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Abstract
We want to prove that a static analysis of a given program is com-
plete, namely, no imprecision arises when asking some query on the
program behavior in the concrete (i.e., for its concrete semantics)
or in the abstract (i.e., for its abstract interpretation). Completeness
proofs are therefore useful to assign confidence to alarms raised by
static analyses. We introduce the completeness class of an abstrac-
tion as the set of all programs for which the abstraction is complete.
Our first result shows that for any nontrivial abstraction, its com-
pleteness class is not recursively enumerable. We then introduce a
stratified deductive system `A to prove the completeness of pro-
gram analyses over an abstract domain A. We prove the soundness
of the deductive system. We observe that the only sources of incom-
pleteness are assignments and Boolean tests — unlikely a common
belief in static analysis, joins do not induce incompleteness. The
first layer of this proof system is generic, abstraction-agnostic, and
it deals with the standard constructs for program composition, that
is, sequential composition, branching and guarded iteration. The
second layer is instead abstraction-specific: the designer of an ab-
stract domain A provides conditions for completeness in A of as-
signments and Boolean tests which have to be checked by a suitable
static analysis or assumed in the completeness proof as hypotheses.
We instantiate the second layer of this proof system first with a
generic nonrelational abstraction in order to provide a sound rule
for the completeness of assignments. Orthogonally, we instantiate
it to the numerical abstract domains of Intervals and Octagons, pro-
viding necessary and sufficient conditions for the completeness of
their Boolean tests and of assignments for Octagons.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Software/Program Verification—correctness proofs, formal
methods; D.3.1 [Programming Languages]: Formal Definitions
and Theory—semantics; F.3.2 [Logics and Meanings of Pro-
grams]: Semantics of Programming Languages—program analy-
sis;

General Terms Languages.

Keywords Abstract interpretation; abstract domain.
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1. Introduction
Consider the typical creative process faced by Alice, the designer
of a new static analysis A. Alice starts with a set of “representa-
tive” programs and properties to be checked, e.g., the absence of
certain runtime errors or of infinite computations. She designs the
static analysis—equivalently the abstract domain—that best fits her
initial dataset. Next, she will try the analysisA on a new set of pro-
grams, validate the results, and carefully refine the abstract domain
or improve the efficiency as needed. When A becomes precise and
fast enough it is shipped to external users.

A major part of the design of A is the tuning of the cost/pre-
cision trade-off—the analysis should deliver the expected answer
on a set T of test programs without asking too many computational
(time, space) resources. To achieve it, Alice gives up some of the
precision, i.e., she consciously introduces incompleteness into A.
The rationale for this design choice is that T represents real-world
programs and as such she needs A to be complete for them. We
denote this set of programs with C(A), where A is the abstraction,
or a set of abstractions, employed by the static analysis A. On the
other hand, the incompleteness of the analysis will only manifest in
less common or pathological programs.

Ideally, given a program P , Alice wants to know whether P is
in C(A) or not. In fact, if P ∈ C(A) then the analysis will be
precise and it will answer exactly to any query q on the behaviour
of P which is expressible in the language of A. As a consequence,
any alarm raised by the static analysisA on P will be a true alarm,
and A can then be used as an effective program verifier for P .

The Problem. We are interested in proving that P ∈ C(A).
For instance, let us consider the basic abstract domain Null =
{⊥,Null ,NotNull ,>} for nullness analysis of variables [1]. The
non-null analysis will infer that, for the (intentionally very simple)
program NN in Figure 1, x is not null after the conditional—if
the true branch is taken, x is null but it is assigned a freshly allo-
cated memory location; otherwise x maintains its non-null value.
Intuitively, NN ∈ C(Null): both the Boolean guard x = null
and its negation x 6= null are exactly representable in Null; new
is complete w.r.t. nullness: we do not know what happens to the
heap (abstraction), but we know for sure it returns a non-null value
(complete abstraction); skip does not affect the current state; and,
eventually, the join does not introduce imprecision.

Next, let us consider the program Dec in Figure 2. Let us assume
to analyze it using the abstract domain of intervals, Int [3], without
loop unrolling and widening—in this case, the number of abstract
iterations is finite. The analysis will report that x ∈ [0, 0] at
the loop exit, which is the most precise answer. Why is this the
case? At first, one may argue that since the inferred invariant is a
singleton it is necessarily the most precise one. However, this way
of reasoning is incorrect in general. For instance, a program point
may be unreachable, so that the concrete set of states at that point is



if (x = null )
x := new object();

else skip ;
/ / query: x 6= null ?

Figure 1. The program NN: an example where the nullness ab-
straction is complete.

x := 9;
while (x > 0 )
x := x− 1;

/ / query: x = 0?

Figure 2. The program Dec: an example where intervals are com-
plete, but the proof is not trivial.

x := 9;
while (x > 0 )
x := x− 2;

/ / query: x = −1?

Figure 3. The program Dec2: an example where intervals are in-
complete, and a naif proof system may deduce the opposite.

∅, and for any abstractionA every abstract value different from the
bottom value ⊥A will be correct yet incomplete. Also, one could
reason as follows: the assignment x := 9 with a constant is precise
with intervals; both Boolean guards x > 0 and x ≤ 0 can be
exactly represented with intervals, resp. by [1,+∞) and (−∞, 0];
the decrement operation x := x − 1 on intervals is precise, e.g.,
[3, 9] − [1, 1] = [2, 8]. Therefore, one may conclude that this
is why the analysis of Dec with intervals is complete. However,
this way of reasoning is wrong. Consider the program Dec2 in
Figure 3. In its concrete semantics, at the loop exit point we have
that x ∈ [−1,−1], whereas in its analysis with Int, the most precise
invariant we can obtain, even without widenings, is x ∈ [−1, 0].
Therefore, Dec2 6∈ C(Int). By contrast, here, the same (intuitive)
argument as for the Dec program still holds: assignment x := 9 is
precise with Int; both x > 0 and x ≤ 0 can be exactly represented
with Int; the decrement x := x − 2 on intervals is precise, e.g.,
[3, 9]− [2, 2] = [1, 7].

Where is the problem with the above reasoning? It turns out that,
even if the guard x ≤ 0 can be exactly represented with intervals,
its transfer function [[x ≤ 0]] : ℘(Z) → ℘(Z) is not complete
with respect to Int. To give an example, let us consider the set of
concrete values S = {−1, 1, 3, 5, 7, 9}, which is the set of values
of x computed by the while-loop of Dec2. Hence, if the input to
[[x ≤ 0]] is S then we obtain in Int:

Int([[x ≤ 0]]S) = Int({x | x ≤ 0} ∩ S)

= Int({−1}) = [−1,−1].

On the other hand, if the input to [[x ≤ 0]] is instead the abstraction
Int(S) then we have:

Int([[x ≤ 0]]Int(S)) = Int([[x ≤ 0]][−1, 9])

= Int([−1, 0]) = [−1, 0],

that is, the transfer function [[x ≤ 0]] is not complete on Int. There-
fore, we cannot use mere syntactic arguments to prove whether
P ∈ C(A) because they may lead to wrong conclusions.

Our Solution. As a first step, one may think to design a deductive
system for proving that a program P is complete for an abstraction

x := 9; y := 0;
while (x > 0 )
{x := x− 1; y := y + 1}

/ / query: y = 9?

Figure 4. The program DecInc: an example where Intervals are
incomplete whereas Octagons are complete.

A which requires that all the assignments and Boolean guards of
P are complete for A. Such a deductive system will be sound, but
definitely too strong. For instance, we cannot use it to prove that the
analysis of very simple programs as Dec in Figure 2 is complete—
this deductive system can deduce completeness of NN in Figure 1,
though.

