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Abstract. Alternative dating methods to radiocarbon have been recently developed to study the 
Turin Shroud (TS), the linen sheet that according to the tradition enveloped the dead body of 
Jesus Christ; among them, a mechanical one is based on the study of five mechanical 
parameters in reference to the breaking strength, the Young modulus and the loss factor. This 
method tests single TS linen fibers using a machine, built in for the purpose, capable to 
measure the stress-stain parameters during loading cycles. These parameters have been already 
shown to be dependent on the age of the linen under test, and a preliminary result has been 
obtained: the TS date is 400 A.D. ±400 years at 95% confidence level. A companion paper has 
combined this mechanical result with two chemical ones, coming from Raman and FT-IR 
spectra, and the combined result is 90 AD ±200 years at 95% confidence level, thus confirming 
the compatibility of the age of the TS with the period in which Jesus Crist lived in Palestine. As 
the evaluation of the uncertainty propagation is not simple in the case of the mechanical 
parameters, this paper tries to furnish a more reliable result applying the Monte Carlo method 
to the mechanical parameters directly measured. The obtained mechanical age of the TS of 279 
A.D. ±216 years at 95% confidence level is compatible with the previous results, but with an 
uncertainty almost halved. 

1 Introduction 
The Turin Shroud [1,2,3] (TS) is a handmade 3-1 twill linen cloth, 4.4 m long and 1.1 m wide, on 
which the complete front and back images of a human body are indelibly impressed. According to the 
Catholic Christian tradition, the TS is the burial cloth in which Jesus Christ was wrapped before being 
placed in a tomb in Palestine about 2000 years ago; for this reason, it is the most important Relic of 
Catholic Christianity. Even if the Science has not demonstrated the contrary, the Catholic Christian 
Church does not impose any veneration of it. 
The TS enveloped the corpse of a scourged, thorn-crowned, and crucified man who was stabbed in the 
side by a lance. There are also many marks caused by blood, fire, water, and folding on the cloth that 
partially obscure the double, front and back, body image[3]. The wounds are of great interest to 
forensic pathologists.  
In 1988 the TS has been radiocarbon dated in medieval age [4]. The result has been widely criticized 
for many reasons [5, 6, 7, 8], but no alternative dating has been proposed. For this, alternative dating 
methods have recently been suggested [9] both of chemical (based on Raman and FT-IT spectrometry) 
and of mechanical type [10]. 
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The scientific interest in the TS has been developed from its first photograph in 1898 where the image 
appeared as a negative. The luminance levels also revealed a three-dimensional (3D) image of a 
human body, interpreted as mapping cloth to body distance. The bloodstains originated from human 
blood left by direct body-cloth contact. 
The most depth scientific analysis of the TS, performed in 1978 by the STURP (Shroud of TUrin 
Research Project) [1, 2], yielded no explanations for the body image formation on the TS.  
As the breaking strength, the Young modulus and the loss factor are mechanical parameters that can 
be easily correlated with the age of a linen fabric, an ad hoc cyclic-loads machine able to measure 
these parameters of flax fibers has been built and used to date the TS [11, 12]. A preliminary result 
has been obtained: the TS is datable to 400 A.D. ±400 years at 95% confidence level, but the 
uncertainty has been perhaps overestimated because it is not easy to propagate the uncertainty of the 
measured mechanical parameters to the age of the TS. 
A companion paper [13] has combined this mechanical result with two chemical ones coming from 
Raman and FT-IR spectra [9], and the combined result is 90 A.D. ±200 years at 95% confidence level, 
thus confirming the compatibility of the age of the TS with the period in which Jesus Crist lived in 
Palestine. 
In this paper, after a brief summary describing the cyclic loading machine and the measured 
mechanical parameters, the Monte Carlo method [14, 15, 16] has been applied to better evaluate the 
uncertainty relative to the TS age (the indirect parameter) starting from the mechanical measurements 
(the direct parameters) of the TS fibers with their uncertainties [11, 12]. 

