assumes zero relaxation time, i.e., that the population
follows the instantaneous growth rate determined by γ [22,23].
When the relaxation time of the population or the community
is finite (i.e., when the demographic rates respond slowly
to the changing environment, with respect to the noise
correlation time) the effective strength of the environmental
noise amplitude decreases, but the interpretation is still Ito.
Accordingly, in the logarithmic space y = ln(δ), Eqs. (B7)
takes the form

dy

ds
= γ (s) − exp(y), case A,

(B8)
dy

ds
= γ (s) − D − exp(y), case B.

It is clear, now, that as δ → 0, i.e., y → −∞, in case A the
system performs an unbiased random walk in the log space,
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FIG. 5. (Color online) The Morse potential V (y) =
exp(2y)/4D − exp(y)/2 for D = 0.1.

hence in the long run one expects that the probability of a taxon
to have a lifetime t will behave like t−3/2, i.e., that δ(t) ∼ t−1/2.
In case B, on the other hand, the random walk is biased to the
left, and the survival probability should decrease exponentially
in time.

To demonstrate that, we notice that the corresponding
Fokker-Planck equations are

∂sP (y,s)= D∂2
yP (y,s) + ∂y[exp(y)P (y,s)], case A,

∂sP (y,s) = D∂2
yP (y,s) + ∂y{[D + exp(y)]P (y,s)}, case B.

(B9)

With the substitutions P (y,s) = exp(−ey/2D)ψ(y,s) (A) and
P (y,s) = exp(−y/2 − ey/2D)ψ(y,s) (B) one gets

ψ̇(y,s) = Dψ ′′ +
(

exp(y)

2
− exp(2y)

4D

)
ψ, case A,

(B10)

ψ̇(y,s) = Dψ ′′ −
(

exp(2y)

4D
+ D

4

)
ψ, case B.

These are Schrodinger equations in imaginary time with
an exponentially decaying potential (case B) and a Morse
potential (case A; see Fig. 5).

A wave packet which is initially localized at small negative
values of y (corresponding to δ ∼ 1) will eventually reach
the region of large negative y (δ → 0), where the potential
is negligible and the motion is almost purely diffusive. This
is clearer in case B, where the long-term behavior of ψ

(neglecting the exponential term) is

ψ(y,t) ≈ e−y2/4Dte−Dt/4

t
(B11)

so the wave function diffuses in the log space, but this diffusion
is superimposed of an exponential decay exp(−Dt/4) (we have
replaced the generation parameter s by time t , as in the long
term the changes of δ over a single generation are small). For
case A an asymptotic matching approach leads to the uniform
approximation

P (δ,t) ≈ 1

δ
√

πDt
e−[ln(δ/D)+γE ]2/4Dte−δ/D, (B12)

10-10 10-8 10-6 10-4 10-2 100

x
10-10

10-8

10-6

10-4

10-2

100

102

104

P(
x,
t)

Simulation, Dt = 25
Analytic, Dt = 25
Simulation, Dt = 10
Analytic, Dt = 10

FIG. 6. (Color online) Numerical simulation of the Fokker-
Planck equation (B7), compared to the analytic approximation,
Eq. (B12), for D = 0.1, Dt = 10, and Dt = 25.

where γE is the Euler constant. This approximate solution is
shown in Fig. 6, together with a direct numerical solution of
the Fokker-Planck equation (B7). We see that the agreement
is very good, and improves with time. At long times, the
expectation value of δ is δ ≈ √

D/π , so that the extinction
rate has a t−3/2 tail. For case B we have

P (δ,t) ≈ 1

δ
√

πDt
e(lnδ+D)/4Dt (B13)

so that the log-normal distribution moves toward negative
values of ln(δ) at a constant rate, leading to a typical δ which
decays exponentially in time.

3. Abundance-age relationship

We now turn to analyze the effect of environmental noise on
the abundance-age relationship in neutral theory. As explained
in the main text, there are two ingredients that determine the
age-abundance relationships: the chance of a species to reach
abundance N after s generations, and its chance of survival.
The ratio between these factors gives Nsurv, the average size
of a surviving species. The chance of survival was calculated
above, and now we will calculate the average abundance.

In case B the result is quite trivial: since the demographic
and the environmental stochasticity are both balanced in the
abundance space, the average abundance of a species is fixed.
Accordingly, we perform the analysis here for case A, and will
explain at the end how the results relate to our prediction for
case B.