Instead, we propose a layered proof system for completeness.
Roughly, the layered proof system pushes the completeness proof
of the analysis from the program statements up to the assignments
and Boolean guards, and then it may use a further analysis to prove
their completeness. For instance, in the example of Figure 2, the
analysis of the program Dec is complete if both the initialization
and the while loop are complete. The analysis of the initialization
x := 9 is trivially complete for intervals. The analysis of the while
loop is complete if the analysis of the Boolean guard, of its nega-
tion, and of the body are. With a little bit of effort, we can prove that
the analysis of the body x := x − 1 is complete for intervals. The
problem comes with the Boolean guards x > 0 and x ≤ 0. We ob-
served before that, in general, intervals are not complete for those
guards. We will show that incompleteness happens when there is
a “hole” in the concrete set of values and the Boolean guard dis-
cerns among those: in fact, in our counterexample above, S has a
hole between −1 and 1 and the guard mentions 0. In the program
Dec, there is no such a hole, because the variable x assumes, in the
concrete, all the values between 0 and 9. Thus, the analysis of the
Boolean tests of Dec with intervals is complete. We can use a static
analysis to prove this, and to conclude that the interval analysis of
Dec is complete.

We should be careful in defining what “holes” are. Consider the
program DecInc in Figure 4. Here, both x and y uniformly assume
all the values between 0 and 9 and at the end of the loop we have
that x = 0 and y = 9. However, the analysis of DecInc with
intervals will determine at best that y ∈ [0,+∞). Once again,
the source of incompleteness is the Boolean guard. In fact, the
transfer function of x ≤ 0, which is the negation of the guard
x > 0, is not complete for intervals with the set of input pairs
(x, y) of concrete values S = {(9, 0), (8, 1), . . . , (1, 8), (0, 9)}. It
is worth remarking that this incompleteness does not originate from
a perceived imprecision in the abstract join of intervals: in fact, the
abstract lub tA of any abstraction A is always complete, meaning
that α(X ∪Y ) = α(X)tA α(Y ) always holds—since abstraction
functions in Galois connections always preserve joins [3]. On the
other hand, using the abstract domain of Octagons [20], the guard
x > 0 and its negation x ≤ 0 are instead complete for the input
set S.

A further issue arises with assignments. For relational abstrac-
tions as Octagons, it turns out that assignments like z := x+ y and
x := 2 ∗ y are incomplete even if x + y and 2 ∗ y are complete
considered as numerical expressions. Indeed, we will show that the
only assignments which are complete for Octagons have the follow-
ing shape: x := a ∗ y + k and x := a ∗ x + k for a ∈ {−1, 0, 1}
and k ∈ Z.

Given an abstraction, it is therefore natural to ask: (i) which con-
ditions on assignments/Boolean expressions and their input con-
crete states ensure completeness of the analysis; and (ii) how to



statically check these conditions so that the we can prove that the
analysis is complete. We will address these issues in the article.

Vision. This work originates from our experience in building real
world-static analyses. We want to be able to prove that the static
analysis on a given abstraction in some cases will infer an in-
variant which is complete, and therefore use this information for
alarm ranking: alarms originating from analyses that cannot be
proved complete should be ranked lower. Therefore, we advocate a
new methodology for designing static analyses. In addition to the
“main” static analysis for property checking, Alice also provides
one or more completeness conditions, to be used to validate the
completeness of the analysis for a given program. Our goal is am-
bitious because, as we will see in the paper, a proof of complete-
ness relies upon the determination of the best correct approxima-
tion for all the statements occurring in the program. While this re-
quirement can be bypassed for the fundamental constructs for pro-
gram composition—that is, sequential composition, branching and
guarded iteration, for the latter two by requiring completeness of
their Boolean guards—for generic assignments this is still an open
problem, as there exist (relational) abstract domains where the best
correct approximation of the assignment for certain expressions is
not known yet.

Results. Firstly, we recall the necessary basic notions of abstract
interpretation and completeness of abstract domains (Section 2),
and we define the syntax, concrete semantics and abstract seman-
tics for a basic imperative language (Section 3). We introduce the
notion of completeness class for an abstraction A as the set of pro-
grams for which the analysis over A is complete; we show that for
all nontrivial abstractions the corresponding completeness class is
infinite, nontrivial, nonextensional, and in particular it is a produc-
tive set, namely it shares the same structure of the enumerations of
true sentences in first order arithmetics, therefore inheriting Gödel’s
incompleteness (Section 4). We provide the core proof system for
completeness; we prove that it is sound for all nonrelational abstract
domains and argue that completeness of Boolean guards can be re-
garded as the hardest part in these completeness proofs (Section 5).
We then analyze the soundness of the proof system for relational
abstractions, in particular for the case of Octagons. We introduce a
further layer in the proof system to prove completeness of assign-
ments and Boolean guards; we instantiate it with the Interval and
Octagon abstractions; we characterize the assignments which are
complete for Octagons; we provide necessary and sufficient con-
ditions for the completeness of Intervals and Octagons when han-
dling Boolean guards (Section 6). We conclude by comparing our
work to previous one (Section 7) and by discussing other possible
applications of completeness proofs (Section 8).

2. Background
Orders. Given a function f : X → Y and a subset S ⊆ X
then f(S) , {f(s) ∈ Y | s ∈ S} denotes the image of f on S.
A complete lattice C w.r.t. an ordering relation ≤ is denoted by
〈C,≤〉. The pointwise ordering relation v between two functions
f, g : X → C whose co-domain is a complete lattice C, is
defined by f v g if for any x ∈ X , f(x) ≤C g(x). A function
f : C → D between complete lattices is additive (co-additive)
when f preserves arbitrary lub’s (glb’s), while it is continuous
when f preserves lub’s of chains. Given a function f : C → C
on a complete lattice C, lfp(f) and gfp(f) denote, respectively, the
least and greatest fixpoints of f , when they exist. Recall that least
and greatest fixpoints always exist for monotone functions.

Abstract Domains. In standard abstract interpretation [3, 4], ab-
stract domains, also called abstractions, are specified by Galois
connections/insertions (GCs/GIs for short). Concrete and abstract

domains, 〈C,≤C〉 and 〈A,≤A〉, are assumed to be complete lat-
tices which are related by abstraction and concretization maps
α : C → A and γ : A → C that give rise to a GC (α,C,A, γ),
that is, for all a ∈ A and c ∈ C, α(c) ≤A a ⇔ c ≤C γ(a). A
GC is a GI when α ◦ γ = λx.x. We use Abs(C) to denote all the
possible abstractions of C: A ∈ Abs(C) means that A is an ab-
stract domain of C specified by some GC/GI, while the notations
Aα ∈ Abs(C) and Aα,γ ∈ Abs(C) are used to emphasize the
underlying abstraction and concretization functions α and γ.

If α : C → A is additive then we obtain a GC (α,C,A, α+) by
considering its right-adjoint α+ , λa. ∨C {c ∈ C | α(c) ≤A a}.
Dually, if γ : C → A is co-additive then (γ−, C,A, γ) is a
GC where γ− , λc. ∧A {a ∈ A | c ≤C γ(a)} is the left-
adjoint of γ. We recall well known properties of a GC (α,C,A, γ):
(1) α is additive; (2) γ is co-additive; (3) γ ◦ α : C → C is a
closure operator, i.e., it is monotone, idempotent, and increasing
(i.e., x ≤ γ(α(x))); (4) if µ : C → C is a closure operator then
(µ,C, µ(C), id) is a GI.

If A1, A2 ∈ Abs(C) then A1 is equivalent to A2, denoted
A1
∼= A2, when γA1(A1) = γA2(A2). The quotient Abs(C)/∼=

is called the lattice of abstractions [4] because it turns out to be a
complete lattice w.r.t. the relative precision ordering v: A1 v A2

iff for any c ∈ C, γA1(αA1(c)) ≤C γA2(αA2(c)). A1 v A2

means that A1 is a more precise abstraction of the concrete domain
C than A2, or, equivalently, that A2 abstracts A1. A lub tiAi
in the lattice of abstractions is therefore the most precise domain
in Abs(C)/∼= which abstracts all Ai’s. The glb uiAi is the most
abstract (i.e., less precise) domain in Abs(C)/∼= which is more
precise than allAi’s, and is also called reduced product of theAi’s.