2 Mechanical parameters of flax fibers 
The age influences the mechanical properties of the vegetable fibers, because they undergo a 

spontaneous and irreversible degradation, in particular related to the polymerization degree of 

cellulose, with a corresponding increase of the amorphous cellulose [17]. Therefore the mechanical 

analysis of the fibers can furnish parameters [18, 19, 20, 21, 22] that can be directly related to a 

specific historical age. 

The mechanical parameters most suitable to study the aging of the plant fibers appear therefore to 

be the tensile strength, the longitudinal modulus of elasticity, or Young modulus, and the loss factor. 

The first parameter can be obtained from simple tensile tests, while the Young modulus and the loss 

factor must be extracted from cyclic loading tests. 

The ancient flax fibers coming from the TS, for which the study of Refs. [10, 11, 12] were mainly 

aimed, have in fact a diameter ranging from 5 to 25 �m and lengths between 1 and 5 mm. As the 

breaking strength of the modern fibers is much higher than that of ancient ones, it has been necessary 

to build a new cyclic-loads machine because of the impossibility to use traditional tensile tools, which 

are indeed unable to control loading cycles characterized by relatively low forces, of the order of few 

�N. An example of the stress-strain measurements furnished by the new machine is shown in Fig. 1.  

The flax fiber has a quite complex geometry [23] that can be evaluated using a SEM (Scanning 

Electron Microscopy); nevertheless, this microscopic method is quite invasive and therefore not 

suitable for a subsequent mechanical analysis. On the other hand, a SEM performed on the pre-

stressed fiber can furnish not reliable data because of the induced permanent deformations.  

The presence of lumen (central void) in the flax fiber and the non-cylindrical geometry can both 

influence the cross section evaluation based on the measured “diameter” (intended as the maximum 

fiber width measured by means of an optical microscope connected to a vision system) also of 10%. 

The target uncertainty for the measurements of the mechanical parameters has been therefore chosen 

as ±10% considering a rectangular distribution, that, according to Ref. [14], must be divided by 3
1/2

 to 

determine the corresponding standard uncertainty at 68% confidence level.  

It is to remember here that Ref [14] explains how to evaluate the measurement uncertainty and 

tends to assign Gaussian distributions to the uncertainties of each parameter under analysis, especially 

if the number of parameters under evaluation is relatively high. This preference is based on the 

01003-p.2



Central Limit Theorem that assures a near Gaussian distribution as the result of the combination of 

many distributions of different types. 

The same Ref. [14] also reports a summary of the coefficients to be used to transform various 

kinds of distributions to the Gaussian one; in the present paper the coefficient 3
1/2

 was used in the case 

of rectangular distributions. 

Proceeding with the calculation of the measurement uncertainty Ref. [14] imposes to evaluate the 

standard uncertainty as the estimated standard deviation of the measured parameter and in the case of 

a Gaussian distribution this uncertainty corresponds to a confidence level of 68%. 

Nevertheless the final result must be expressed using an expanded uncertainty, frequently 

evaluated at 95% confidence level, that in the case of Gaussian distributions corresponds to the 

standard uncertainty multiplied by a factor equal to 2. This paper proceeds just in this way. 

A probabilistic distribution of the Gaussian type has been assigned for all the uncertainties that are 

expressed as standard uncertainty evaluated at 68% confidence level. 

The following mechanical parameters have been measured for each fiber under test: 

-1. Breaking strength, σR  
-2. Final increasing modulus, Ef, regarding the last increasing part of the highest complete loading 

cycle among those performed. 

-3. Initial decreasing modulus Ei regarding the first decreasing part of the highest loading cycle 

among those performed. 

-4. Loss factor ηd regarding the last complete loading cycle; it represents the dissipated energy 

defined as: 

 
U

D
�

�
2

� (1) 

where D and U are respectively the dissipated and stored energies during a whole loading cycle. 

 

   

Figure 1. Example of the result of a cyclic loading test on a fiber (on the left), and the same result (on the right) 
obtained after a proper processing addressed to highlight the sequence of cycles. 

-5. Loss factor ηi, regarding an inverse loading cycle; this was evaluated in reference to the last 

unloading phase of the cycle coupled with the last loading action that produces the fiber breaking. 