From Eq. (B4), we can see that the width of the geometric
distribution of the abundance at time s is given by ζ (s) =
−1/ ln(−ds/cs). Note that ds and cs satisfy the same recurrence
relations, and the only difference between them is the initial
conditions. This allows us to consider only ds and then to carry
over the results to cs and hence calculate their ratio. From (B5)
it is clear that ds satisfies

ds+1 − ds = eγs (ds − ds−1). (B14)
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The solution to this is easily verified to be

ds = d1

s∑
k=1

k∏
j=2

eγj . (B15)

Given d1 = −eγ1 , we can write this as

ds = −
s∑

k=1

k∏
j=1

eγj . (B16)

As explained above, the equations for c is the same, except
that c1 = 1 + eγ1 , so that

cs =
s∑

k=0

k∏
j=1

eγj . (B17)

Thus, ds = −(cs − 1) and so 1/ζ = − ln(−ds/cs) = − ln(1 −
1/cs). It should first be noted that for s � 1, D 	 1, cs is
large. For the case of binary noise, for example, γ = ±γ0, the
minimum possible value of cs is for the case where γs is always
negative, in which case cs ≈ 1/γ0. Thus, ζ ≈ cs , so that

ζ ≈
s∑

k=0

k∏
j=1

eγj =
s∑

k=0

eDk/2 = 2

D
(eDs/2 − 1). (B18)

So we see that cs is exponentially large for large s (see Fig. 7).
For case B, as explained, one should replace eγ by 1 + γ ,

and the trivial result is a linear growth, ζ ∼ t .
The result (B18) has two limits: when s 	 1/D, the

environmental noise is negligible and the average abundance of
a species (conditioned on its presence in the community) grows
linearly in time. However, at long times the environmental
noise controls the system and the typical size of surviving
species grows exponentially with s. In this regime the typical
time scale (in generations) needed for a species to reach
abundance N will scale like ln(N )/D, as opposed to the linear
N scaling for pure demographic noise.
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FIG. 7. (Color online) A graph of the ensemble-averaged width
ζ (s) calculated by averaging ζ as computed from the analytic
generating function Eq. (B5) over 106 realizations of binary noise γ =
±γ0, with γ0 = 0.1. Also shown is the analytic formula, Eq. (B18).

4. Average vs typical age-abundance relationships in case A

Our result for case A, Eq. (B18), might appear at first glance
to be in contradiction to the results proved by Geiger and
collaborators [35]. These authors show that, in case A,

lim
s→∞

ln[E(Nsurv)]

s
= 0, (B19)

and decided that this log-balanced scenario is “critical,” as
opposed to case B (or, in general, any noise which gives a
negative bias in the log space) which is subcritical.

To explain this apparent contradiction, let us stick to the
method used in Ref. [35], averaging first over demographic
noise. In the log-abundance space, what one has after taking
this average is a random walker that starts at zero (one
individual) and moves randomly with no bias until s. Clearly,
the population at s, conditioned on survival and averaged over
demographic noise, is exp(y), where y is the location of a
random walker that starts at s = 0 and subsequently never
crosses zero, since otherwise it goes extinct. Such a constrained
random walk (RW) is known as a meander. To calculate the
probability that the meander is at y at time s one solves for a
RW that starts at xo using images, taking x0 to zero at the end.
The result is

P (y,s) = A
ye−y2/4Ds

s3/2
. (B20)

Accordingly, the maximum likelihood for the position of the
meander at s is (for large s),

YML =
√

2Ds. (B21)

This implies that the typical size of a population at s,
conditioned on nonextinction, is

N typ
surv ≈ ey = exp(

√
2Ds). (B22)

On the other hand, the average value of Nsurv will be

Nsurv ≈
∫

dyey ye−y2/4Ds

s3/2
≈ eDt . (B23)

Note that the result for the average comes from the peak of the
integrand at y∗ = 2Ds (this is a Laplace integral) and P (y∗)
is exponentially small as s → ∞, so this result is consistent
with [35] since the average comes from exponentially rare
events (with probability 1 this will not be the case for any
specific history). On the other hand, P (yML) is O(1/t),
which is not negligible. However, the typical growth is
subexponential, and clearly agrees with (B19).

APPENDIX C: UNIVERSALITY

Throughout Appendix B we have studied the geometric
neutral process because of its convenient properties. Of course,
any result that depends on the specific properties of a certain
distribution cannot be relevant to the generic case, where the
distribution of number of descendants per individual is, in most
cases, unknown and there is no reason to believe that it belongs
to any particular simple distribution.
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To illustrate the generality of our results, let us consider the
survival probability δs . In the generic case one may define
a probability distribution function Pn(s), the chance of an
individual to produce n offspring during the s generation, and
of course the two important summary statistics that charac-
terize this distribution are its mean [in case A, n̄ = exp(γs),
in case B, n̄ = γs] and its variance. Here we assume that the
environmental noise is weak so one can neglect the variance
fluctuations and var(n) = σ 2, where σ 2 is the variance of the
purely demographic model (σ 2 = 1 for Poisson distribution
with average 1, σ 2 = 2 for the geometric distribution, and so
on).

The generating function recursion relation implies that

G(s)(x) = G(1)
s (G(s−1)(x)). (C1)

In the long-time limit the chance to survive is
small, so G(s)(x) = 1 − δs . Plugging this into (C1)

one gets

1 − δs =
∑

n

Pn(s)(1 − δs−1)n

≈
∑

n

Pn(s)

(
1 − nδs−1 + n2 − n

2
δ2
s−1

)
. (C2)

Accordingly,

δ̇ ≈ δs − δs−1 = (eγs − 1)δ − σ 2

2
δ2, case A,

δ̇ = γsδ − σ 2

2
δ2, case B. (C3)

The second equation is what appears in Eq. (4) of the main
text. In case A one needs to expand the exponent in γ and
to replace γ 2/2 by D to obtain the equation presented in the
main text.
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