Intervals. The interval abstraction was introduced by Cousot and
Cousot [2] and it is still a widely used nonrelational abstraction
since it is efficient and yet able to give useful information to prove,
e.g., the absence of arithmetic overflows or out-of-bounds array
accesses. Let Z? , Z ∪ {−∞,+∞} and assume that the standard
ordering ≤ on Z is extended to Z? in the usual way. Hence:

Int , {[a, b] | a, b ∈ Z?, a ≤ b} ∪ {⊥}
endowed with the standard ordering ≤Int induced by interval con-
tainement gives rise to a complete lattice, where⊥ is the bottom el-
ement and [−∞,+∞] is the top element. Then, consider the func-
tion min : ℘(Z)→ Z? defined as follows:

min(X) ,

{
x if ∃x ∈ X. ∀y ∈ X.x ≤ y
−∞ otherwise

while max : ℘(Z) → Z? is dually defined. The abstraction map
α : ℘(Z)→ Int defined by:

α(X) ,

{
⊥ if X = ∅
[min(X),max (X)] if X 6= ∅

preserves arbitrary unions in ℘(Z) and therefore gives rise to a GI,
i.e., Intα ∈ Abs(〈℘(Z),⊆〉).

It is straightforward to define the nonrelational lift of intervals
to n-dimensions, with n > 1. If ~x ∈ Zn is a n-dimensional
vector of integers and i ∈ [1, n] then ~xi ∈ Z denotes the i-
th component of ~x. In turn, if X ∈ ℘(Zn) is a set of vectors
then Xi , {~xi ∈ Z | ~x ∈ Z} denotes the i-th projection of
X . Then, the n-dimensional interval abstraction is Intn , n

1 Int,
endowed with the component-wise ordering of Int. The following
component-wise abstraction map α : ℘(Zn) → Intn defined
as α(X) , 〈αInt(X1), . . . , αInt(X1)〉 yields an abstract domain
Intnα ∈ Abs(〈℘(Zn),⊆〉).

Octagons. The octagon abstract domain [19, 20] is a relational re-
finement of the interval abstraction which is able to represent vari-



able relations of the form±x±y ≤ k while keeping an acceptable
efficiency by exploiting a representation based on a modification of
so-called difference bound matrices. The terminology “octagon”
comes from the fact that in two dimensions an abstract element is
a polyhedron with at most eight sides. Given n ≥ 1, a difference
bound matrix (DBM) m ∈ DBMn is a n × n square matrix hav-
ing entries mi,j ∈ Z ∪ {+∞}. Then, any m ∈ DBM2n induces,
according to the canonical representation described in [20], a n-
dimensional octagon octm ∈ ℘(Zn) defined as follows:

octm ,
{
〈x1, . . . , xn〉 ∈ Zn | ∀i, j ∈ [1, n].

xi − xj ≤m2i−1,2j−1, xi + xj ≤m2i−1,2j ,

− xi + xj ≤m2i,2j−1, −xi − xj ≤m2i,2j

}
.

Observe that interval bounds like xi ≥ a and xi ≤ b can be
encoded, respectively, by−xi−xi ≤ −2a and xi+xi ≤ 2b, so that
a n-dimensional interval is a particular octagon. Let us also recall
that DBM representations are not unique, so that it can happen that
for different DBMs m 6= m′, we have that octm = octm′ . The
n-dimensional octagon abstract domain is defined to be:

Octn , {octm ∈ ℘(Zn) |m ∈ DBM2n}
and turns out to be a complete lattice wr.t. the subset relation.
Observe that octagons are closed under arbitrary set intersections
but not under set unions, so that 〈Octn,⊆〉 is a complete lattice
which is not a join sublattice of ℘(Zn). α : ℘(Zn) → Octn is the
abstraction given by α(X) ,

⋂
{O ∈ Octn | X ⊆ O}. It is well

defined and, being a closure operator, it is additive, so that it yields
a GI, namely, we have that Octnα ∈ Abs(〈℘(Zn),⊆〉). Clearly,
octagons are a refinement of intervals, i.e., Octn v Intn.

Correctness. Let f : C → C be some concrete monotone
function—to keep notation simple, we consider 1-ary functions—
and let f ] : A→ A be a corresponding monotone abstract function
defined on some abstraction Aα,γ ∈ Abs(C). Then, f ] is a correct
(or sound) abstract interpretation of f on A when α ◦ f v f ] ◦ α
holds. If f ] is correct for f then we also have fixpoint correctness,
that is, α(lfp(f)) ≤A lfp(f ]). The abstract function

fα , α ◦ f ◦ γ : A→ A

is called the best correct approximation of f on A, because any
abstract function f ] is correct iff fα v f ]. Hence, fα plays the
role of the best possible approximation of f on the abstraction A.

Completeness. An abstract function f ] is a complete abstract
interpretation of f on A when α ◦ f = f ] ◦ α holds [4]. When f ]

is an abstract transfer function on the abstraction A used by a static
analysis, completeness intuitively encodes the greatest precision
for f ], meaning that the abstract behaviour of f ] on A exactly
matches the abstraction in A of the concrete behaviour of f . If
f ] is complete for f then we have fixpoint completeness (also
called fixpoint transfer): α(lfp(f)) = lfp(f ]). It turns out that
completeness α ◦ f = f ] ◦ α holds iff

α ◦ f = α ◦ f ◦ γ ◦ α.

Thus, the possibility of defining a complete approximation f ] of
f on some A ∈ Abs(C) only depends on the concrete function
f and on the abstraction A [13]. We will use both A is complete
for f and f is complete on A to refer to the completeness equation
α ◦ f = α ◦ f ◦ γ ◦ α.

The problem of making abstract domains complete has been ad-
dressed in [13]. A constructive characterization of the most abstract
refinement, called complete shell, and of the most concrete simplifi-
cation, called complete core, of any abstract domain A ∈ Abs(C),
making it complete for a given continuous function f : C → C,

is given as a fixpoint solution of an abstract domain equation de-
rived from f and A. Let us recall this definition for the case of the
complete shell refinement. This is the abstract domain refinement
Shellf : Abs(C)→ Abs(C) defined as:

Shellf (A) , gfp(λX.A uRf (X))

where, for any domain Xα,γ ∈ Abs(C), Rf (X) is the most
abstract domain which contains the maximal inverse image of f on
X , namely, Rf (X) ⊇

⋃
y∈X max({c ∈ C | f(c) ≤ γ(y)}). As a

consequence, the following characterization of complete abstract
domains holds: the abstraction A is complete for f iff for any
y ∈ A, α(max({c ∈ C | f(c) ≤ γ(y)})) ∈ A.

3. Language and Abstract Semantics
Syntax. We consider a basic deterministic while-language Imp
with arithmetic and Boolean expressions, as defined, e.g., in [25],
whose syntax is as follows:

AExp 3 a ::= v ∈ Z | x ∈ Var | a + a | a − a | a ∗ a
BExp 3 b ::= t | f | a = a | a > a | b ∧ b | ¬b
Imp 3 C ::= skip | x := a | C ;C | if b then C | while b do C

Programs are commands in Imp. The set of variables occurring in
some syntactic object is svars(s) ⊆ Var .

Concrete Semantics. We let S , Var → Z denote the set of
program stores. We will often represent a store ρ ∈ S as a tuple
〈x1/vx1 , . . . , xn/vxn〉.

The semantics of arithmetic expressions is the function La M :
S → Z defined as usual. Similarly, the semantics of Boolean
predicates is the function Lb M : S→ {t, f}.

The collecting semantics of an arithmetic expression a is the
function JaK : ℘(S) → ℘(Z) defined as JaKS , {La Mρ | ρ ∈ S}.
Similarly, the collecting semantics of a predicate b is the function
JbK : ℘(S) → ℘(S) defined as JbKS , {ρ ∈ S | Lb Mρ = t}.
Intuitively, JbKS filters the concrete states of S which make b true.

The collecting denotational semantics of a command C is the
function JCK : ℘(S)→ ℘(S) defined as

JskipKS , S

Jx := aKS , {ρ[x 7→ La Mρ] | ρ ∈ S}
JC1;C2KS , JC2K(JC1KS)

Jif b then C KS , JCKJbKS ∪ J¬bKS
Jwhile b do C KS , J¬bK

(
lfp(λT. S ∪ JCKJbKT )

)
.

Please observe that nontermination is encoded by the empty set:
A program C ∈ Imp does not terminate on an input S ∈ ℘(S)
when JCKS = ∅. In the following, we make the hypothesis that
the inputs to semantic functions, i.e., the sets of stores in ℘(S) are
recursively enumerable sets.