Moduli Ef and Ei are determined using criteria similar to those adopted by the ASTM standards for 

the determination of the “initial modulus” [21, 22]. 
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As regards the determination of the mechanical parameters, standardization was made, because in 

the case of the flax the fiber’s strength depends on diameter, length and environmental humidity. The 

“standardization” [10, 11] concerning the measured stresses σ was done with reference to a standard 

fiber having length L=1.0 mm between the two clamps, diameter d=15 μm, relative humidity H=50%. 

The standard stress σR applied to each fiber has been thus evaluated as: 

 �� ����
HdLR
KKK (2) 

where KL, Kd and KH are respectively the length, diameter and humidity coefficients defined [10, 11] 

as follows: 

 
L.

KL ��
�

93201500

1479
   

d..
.Kd ��

�
45214189

6267
   

H
KH �	

�
3.250580.4

743.0
 (3) 

where L [mm] and d [�m] are respectively the measured fiber length and diameter, and H [%] is 

the laboratory humidity. 

The relationships between each mechanical parameter and the age of the fabric have been 

determined by measuring the corresponding parameter for nine reference samples having known age, 

obtained from historical information and/or radiocarbon analysis [10, 11, 12]. Table 1 shows the 

mechanical parameters measured for each reference sample and Figure 2 displays the corresponding 

plots. The date of the fibers is shown in year unit, by considering it as a relative number (excluding 

zero that does not influence the assigned uncertainty) with a negative value, if the date is B.C., and 

otherwise with a positive one. 

It is to note that three mechanical parameters (σR, Ef, Ei) increase exponentially with date, while 

the loss factors ηd and ηi decrease almost linearly with date. 

In reference to the exponential increase of the first three parameters, this behaviour can be 

explained supposing that it is directly correlated to the natural cellulose degradation that is a first-

order reaction kinetics, such as the radiocarbon decay [24]. The linear behaviour of the loss factor can 

be instead explained with a constant increment of the cellulosic chains rupture that produces a linear 

increase with time of the slippage among those chains that in turn increases the parameter in question, 

which is directly linked with energy dissipation. 

Table 1. Mechanical parameters of the nine flax fibers used as reference samples measured by means of the 

cyclic loading machine. Sample’s labels correspond to those of Refs. [10, 11]; standard uncertainty corresponds 
to a confidence level of 68%. 

Sample’s 
Label 

Date  
[year] 

Standard 

uncertainty 
of date  

σR
[MPa] 

Ef

[GPa] 

Ei

[GPa] 
ηd ηi

LII -3250 144 2.11 0.184 0.504 0.1282 0.0821 

K -2652 100 58.86 5.368 6.392 0.0965 0.0702 

HII -860 81 44.10 3.965 7.512 0.0840 0.0553 

E -375 17 140.46 4.342 2.978 0.0851 0.0327 

NII -290 35 118.64 4.546 6.876 0.0798 0.0459 

FII 65 6 150.62 7.375 9.675 0.0795 0.0368 

D 575 17 63.21 4.201 5.364 0.0744 0.0519 

DII 1072 43 678.14 19.002 23.283 0.0529 0.0334 

B 2000 3 1075.70 24.838 32.244 0.0475 0.0159 
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Figure 2. Mechanical parameters of the reference samples reported in Table [1]. 
 

Other possible relationships between the mechanical variables have also been tested using a linear 

model or a polynomial interpolation, but the exponential law for the first three parameters in all cases 

resulted the best fitting, confirming thus the agreement between experimental results and theoretical 

model. 

The independency of the five mechanical parameters has been studied in a companion paper [13] 

using the Multiple Linear Regression Method based on the least squares estimate. A zero determinant 

value of a matrix product evidenced the existence of a multicollinearity condition for two couples of 

the five mechanical parameters. In particular, both the couples of the moduli Ef and Ei, and loss factors 

ηd and ηi, have been found respectively dependent, in agreement with the theoretical model, even if 

they were defined along different paths of the loading cycle. Therefore, the five measured mechanical 

parameters were reduced to three. 