Store Abstractions. A store abstraction is specified by a GC
Aα,γ ∈ Abs(〈℘(S),⊆〉) on sets of stores. Variable projection
(a.k.a. existential abstraction) of a set of stores on a set of variables
V ⊆ Var is defined by the following mapping ∃V : ℘(S)→ ℘(S):

∃V (S) , {ρ ∈ S | ∃η ∈ S.∀y 6∈ V. ρ(y) = η(y)}.
Variable projection on a single variable x ∈ Var is denoted by ∃x.
We will consider store abstractions with a complete variable pro-
jection, namely, an abstract domain A ∈ Abs(℘(S)) such that for
any V ⊆ Var , α ◦ ∃V = α ◦ ∃V ◦ γ ◦ α. Completeness of vari-
able projection is satisfied by virtually any store abstraction used in
practice, e.g., this property holds for all known nonrelational and
relational numerical store abstractions like Sign, Int, Oct, congru-
ences [14], Karr’s domain of linear equalities [16], etc. Any store



abstraction A (which is complete for variable renaming—the easy
formalization of variable renaming is omitted here) can be also
viewed as an abstraction of sets of integer values in 〈℘(Z),⊆〉 by
considering stores that “focus” on a single variable (call it y): this
is determined by the abstraction map αZ : ℘(Z) → A defined as
αZ(Z) , α({ρ ∈ S | ρ(y) ∈ Z}). Hence, in the following, the
store abstractionA is also viewed and used as an abstraction of sets
of integers.

Abstract Semantics. We define the best correct abstract seman-
tics for a generic store abstraction Aα,γ ∈ Abs(〈℘(S),⊆〉). We
assume that t is the join in A.

The best correct abstract semantics JaKα : A → A for an
arithmetic expression a ∈ AExp is JaKαS] , α(JaKγ(S])). It
is worth noting that, in general, the best correct abstract semantics
is not the standard compositional definition J·Kαc of the abstract
semantics of expressions. For instance, the compositional definition
of a binary integer operation op is:

Ja1op a2KαcS] , Ja1KαcS] opα Ja2KαcS].

When instantiating such a definition for the intervals Int, it turns
out that:

Jx+ x ∗ (−1)KInt〈x/[1, 2]〉 = [0, 0] @

Jx+ x ∗ (−1)KIntc〈x/[1, 2]〉 = [1, 2] + ([1, 2] ∗ [−1,−1])

= [−1, 1]

The best correct abstract semantics for a predicate b ∈ BExp
on A is the abstract function JbKα : A→ A defined as

JbKαS] , α(JbKγ(S])).

We derive the best correct abstract semantics JCKα : A → A
of a program C ∈ Imp as the best correct approximation of
its concrete semantics. We exploit two well-known facts: (i) the
composition of two complete functions is complete; and, (ii) in a
GC, the abstract join is always the best correct approximation of
the concrete join. Let S] ∈ A be an abstract store:

JskipKαS] , S]

Jx := aKαS] , α({ρ[x 7→ La Mρ] | ρ ∈ γ(S])})

JC1;C2KαS] , JC2Kα(JC1KαS])

Jif b then C KαS] , J¬bKαS] t JCKα(JbKαS])

Jwhile b do C KαS] , J¬bKα
(
lfp(λX]. S] t JCKαJbKαX])

)
Let us comment on the definition: (i) The best correct approxima-
tion of an assignment Jx := aKα does not rely on the best correct
abstract semantics JaKα of the arithmetic expression a; (ii) In the
least fixpoint definition for Jwhile b do C Kα, the abstract function
λX]. S] t JCKαJbKαX] turns out to be the best correct approx-
imation on A of the concrete function λT. S ∪ JCKJbKT ; (iii) In
the abstract function λX]. S] t JCKαJbKαX], practical static an-
alyzers replace the abstract lub t with a widening operator ∇ to
accelerate or force the convergence of the iterations in the abstract
domain A [3], thus losing the property of having the best correct
abstract semantics of programs.

Complete Abstractions. A store abstraction Aα ∈ Abs(℘(S)) is
complete for an arithmetic expression a ∈ AExp, a Boolean test
b ∈ BExp and a program C ∈ Imp, when for any set of stores
S ∈ ℘(S):

α(JaKS) = JaKαα(S),

α(JbKS) = JbKαα(S),

α(JCKS) = JCKαα(S).

4. The Class of Complete Abstractions
Completeness, Queries and Alarms. The goal of a static anal-
ysis/verification tool is to soundly answer some questions on the
dynamic (concrete) execution of programs. For instance, common
queries to static analysis tools are: “Is this variable not-null?”,
“Is this variable non-negative?”, “Does this loop ever terminate?”.
The first two are examples of safety properties, the third of a live-
ness property. Here, we focus on safety properties. Given a program
P , a set of input stores I ⊆ S and a store query (i.e., a store pred-
icate) q, we are interested to know whether the final states of P
satisfy the query q, i.e., whether the following formula holds:

∀ρ ∈ S . ρ ∈ JP KI ⇒ q(ρ) = true,

or, equivalently, by denoting with JqK ⊆ S the stores satisfying
q, whether JP KI ⊆ JqK. Obviously, we cannot decide this for
each possible query. Therefore, static analyses over-approximate
the collecting semantics JP K and under-approximate the query JqK.
In general, the abstractions used for these two approximations may
be different—for instance, this happens when a numerical abstract
domain (like intervals or octagons) is used to infer variable bounds
and a SMT solver is used to check the absence of buffer overruns.
We are interested in the case where there is no under-approximation
of the query, that is, we require: (i) the two abstract domains to
coincide; and (ii) the query q to be exactly represented in this
abstract domain, namely, γ(α(JqK)) = JqK. For instance, a query
like x ≥ y ∧ y ≥ 0 is exactly represented with octagons but
not with intervals—the best approximation with intervals being
x ≥ 0 ∧ y ≥ 0.

The key observation is that if a program query q is exactly rep-
resentable in a store abstraction A ∈ Abs(℘(S)) and the abstract
semantics on A for a program P is complete, then answering the
query q in the abstract is the same as answering q in the concrete,
i.e., no imprecision in answering q for P is introduced by the ab-
straction A. Thus, completeness of a static analysis of P implies
that no false alarm can arise for queries which are representable
in A. This is summarized by the following lemma, which comes
straight from the definitions. If JqKα , α(JqK) ∈ A is the abstrac-
tion of JqK, q is representable in A when JqK = γ(JqKα).

Lemma 4.1. If Aα ∈ Abs(℘(S)) is complete for P and q is
representable in A then, for any I ∈ ℘(S)

JP KI ⊆ JqK⇔ JP Kαα(I) ≤A JqKα.

Proof. Let Aα,γ ∈ Abs(℘(S)) be complete for P and q be repre-
sentable in A.
(⇒) By monotonicity of α, from JP KI ⊆ JqK we obtain, by us-
ing the completeness and representability hypotheses, α(JP KI) =
JP Kαα(I) ≤A α(JqK) = α(γ(JqKα)) ≤ JqKα.
(⇐) Since JP Kα is always correct we have that JP Kαα(I) ≤A
JqKα ⇒ α(JP KI) ≤A α(JqK). Thus, by applying γ to both sides
of the inequality, we obtain JP KI ⊆ γ(α(JP KI)) ⊆ γ(α(JqK)) =
JqK.

Note that the proof of JP Kαα(I) ≤A JqKα ⇒ JP KI ⊆ JqK does
not make use of the completeness hypothesis, since this implication
is a straight consequence of the soundness of the best correct
approximation JP Kα. On the other hand, completeness is crucial
for proving the reverse implication. Completeness can be therefore
read as follows: if a complete static analysis of P raises an alarm
in answering a representable query q then this alarm is surely real:

JP Kαα(I) 6≤A JqKα ⇒ JP KI 6⊆ JqK.

Example 4.2. Consider the program DecInc in Figure 4 and the
final query q ≡ y < 9, which is representable by the intervals 〈x ∈
(−∞,+∞), y ∈ (−∞, 8]〉, and therefore by an octagon as well.



The static analysis of DecInc on Int raises an alarm for q, meaning
that JDecIncKInt>Int = 〈x ∈ [0, 0], y ∈ [0,+∞)〉 6≤Int Jy < 9K.
However, since Int is not complete for DecInc, Lemma 4.1 does
not allow us to conclude that this is a false alarm. On the other
hand, the static analysis on Oct also raises an alarm for q, because
JDecIncKOct>Oct = 〈x ∈ [0, 0], y ∈ [9, 9]〉 6≤Oct Jy < 9K, and in
this case Lemma 4.1 tells us that this is a real alarm.

Classes of Completeness. From Lemma 4.1 it is therefore natu-
ral to reason on the precision of an abstraction A in terms of the
set of programs that are complete for the program properties rep-
resented by A. This is the class of programs which represents at
best (and uniquely) the potential of an abstract domain in answer-
ing questions on their behavior. We therefore introduce the notion
of completeness class as a mapping from abstract domains to sets
of programs: those for which the abstraction is complete. An anal-
ogous completeness class is defined for arithmetic expressions and
Boolean predicates.

Definition 4.3 (Completeness Class). Given Aα ∈ Abs(℘(S)), its
completeness class C(A) (for commands) is defined as:

C(A) , {P ∈ Imp | α(JP K) = JP Kα}.
Similarly, the completeness classes of A for arithmetic, Boolean,
and generic expressions are:

A(A) , {a ∈ AExp | α(JaK) = JaKα}
B(A) , {b ∈ BExp | α(JbK) = JbKα}.

Roughly, the completeness class C(A) is defined to be the set
of all programs whose static analysis on a given abstraction A will
never produce false alarms for queries representable in A. This is
therefore a property of programs with respect to a fixed abstraction.
It is worth noting that this property is infinite and non-extensional
(cf. [23]). It is infinite because for any abstract domain A whose
abstraction function is computable we have that |C(A)| = ω. This
is shown by a straightforward padding argument by observing that
skip ∈ C(A) for any A and because sequential composition of
complete commands is still complete. It is also non-extensional,
i.e., it is not an index set for partial recursive functions, because
there always exist programs P and Q such that: P is complete for
A, JP K = JQK, and Q is not complete for A. This phenomenon
is known in static analysis where semantics preserving program
transformations may lose precision of analyses (e.g., see [12, 17]).

Example 4.4. Consider the abstract domain for sign analysis of in-
teger variables Sign = {Z,−, 0,+,∅}, which is a straightforward
abstraction of 〈℘(Z),⊆〉. We consider the standard nonrelational
lifting of Sign to a store abstraction in Abs(〈℘(S),⊆〉). Consider
the following two programs:

P ≡ y := 2; z := 3;x := y ∗ z
Q ≡ y := 2; z := 3;x := y ∗ (z − 1) + y

Obviously, we have that JP K = JQK. However, since Sign is
complete for multiplication and incomplete for addition, it turns
out that

Jx := y ∗ zKSign〈x/Z, y/+, z/+〉 = 〈x/+, y/+, z/+〉
Jx := y ∗ (z − 1) + yKSign〈x/Z, y/+, z/+〉 = 〈x/Z, y/+, z/+〉
so that

JP KSign∅ = 〈x/+, y/+, z/+〉, JQKSign∅ = 〈x/Z, y/+, z/+〉.
Thus, P ∈ C(Sign) while Q 6∈ C(Sign).

It turns out that the relative precision of abstract domains—
encoded by the ordering v on the lattice of abstractions—and the
corresponding classes of completeness are not related. In particular,

it may well happen that for an abstractionAwhich is complete for a
given P , a generic refinementAref ofA, i.e.,Aref v A, turns out to
be instead incomplete for the same programP . This phenomenon is
well known in static program analysis and it corresponds to the fact
that coarse abstractions may induce a complete static analysis for
some program where more precise ones instead fail for that same
program. In the following, we assume that the set S of all stores
is infinite. If we consider a trivial store abstraction, i.e., there is
no abstraction at all or any set of stores is abstracted into a single
(top) value corresponding to the “don’t know” answer, then the
corresponding completeness class turns out to be the whole set of
programs Imp. Let id ∈ Abs(℘(S)) denote the trivial identical
store abstraction (i.e., for any S, id(S) = S) and>S ∈ Abs(℘(S))
denote the trivial “don’t know” store abstraction (i.e., for any S,
>S(S) = S). Also, let ℘re(S) denote the set of all recursively
enumerable subsets of S. Let us point out that any static program
analysis always relies on recursive, namely decidable, abstractions
Aα ∈ Abs(℘(S)), meaning that: (i) for any store ρ ∈ S, α({ρ}) is
computable; and (ii) for any S ∈ ℘re(S) and ρ ∈ S, ρ ∈? α(S) is
decidable.

Theorem 4.5. If A ∈ Abs(℘(S)) is recursive then C(A) = Imp
iff A ∈ {id ,>S}.

Proof. The trivial abstractions id and >S are complete for any
program, so that if A = id or A = >S then C(A) = Imp.
Assume now that C(A) = Imp and A 6= id and A 6= >S. Hence,
there exists some S ∈ ℘re(S) such that S ( γ(α(S)) ( S.
Since A is a decidable abstraction, we have that S and γ(α(S))
are recursively enumerable. Hence, there exist programs PS and
Pα(S) on a single integer variable x such that JPSK S = S and
JPα(S)K S = γ(α(S)). We pick some b ∈ Srγ(α(S)) and some
c ∈ γ(α(S))rS. Then, let us consider the programQbc associated
with the following partial recursive function ψbc : S→ S:

ψbc(x) ,


x if x ∈ S
b if x = c

undefined otherwise

Observe that if x 6∈ S then JQbcK{x} 6= {x}, since c 6= b. Then,
it turns out that α(JQbcKS) = α(S) and α(JQbcKγ(α(S))) =
α(S ∪ {b}). Moreover, since S ( γ(α(S)) ⊆ γ(α(S ∪ {b})),
by GC, we obtain that α(S) � α(S ∪ {b}). Thus, we have shown
that there exists a set of stores S ∈ ℘re(S) such that:

α(JQbcKS) � α(JQbcKγ(α(S))) ≤ JQbcKαα(S).

This means1 that Qbc 6∈ C(A) which contradicts the hypothesis
that C(A) = Imp.

Informally, the result above states that for all nontrivial abstrac-
tions there exists a program for which the abstraction is incomplete.
Moreover, by a straightforward padding argument, any of these pro-
grams (e.g., Qbc in the proof of Theorem 4.5) can be extended
to an infinite set of programs for which the abstraction is incom-
plete. This means that any nontrivial abstraction has an infinite set
of programs for which it is incomplete. We show that C(A) and
its complement C(A), for any nontrivial abstractionA, are produc-
tive sets. Recall that a set S is productive if there exists a general
effective method (i.e., a total recursive function) which enables us
to find, for any recursively enumerable subset Y ⊆ X , an element

1 Note that, for generic recursively enumerable sets S and γ(α(S)) such
that S ( γ(α(S)), the set γ(α(S))rS may not be recursively enumerable.
This means that (due to the c ∈ γ(α(S)) r S) the program Qbc exists but
we may not have a constructive computable way for building it. The mere
existence of Qbc as a mathematical object is enough for the purpose of this
proof.



x ∈ XrY (see [10, 23]). It follows that no productive set can be re-
cursively enumerable. This proves that, for a nontrivial abstraction
A, both C(A) and its complement C(A) are intrinsically nonrecur-
sively enumerable sets having a structure which is similar to the set
of Gödel numbers of true sentences in first-order arithmetics.

Theorem 4.6. If A ∈ Abs(℘(S)) is nontrivial and recursive then
C(A) and C(A) are productive sets.

Proof. In the following, without loss of generality, we assume that
programs in Imp have a single variable ranging over N, so that
S = N. If P is a program and S ∈ ℘(S), we denote by JP K(S)↓≤n

the fact that P terminates with any input in S in less than n steps.
Let g : Imp → N be an enumeration of programs. This induces
a corresponding enumeration g : ℘re(S) → N of recursively
enumerable sets. Consider the representation in Imp of the halting
problem of Turing machines (cf. [23]):

K , {P ∈ Imp | ∃n ∈ N. JP K({g(P )})↓≤n}.
We first prove that C(A) is productive. The proof relies on a many-
to-one reduction of K to C(A), denoted by K �m C(A), and
means that there exists a total recursive function f : Imp → Imp
such that x ∈ K iff f(x) ∈ C(A).