Table 2 therefore shows the three mechanical parameters defined for the present study where Em 

and ηm are the arithmetical mean values respectively obtained by moduli Ef and Ei, and loss factors ηd 

and ηi. 

 

Table 2. Mechanical parameters of the nine flax fibers used as reference samples measured by means of the 

cyclic loading machine. Sample’s labels correspond to those of Refs. [10, 11]; standard uncertainty corresponds 
to a confidence level of 68%. 

Sample’s 
Label 

Date 
[year] 

Standard 

uncertainty 
of date 

[years] 

ln(σR 
[MPa])

ln(Em 
[GPa])

Standard 

uncertainty 
of ln(σR)  

& ln(Em)

ηm
Standard 

uncertainty 
of ηm

LII -3250 144 0.7463 -1.0675 0.0577 0.1056 0.0061 

K -2652 100 4.0752 1.7715 0.0577 0.0833 0.0048 

HII -860 81 3.7864 1.7472 0.0577 0.0696 0.0040 

E -375 17 4.9449 1.2975 0.0577 0.0589 0.0034 

NII -290 35 4.7761 1.7424 0.0577 0.0628 0.0036 

FII 65 6 5.0148 2.1430 0.0577 0.0581 0.0034 

D 575 17 4.1464 1.5650 0.0577 0.063 0.0036 

DII 1072 43 6.5194 3.0513 0.0577 0.0432 0.0025 

B 2000 3 6.9807 3.3513 0.0577 0.0317 0.0018 
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3 The Monte Carlo method to determine the calibration curves 
As shown in Section 2, the uncertainties of the sample’s age and of the measured values using the 

cyclic loading machine, are characterized by a probabilistic distribution of Gaussian type, and are 

expressed, if not differently specified, as standard uncertainty that corresponds to a confidence level of 

68%. 

As it is not simple to propagate the uncertainties of the measured parameters to those of both the 

calibration curves and the age of the TS, it is useful to apply the Monte Carlo method to determine the 

probabilistic distribution of the coefficients of the interpolating lines, and in the following Section 4, 

the probabilistic distribution of the TS age. This method is in fact adopted in stochastic processes 

when the data vary randomly in a predetermined range. 

According to Ref. [15] the three calibration curves of �R, Em, ηm have been determined considering 

the statistically distribution on N curves generated by a proper code written in MatLab
®
 language. 

This code processes the nine mechanical parameters for each of the three calibration curves by adding 

an uncertainty to the corresponding measured mechanical values; the uncertainty is calculated by 

multiplying a pseudo-Gaussian random number with the corresponding assigned standard uncertainty. 

As the first two parameters �R and Em, show an exponential behaviour, the following function has 

been considered: 

 yc
p ecm ��� 1

0  (4) 

where mp is the mechanical parameter, y the age, while c0 and c1 are constants. Eq. (4) may be then 

represented in a linear form as: 

 qymyc)(c)(mp 	���	� 10lnln  (5) 

where m=c1 is the slope, q=ln(c0) is the intercept of an interpolating straight line. 

In the case of the loss factors, considering their linear dependence on the age y, the calibration 

formula may be simply written as: 

 qymmp 	��  (6) 

where m is the slope, q the intercept. 

 

It is known [14] that the probabilistic Gaussian distribution of the variables’ values in the 

interpolation process, yields a probabilistic Gaussian distribution too, also for the coefficients m and q 

of the interpolating lines of Eqs. (5, 6). 

By applying the Monte Carlo method to the three mechanical parameters with N=100 000, the 

results plotted in Figs. 3, 4 and 5 have been obtained; the corresponding m and q coefficients with 

their standard deviations are shown in Table 3. As foreseen, the resulting distributions are pseudo-

Gaussian. 