Let Aα,γ ∈ Abs(℘(S)) be recursive and nontrivial. As in
Theorem 4.5, there exists S ∈ ℘re(S) such that S ( γ(α(S)) (
S. Let b ∈ Srγ(α(S)), c ∈ γ(α(S)) r S, and consider the
program Qbc as in the proof of Theorem 4.5, where we proved that
Qbc 6∈ C(A). Since α is recursive, there exists P> ∈ Imp such
that α(JP>K∅) = S. By monotonicity of α, for any X ∈ ℘(S) we
have that α(JP>KX) = S. Clearly, P> ∈ C(A) holds. Consider
the partial recursive function ψ : Imp× ℘re(S)→ ℘re(S):

ψ(P,X) ,

{
JQbcK(X) if JP K({g(P )})↓≤g(X)

JP>K(X) otherwise

Since ψ is partial recursive, there exists a program R ∈ Imp such
that JRK(P,X) = ψ(P,X). By the s-m-n Theorem, there exists
a total recursive function f : Imp × Imp → Imp such that for
any P ∈ Imp and X ∈ ℘re(S) we have that Jf(R,P )K(X) =
JRK(P,X) = ψ(P,X). Consider a generic program P ∈ Imp.
If P ∈ K then there exists n ∈ N such that JP K({g(P )})↓≤n.
Let IαQbc

denote the set of all sets of stores for which Aα is not
complete for Qbc:

IαQbc
, {X ∈ ℘re(S) | α(JQbcKX) 6= JQbcKαα(X)}.

It is easy to see that IαQbc
is infinite. In particular, as shown in the

proof of Theorem 4.5, S ∈ IαQbc
. It is also easy to derive that

for any x ∈ S such that x 6= c we have that S ∪ {x} ∈ IαQbc
.

Therefore, since | S | = ω, we also have that |IαQbc
| = ω. This

implies that there exists X ∈ IαQbc
such that n ≤ g(X) and there-

fore JP K({g(P )})↓≤g(X). Hence, Jf(R,P )K(Y ) = JQbcK(Y ) for
some Y ∈ IαQbc

⊂ ℘(S). Therefore, f(R,P ) 6∈ C(A). If P 6∈ K
then, for any n ∈ N, we have that JP K({g(P )}) does not converge
in less than n steps. Therefore, for any X ∈ ℘re(S) we have that
ψ(P,X) = JP>KX and therefore Jf(R,P )K = JP>K, which im-
plies that f(R,P ) ∈ C(A).

Because λP ∈ Imp. f(R,P ) above is total recursive, we have
that K �m C(A), which is equivalent to K �m C(A). This
proves that C(A) is productive (see Theorem VII §7.5 in [23] and
Theorem 4.5 in [24]). The proof that also C(A) is productive is
analogous and it is based on a many-to-one reductionK �m C(A)
which exploits the partial recursive function:

ψ′(P,X) ,

{
JP>K(X) if JP K({g(P )})↓≤g(X)

JQbcK(X) otherwise

As a consequence, neither C(A) nor its complement C(A) turn
out to be recursively enumerable sets. Let us notice that the
proof of the previous theorem provides a further insight into the
structure of C(A). Given a nontrivial and recursive abstraction
A ∈ Abs(℘(S)), it is always possible to systematically and effec-
tively transform any algorithmic procedure attempting to enumer-
ate C(A) into a program P such that P 6∈ C(A). The same holds
for C(A). This can be read as follows: automating the proof that
an abstraction is complete or incomplete for a given program—
i.e., a static program analysis can produce or cannot produce false
alarms—is impossible. The completeness class of an abstraction
is therefore a nontrivial property of programs for which no recur-
sively enumerable procedure may exist which is able to enumerate
all of its elements. In the following, we provide recursively enu-
merable under-approximations of C(A), namely systematic, and
possibly automatic, proof systems such that if the proof succeeds
for some program P and nontrivial abstraction A, then P ∈ C(A).

5. Proving Completeness of Programs
Given a store abstraction A ∈ Abs(℘(S)), our goal is to prove
whether P ∈ C(A). To this aim, we design a layered proof system
parametric on the abstraction A. The first layer is a compositional
proof system `A for a generic abstraction A. It deals with the fun-
damental constructs for program composition: sequential composi-
tion, branching, and guarded iteration. The second layer is instead
domain-specific. It deals with the completeness of the assignments
and of the Boolean guards — The handling of the assignments de-
pends on whether the store abstraction is relational or not.

Let us remark that the abstract domain A here is fixed. An
approach based on complete shell refinements (or complete core
simplifications) of the abstractionA, as recalled in Section 2, would
therefore be orthogonal. A complete refinement of A for all the
assignments and Boolean guards (and their negations) occurring in
P would generate an abstract domain which is complete for all the
programs that can be constructed by combining through sequential
compositions, conditionals and loops, and for all the possible sets
of input stores—in most practical cases, the abstraction A would
likely be refined to the concrete domain.

5.1 The Core Proof System
We report in Figure 5 the core proof system `A for proving the
completeness w.r.t. a generic store abstraction Aα,γ ∈ Abs(℘(S)).
This deductive system is fully compositional on the program’s
syntax. A no-op command is trivially complete for all abstractions
([skip]). The rule [seq] states that the sequential composition of two
complete commands is complete, too. It is worth remarking that the
composition of the best correct approximations of two functions
f and g, in general, is not the best correct approximation of their
composition f ◦ g, while this indeed holds when these best correct
approximations of f and g are indeed complete. The rule [if] asserts
that a conditional statement is complete when its body, its Boolean
guard together with its negation are complete. Loop statements are
handled by the rule [while]: Iteration is complete if its body is
complete as well as the loop guard and its negation. It is worth
remarking that the rules for branching and loop commands imply
that the abstract join operation never injects incompleteness in the
analysis, unlike a common belief in static program analysis. Let us
show that these rules are sound for proving completeness in A.

Theorem 5.1. For any A ∈ Abs(℘(S)) the rules in `A are sound.

Proof. [skip]: skip ∈ C(A) always holds.



`A skip
[skip]

`A P `A Q

`A P ;Q
[seq]

`A C b ∈ B(A) ¬b ∈ B(A)

`A if b then C
[if]

`A C b ∈ B(A) ¬b ∈ B(A)

`A while b do C
[while]

Figure 5. The core proof system `A.

[seq]: If A is complete for C1 and C2 then A is complete for
C1;C2:

α(JC1;C2KS) = α(JC2K(JC1KS))

= JC2Kαα(JC1KS))

= JC2KαJC1Kαα(S)

= JC1;C2Kαα(S).

[if]: If A is complete for b, ¬b and C then A is complete for
if b then C:

α(Jif b then CKS) = α(JCKJbKS ∪ J¬bKS)

= α(JCKJbKS) t α(J¬bKS)

= JCKαα(JbKS) t J¬bKαα(S)

= JCKαJbKαα(S) t J¬bKαα(S)

= Jif b then CKαα(S).

[while]: If A is complete for b, ¬b and C then A is complete for
while b do C. We first show that

α ◦ (λT.S ∪ JCKJbKT ) = (λX].α(S) t JCKαJbKαX]) ◦ α
For any T ∈ ℘(S), we have that:

α(S ∪ JCKJbKT ) = α(S) t α(JCKJbKT )

= α(S) t JCKαα(JbKT )

= α(S) t JCKαJbKαα(T ),

so that

α ◦ (λT.S ∪ JCKJbK) = (λX].α(S) t JCKαJbKαX]) ◦ α.
Hence, by fixpoint transfer (cf. Section 2):

α(lfp(λT.S ∪ JCKJbKT )) = lfp(λX].α(S) t JCKαJbKαX]).

We therefore obtain:

α(Jwhile b do CKS) = α(J¬bK(lfp(λT.S ∪ JCKJbKT )))

= J¬bKαα(lfp(λT.S ∪ JCKJbKT ))

= J¬bKαlfp(λX].α(S) t JCKαJbKαX])

= Jwhile b do CKαα(S).