In reference to Figs. 3 and 4, the sample K may be seen as an outlier, but the same can’t be said in 

reference of Fig. 5. Instead of applying a mathematical method to decide the possible cancellation of 

sample K, the same Monte Carlo method has been applied to the series of 8 reference samples without 

the possible outlier in question. As the resulting curves show no appreciable variation and as the TS 

date varied of few tens of years, the decision to consider or not the sample K in the calibration 

appeared of second order with respect to the TS result, and therefore the sample K was not considered 

as an outlier in the present evaluation. 
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Figure 3. Calibration line relative to the breaking strength (on the top) with N=100 000 determined by means the 

Monte Carlo method. Lines relative to m±sm and q±sq have been added in the plot. The pseudo-Gaussian 
distribution of the m and q coefficients (on the bottom). 
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Figure 4. Calibration line relative to the Young modulus (on the top) with N=100 000 determined by means the 

Monte Carlo method. The lines relative to m±sm and q±sq have been added in the plot. The pseudo-Gaussian 

distribution of the m and q coefficients (on the bottom). 
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Figure 5. Calibration line relative to the loss factor (on the top) with N=100 000 determined by means the Monte 

Carlo method. The lines relative to m±sm and q±sq have been added in the plot. The pseudo-Gaussian distribution 
of the m and q coefficients (on the bottom). 

 

Table 3. Coefficients of the interpolating lines (mechanical parameter versus age) and corresponding standard 
deviations determined by means of the Monte Carlo method. 

Mechanical 

parameter 
m sm q sq 

ln(�R) 0.0009256 0.0000225 4.936 0.0254 

ln(Em) 0.0006094 0.000018 1.9848 0.0225 

�m -0.00001223 0.00000099 0.05895 0.00117 
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4 Dating of the Turin Shroud by using the Monte Carlo method 

The calibration curves (straight lines) that relate the three mechanical parameters �R, Em, and ηm 

with the flax textile age, can be used to determine the age of the TS. Table 4 shows the mechanical 

parameters, with relative uncertainty, measured for the TS. 

Table 4. Mechanical parameters of the TS; the standard uncertainty corresponds to a confidence level of 68%. 

σR
[MPa] 

Ef

[GPa]

Ei

[GPa]
ηd ηi

ln (σR
[MPa])

ln (Em
[GPa])

Standard 

uncertaint

y of ln(σR)
& ln(Em)

ηm

Standard 

uncertaint

y 
of ηm

243.22 6.283 10.783 0.0824 0.0361 5.494 2.144 0.0577 0.0593 0.00342 

 

Being the age y to be evaluated as a function of the mechanical parameter mp, eqs. (5) and (6) are 

respectively rearranged as: 

 
 �q)(m
m

y p �� ln
1

 (5’) 

 
 �qm
m

y p ��
1

 (6’) 

where the coefficients m and q have been previously determined by means of the interpolation 

processes described in Section 3. 

The three ages (corresponding to each mechanical parameter) of the TS have been thus determined 

by applying the Monte Carlo method to Eqs. (5’, 6’) using the data of Table 4, with N = 100 000. The 

results are shown in Figs. 6, 7, 8, and in Table 5. 

The final age of the TS has been evaluated, by using again the Monte Carlo method to average the 

three TS partial dates obtained by the corresponding mechanical parameters.  

In particular for N = 100 000 times the average of the three mean TS values, to which the 

corresponding uncertainty defined by the product of a pseudo-Gaussian random number with the 

assigned standard uncertainty, has been evaluated; the result is plotted in the pseudo-Gaussian 

distribution of Fig. 9. The mean age of the TS results of 278 A.D. with an uncertainty of 216 years at 

95% confidence level. 

 

Figure 6. On the left TS measured breaking strength (in red) on the calibration plot; the marker x indicates the 

mean value of TS. Resulting date of 603 A.D. with an uncertainty of 138 years at 95% confidence level in the 

pseudo-Gaussian plot resulting by Monte Carlo method on the right. 
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Figure 7. On the left TS measured Young modulus (in red) on the calibration plot; the marker x indicates the 

mean value of TS. Resulting date of 262 A.D. with an uncertainty of 204 years at 95% confidence level in the 
pseudo-Gaussian plot resulting by Monte Carlo method on the right. 