Let us point out that for a Boolean guard b occuring in a program
P , the rules of `A require both b and ¬b to be complete on A for
any possible set of input stores. It is therefore important to remark
that Boolean guards are a major source of incompleteness, even in
seemingly innocuous cases, as shown by the following example:

Example 5.2. Let us consider the loop guard in the program Dec
in Figure 2. Assume that the body of the while loop x := x − 1
is complete for the interval abstraction Int—this will be formally
proved later on. The proof of completeness for Dec in `Int would
need the hypotheses x > 0 ∈? B(Int) and x ≤ 0 ∈? B(Int) stating
the completeness of the guards of Dec. However, is is not true, in
general, that intervals are complete for a guard like x > 0, even if
x > 0 is exactly representable in Int. In fact, we have that:

αInt(Jx > 0K{0, 2, 3}) = αInt({2, 3}) = [2, 3]

@ Jx > 0KαIntαInt({0, 2, 3})
= Jx > 0KαInt [0, 3] = [1, 3].

Therefore, x > 0 6∈ B(Int). A similar counterexample may show
that x ≤ 0 6∈ B(Int).
Let us also observe that even a simple equality test Jx = yK be-
tween different variables cannot be complete in a relational abstrac-
tion such as octagons Oct which is able to represent precisely a
variable relation like x = y. It is enough to note that:

αOct(Jx = yK{(x/0, y/2), (x/2, y/0)}) = αOct(∅) = ⊥Oct

@ Jx = yKαOctαOct({(x/0, y/2), (x/2, y/0)})
= Jx = yKαOct〈0 ≤ x ≤ 2, 0 ≤ y ≤ 2, x+ y = 2〉
= 〈x = 1, y = 1〉.

A similar example may show that the test Jx = yK is not complete
for intervals as well, although this could be somewhat expected
since intervals are not relational.

5.2 Proving Completeness of Assignments
Assignment commands are not handled by the core proof system
`A. The deductive system `A is compositional on program’s syn-
tax and the problem for assignments stems from the fact a com-
positional rule for deriving the completeness of x := a from the
completeness of the expression a (and/or x − a) cannot be sound
for a generic abstract domain A. This is shown by the following
example dealing with the relational octagon abstraction.

Example 5.3. Let Var = {x, y, z} and let us represent a generic
store (x/vx, y/vy, z/vz) simply by (vx, vy, vz) ∈ Z3. We con-
sider the arithmetic expression x+ y ∈ AExp and the abstraction
Oct. It turns out that x+y ∈ A(Oct). In fact, for any nonempty set
of stores S ∈ ℘(S), consider the constraint m ≤ x+ y ≤ n which
is expressed by Oct(S): this means that there exist ρ1, ρ2 ∈ S such
that m = ρ1(x) + ρ1(y), n = ρ2(x) + ρ2(y), and for any ρ ∈ S,
m ≤ ρ(x) + ρ(y) ≤ n. Thus, Oct(Jx+ yKS) = [m,n]. On the
other hand, since, for any ρ ∈ Oct(S), m ≤ ρ(x) + ρ(y) ≤ n, we
also have that Oct(Jx+ yKOct(S)) = [m,n].

Let us consider now S = {(2, 1, 0), (1, 4, 2)} ∈ ℘(S) and the
assignment z := x + y ∈ Imp, whose concrete semantics on S
gives Jz := x+ yKS = {(2, 1, 3), (1, 4, 5)}. The abstraction of
Jz := x+ yKS in Oct is therefore as follows:

Oct(Jz := x+ yKS) = 〈1 ≤ x ≤ 2, 1 ≤ y ≤ 4, 3 ≤ z ≤ 5,

3 ≤ x+ y ≤ 5,−3 ≤ x− y ≤ 1, 5 ≤ x+ z ≤ 6,

−4 ≤ x− z ≤ −1, 4 ≤ y + z ≤ 9,−2 ≤ y − z ≤ −1〉.
On the abstract side, the abstraction of S in Oct is as follows:

Oct(S) = 〈1 ≤ x ≤ 2, 1 ≤ y ≤ 4, 0 ≤ z ≤ 2,

3 ≤ x+ y ≤ 5,−3 ≤ x− y ≤ 1, 2 ≤ x+ z ≤ 3,

− 1 ≤ x− z ≤ 2, 1 ≤ y + z ≤ 6, 1 ≤ y − z ≤ 2〉.

Here (2, 3, 1) ∈ Oct(S) and (2, 3, 5) ∈ Jz := x+ yKOct(S) ⊆
Oct(Jz := x+ yKOct(S)). But (2, 3, 5) 6∈ Oct(Jz := x+ yKS)
because the relation 5 ≤ x + z ≤ 6 is not satisfied. Hence,
Oct(Jz := x+ yKS) ( Oct(Jz := x+ yKOct(S)), namely z :=
x+ y 6∈ C(Oct).

Nonrelational Abstractions. An abstraction Aα ∈ Abs(℘(S)) is
nonrelational when it does not take into account any relationship
between different variables. Let us formalize this notion. For any



x ∈ Var , let x̄,Var r {x} and let αx : ℘(S)→ A be defined as
αx(S) , α(∃x̄(S)). Then, A is defined to be nonrelational when:

∀S ∈ ℘(S). α(S) =
∧

x∈Var

αx(S).

Null, Sign and Int are examples of nonrelational abstractions, while
Oct is not nonrelational. For a nonrelational abstraction A, we
introduce the following compositional rule for assignments:

a ∈ A(A)

`A x := a
[assignNR]

We denote by `NR
A the core proof system `A enhanced with the rule

[assignNR] and we show its soundness for deriving completeness.

Theorem 5.4. For any nonrelational abstraction A ∈ Abs(℘(S)),
`NR
A is sound, i.e., if `A P then P ∈ C(A).

Proof. The soundness of the rules in `A follows by Theorem 5.1.
The soundness of [assignNR] follows from these equalities:

α(Jx := aKS) =

= αx(Jx := aKS) ∧
∧
y 6=x

αy(Jx := aKS)

= α(∃x̄(Jx := aKS)) ∧
∧
y 6=x

α(∃ȳ(Jx := aKS))

[
by def. of variable projection and αZ]

= αZ(JaKS) ∧
∧
y 6=x

α(∃ȳ(S))[
by a ∈ A(A) and completeness of ∃ȳ

]
= αZ(JaKγ(α(S))) ∧

∧
y 6=x

α(∃ȳ(γ(α(S))))

[
by def. of variable projection and αZ]

= α(∃x̄(Jx := aKγ(α(S)))) ∧
∧
y 6=x

α(∃ȳ(Jx := aKγ(α(S))))

= αx(Jx := aKγ(α(S))) ∧
∧
y 6=x

αy(Jx := aKγ(α(S)))

= α(Jx := aKγ(α(S))).

Thus, for nonrelational abstract domains A, `NR
A is a fully com-

positional proof system for checking completeness of programs.
Let us give a simple example of derivation in `NR

A .

Example 5.5. Let us consider the nonrelational abstract domain
Null for nullness analysis described in Section 1 and the simple
program

P ≡ x := 0; if (x = 0) then x := 1

where, with a slight abuse of notation, we assume that 0 stands
for a null reference while 1 for a non-null reference. The proof
tree in Figure 6 can be derived in `NR

Null, and this entails that the
abstract semantics of P on the abstraction Null is complete. Let us
stress that the key point in proving the completeness of P is that
the abstraction Null is complete for the Boolean guard x = 0 and
its negation ¬(x = 0).

Nevertheless, for the program Dec in Figure 2, we are still not
able to derive that `Int Dec: the rule [assignNR] allows us to derive
that the assignment x := x − 1 is complete for Int, but this is not
enough since the Boolean guard x > 0 is not complete (cf. Exam-
ple 5.2). The fact that C(A) is a productive set even for (nontrivial)
nonrelational abstractions implies that an effective complete proof
system for deriving completeness of programs cannot be defined.

The proof system `NR
A is indeed sound but not complete, and the

program Dec shows this incompleteness.