 

 

    
Figure 8. On the left TS measured loss factor (in red) on the calibration plot; the marker x indicates the mean 

value of TS. Resulting date of 29 B.C. with an uncertainty of 596 years at 95% confidence level in the pseudo-
Gaussian plot resulting by Monte Carlo method on the right. 
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Figure 9. Pseudo-Gaussian distribution of the age of the TS resulting from the application of Monte Carlo 

method to the average of the three ages evaluated in correspondence of the three mechanical parameters �R, Em, 

�m. The mean age of the TS results of 278 A.D. with an uncertainty of 216 years at 95% confidence level. 

 

Table 5. Age of the TS resulting from the application of Monte Carlo method to the measured mechanical 
parameters. 

�R:  
TS age 

�R: TS st. 
deviation 

Em:  
TS age 

Em: TS st. 
deviation 

�m:  
TS age 

�m: TS st. 
deviation 

Average: 
TS age 

Average: 

TS st. 
deviation 

603 A.D. 69 262 A.D. 102 30 B.C. 298 278 A.D. 108 

 

The resulting age of 278 A.D. ±216 years at 95% confidence level obtained by applying the Monte 

Carlo method to the measured mechanical parameters, is compatible with a previous result reported in 

Refs. [10, 11, 12] as of 400 A.D. ±400 years at 95% confidence level, but the uncertainty has been 

here reduced. It is also compatible with a companion paper that has combined this mechanical result 

with two chemical ones coming from Raman and FT-IR spectra and the combined result is 90 AD 

±200 years at 95% confidence level. 

These results clearly show the incompatibility with the 1988 radiocarbon result of 1325 A.D. ±65 

years at 95% confidence level. 

This result here obtained is also in agreement with the tradition that considers the TS as the burial 

cloth of Jesus Christ in 30 A.D. or in 33 A.D.. The reduced uncertainty obtained using the Monte 

Carlo method puts however the supposed age in proximity of the limit of the mean value minus two 

times the standard deviation, i.e. in proximity of the limit of 95% confidence level.  

Thus, if the tradition of the TS is assumed as true, this fact leads to think that the mechanical 

results might be affected by a non-identified bias of about two centuries. This bias could be perhaps 

related to the fact that one or two more recent fibers not coming from the TS (not excluded coming 

from the sewed Holland Cloth) have been mixed with the TS ones thus slightly varying the averages 

of the corresponding mechanical parameters. 

 

5 GAUSSIAN DISTRIBUTION VERIFICATION 
 

The results obtained by the Monte Carlo simulation are here considered normally distributed both 

because the theoretical model states that the convolution of some Gaussian distributions gives again a 

Gaussian distribution, and because they qualitatively show pseudo-Gaussian histograms. 

This qualitative evaluation can be confirmed by testing the goodness of fit of the empirical 

distribution under evaluation with the theoretical Gaussian one by using the classical test of Chi-

square.  

It is well known that the distribution of Figure 9 can be considered as Gaussian if, subdividing the 

resulting distribution in k classes and assuming a risk of error of 5%, its Chi-square χ
2
 value is within 

the range whose limits are χ�
� and χ�

� of Table 6. 

As the pseudo-random generator of MatLab
®
 software used to build the pseudo-Gaussian 

distribution gives dissimilar results per each run, 7 different results have been compared in Table 6. It 

is evident that in the case of k=9 classes all the 7 runs give a χ
2
 within the limits, but when k=103 

classes (and therefore 100 degrees of freedom) the χ
2
 value exceeds the upper limit in three cases. 

Therefore an 8
th
 case has been chosen for the analysis where the χ

2
 results within the limits; this case 

is shown in Figure 9. 
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Table 6. Results of the Chi-square test χ2 applied to 7 different runs of the software using both k=9 and k=103 
classes, and result of the distribution of Figure 9 (Run #8) using k=103 classes. The off limit values (external to

χ�
� and  χ

�
�) of χ2 are underlined in italic. 

Run # 
  k=9  k=103  

χ�
� χ2

χ�
� χ�

� χ2
χ�

�

1 1.237 5.266 14.449 74.222 175.654 129.561 

2 1.237 4.739 14.449 74.222 95.881 129.561 

3 1.237 10.112 14.449 74.222 120.628 129.561 

4 1.237 6.098 14.449 74.222 115.529 129.561 

5 1.237 13.827 14.449 74.222 141.757 129.561 

6 1.237 1.466 14.449 74.222 98,62 129.561 

7 1.237 5.026 14.449 74.222 133.048 129.561 

8 - - - 74.222 103.954 129.561 

 

6 Robustness analysis 
 

To perform a verification of the robustness of the Monte Carlo Method one of the nine test 

samples has been removed from the calibration procedure, and the data of the mechanical parameters 

of the sample has been used to evaluate its age. The data of the mechanical parameters relative to the 

eight remaining test samples were used for the calibration, while both the TS sample and the removed 

one have been again dated.  

It was considered appropriate to remove from calibration a middle aged sample with date close to 

that supposed for the TS: the choice fell on the sample FII (A.D. aged 65 ±6 years at 68% confidence 

level). 

The results are reported in Table 7, where also the data of the TS has been reported as a function of 

the eight samples. It is to observe that the new age of the TS differs only eleven years from the value 

calculated using the nine samples. 

In correspondence of a known age of 65 ±6 years at 68% confidence level, the Monte Carlo 

Method furnishes a compatible date of 147 ±107 years at 68% confidence level, thus confirming the 

robustness of the method. 

Table 7. Age of the TS resulting from the application of Monte Carlo method to the measured mechanical 
parameters. 

Sample� �R:
age

�R: st. 
deviation


m:
age


m: st. 
deviation

�m:
age

�m: st.
deviation

Average:
age

Average: 
st. 

deviation

TS 606
A.D. 70 290 A.D. 104 28 B.C. 301 289 A.D. 109

FII 88 A.D. 69 289 A.D. 104 64 A.D. 295 147 A.D. 107
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7 CONCLUSION 
 

A cyclic-loads machine has been used for the measurement of micro-mechanical properties of 

single flax fibers of length in the range from 1 to 3 mm. 

Five mechanical parameters relative to ancient fibers that have been successively reduced to three 

because of some dependence allowed defining a method for textiles dating alternative to the 

radiocarbon dating, which is costly and destructive. 

Analyzing the stress-strain plots of loading cycles, the following mechanical parameters sensitive 

to ageing have been used: breaking strength, Young modulus and loss factors. A pre-selection of the 

flax fibers has allowed to considerably reduce the bias due to environmental factors like humidity and 

temperature.  

The mechanical dating method has been applied to single flax fibers coming from the backside of 

the TS, picked up during the 1978 campaign in correspondence of the buttocks area [11, 12] in order 

to obtain an age of the Relic, alternative to that furnished by the 1988 radiocarbon dating [4] that 

showed a questionable result [8]. 

To do this the calibration curves, obtained by measuring nine test samples have been employed in 

agreement with previous works [10, 11, 12] that dated the TS as 400 A.D. ±400 years at 95% 

confidence level. 

To better evaluate the uncertainty of these results the Monte Carlo method has been applied in this 

work demonstrating the compatibility of this result with those obtained using other avenues, but 

reducing the uncertainty of the resulting age of the TS at 278 A.D. of an almost two factor; in 

particular of 216 years at 95% confidence level. 

After controlling that the Chi-square value of χ
2
 = 104 is within the limits of the Gaussian 

distribution, a verification of the robustness of the method has been done. The Sample FII has been 

removed from the calibration samples, and its known age of 65 A.D. ±12 years at 95% confidence 

level, has been compared with the calculated one that results of 147 A.D. ±214 years at the same 

confidence level, thus confirming the compatibility between the known and calculated ages.  

The compatibility of the age of the TS with the period in which Jesus Christ lived in Palestine is 

therefore again confirmed, but the Monte Carlo method evidenced the possible presence of a 

systematic effect, perhaps due to the one or two more recent fibers measured within the TS ones, that 

increased the measured age of about two centuries. 
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