Relational Abstractions. As shown in Example 5.3, the com-
pleteness of an expression a does not imply that an assignment
x := a is complete for a relational abstract domain. It can be
shown that more restrictive hypotheses such as the assumption that
x 6∈ vars(a) and the completeness of the Boolean expression
x = a on A, would imply that x := a is complete on A (the
proof is omitted). However, this would yield a sound but far too
restrictive derivation rule. Indeed, although the syntactic condition
x 6∈ vars(a) can always be met for any program P simply by
replacing an assignment x := a where x ∈ vars(a) with the com-
position x′ := a;x := x′, where x′ is a fresh variable, this rule
would require the hypothesis (x = y) ∈ B(A), and we observed
in Example 5.2 that the equality test is not complete even for most
known abstract domains.

Thus, for the generic case of a nonrelational abstraction A, it
can be argued that a reasonable rule for deriving the completeness
of assignments x := a from the completeness of some other arith-
metic expression and/or Boolean guard and/or command induced
by x := a simply cannot be found. Hence, a nonrelational abstrac-
tion therefore needs a specific analysis of the completeness of its
assignments. We present a significant sample of this analysis for
the case of the octagon abstraction.

Octagon Abstraction. In Example 5.3 we have shown that the
assignment z := x+ y is not complete for Oct. A similar example
can be found for x := x + y. These observations show that
any generic linear assignment x := a1 ∗ x1 + . . . + an ∗ xn
is not complete for Oct when n ≥ 2. The intuitive reason is
that for a relation a ≤ x + y ≤ b, the substitution of x with
a1 ∗ x1 + . . . + an ∗ xn provides a relation for more than two
variables which cannot be represented by Oct. A fortiori, this is
also true for nonlinear assignments like x := y ∗ y.

Thus, we are left to scrutinize linear assignments of the follow-
ing shape: x := a ∗ y + k and x := a ∗ x + k. If a 6∈ {−1, 0, 1},
e.g., x := 2 ∗ y, the following example shows that, as expected, we
do not have completeness.

Example 5.6. We follow the notation of Example 5.3 where
Var = {x, y, z}. Let us consider the assignment x := 2∗y ∈ Imp
and the set of input stores S = {(0, 2, 0), (3, 0, 4)} ∈ ℘(S). On the
concrete side, we have that Jx := 2 ∗ yKS = {(4, 2, 0), (0, 0, 4)}.
The abstraction of Jx := 2 ∗ yKS in Oct is therefore as follows:

Oct(Jx := 2 ∗ yKS) =

〈0 ≤ x ≤ 4, 0 ≤ y ≤ 2, 0 ≤ z ≤ 4,

0 ≤ x+ y ≤ 6, 0 ≤ x− y ≤ 2, x+ z = 4,

− 4 ≤ x− z ≤ 4, 2 ≤ y + z ≤ 4,−4 ≤ y − z ≤ 2〉.
On the abstract side, the abstraction of S in Oct is as follows:

Oct(S) = 〈0 ≤ x ≤ 3, 0 ≤ y ≤ 2, 0 ≤ z ≤ 4,

2 ≤ x+ y ≤ 3,−2 ≤ x− y ≤ 3, 0 ≤ x+ z ≤ 7,

− 1 ≤ x− z ≤ 0, 2 ≤ y + z ≤ 4,−4 ≤ y − z ≤ 2〉.
We consider the store (1, 2, 2) ∈ Oct(S) so that (4, 2, 2) ∈
Jx := 2 ∗ yKOct(S) ⊆ Oct(Jx := 2 ∗ yKOct(S)). However, we
have that (4, 2, 2) 6∈ Oct(Jx := 2 ∗ yKS) because the relation
x + z = 4 is not satisfied. This shows that Oct(Jx := 2 ∗ yKS) (
Oct(Jx := 2 ∗ yKOct(S)), i.e., x := 2 ∗ y 6∈ C(Oct).

It turns out that the remaining assignments are the only which
are complete for octagons.

Lemma 5.7. The only complete assignments for Oct are: x :=
a ∗ y + k and x := a ∗ x+ k, where a ∈ {−1, 0, 1} and k ∈ Z.



0 ∈ A(Null)

`NR
Null x := 0

(x = 0) ∈ B(Null) ¬(x = 0) ∈ B(Null)
1 ∈ A(Null)

`NR
Null x := 1

`NR
Null if (x = 0) then x := 1

`NR
Null P ≡ x := 0; if(x = 0) then x := 1

Figure 6. The derivation tree proving the completeness of the program P on the abstraction Null.

Proof. Consider x := a ∗ y + k with a ∈ {−1, 0, 1}. By the
characterization of completeness given in [13] and recalled in Sec-
tion 2, we have that Jx := a ∗ y + kK ∈ C(Oct) iff for any octagon
oct ∈ Oct:

max({T ∈ ℘(S) | Jx := a ∗ y + kKT ⊆ oct}) ∈ Oct.

We observe that this maximal set of store can be obtained from oct
by replacing in any relation involving the variable x the expression
ay + k. If a = 0 then it is clear that this replacement still provides
relations of the shape ±x ± y ≤ k. It turns out that this also
happens for a ∈ {−1, 1}. Let us consider the case a = 1, namely
x := y + k. The following cases are possible. The replacement
for a ≤ x ≤ b provides the relation a − k ≤ y ≤ b − k; for
a ≤ x − y ≤ b the relation a ≤ k ≤ b, which can be true or false
(and in this case we obtain the empty octagon); for a ≤ x+ y ≤ b
the relation a − k ≤ 2y ≤ b − k, which is equivalent (integer
variables) to d(a− k)/2e ≤ y ≤ b(b− k)/2c; for a ≤ x± z ≤ b,
where z 6= y, we obtain a − k ≤ y ± z ≤ b − k. Thus, in
each case we obtain a variable relation of the shape ±x ± y ≤ k,
i.e., max({T ∈ ℘(S) | Jx := y + kKT ⊆ oct}) is an octagon. A
similar analysis applies to the remaining cases x := −y + k and
x := ±x+ k.

Lemma 5.7 therefore provides an exhaustive (static) analysis of
the completeness of assignments for the octagon abstraction. It is
worthwhile to observe that [20, Figure 15] describes algorithms that
compute the best correct approximations (called exact approxima-
tions in [20]) on octagons for precisely the set of complete assign-
ments characterized by Lemma 5.7. This may suggest an interesting
relationship between the property of being complete for an assign-
ment and that of admitting a computable best correct approxima-
tion.

6. Proving Completeness of Guards
We argued that the main problem in proving `A P lies in the fact
that in general it is hard to prove that b ∈ B(A) and ¬b ∈ B(A)
for an arbitrary store abstraction A. Actually, most of the times,
only trivial guards—true, false, nondeterministic choices and, e.g.,
x = Null in the nullness domain—turn out to be complete. For
instance, one may expect that a Boolean condition which is exactly
representable in some abstraction, as x > 0 in Int, turns out to
be complete. However, in general, this is not the case, as shown
by Example 5.2. Our goal is to take into account explicitly the
Boolean guards of programs by adding suitable assumptions to
completeness proofs in `A. Thus, we derive a conditional proof
of completeness in A for a program P , whose assumptions on the
completeness of the Boolean guards of P then need to be validated
in a further distinct step.

Let us consider a store abstraction Aα,γ ∈ Abs(℘(S)) and
a Boolean predicate b ∈ BExp. We use the following notation:
JbKt , {ρ ∈ S | LbMρ = t}. If α(JbKS) = JbKαα(S) holds for
a given S ∈ ℘(S) then b is called complete for A in S. Since
this condition is equivalent to α(JbKS) = α(JbKγ(α(S))) and
JbKS = JbKt ∩ S, we have that b is complete for A in S when
α(JbKt ∩ S) = α(JbKt ∩ γ(α(S))).

Now, let us consider some b ∈ BExp which is representable
in the abstract domain A, that is, JbKt = γ(α(JbKt)) holds — we
call them A-Boolean expressions. For example, x ≤ k1 ∧ y > k2

is a Int- and Oct-Boolean expression, while k ≤ x ∧ x ≤ y is a
Oct-Boolean expression but not a Int-Boolean expression. In this
case, it turns out that

α(JbKt ∩ γ(α(S)))= α(γ(α(JbKt)) ∩ γ(α(S)))

= α(γ(α(JbKt) ∧A α(S)))=α(JbKt) ∧A α(S)

so that completeness of b for A in S corresponds to require:

α(JbKt ∩ S) = α(JbKt) ∧A α(S).

We instrument our proof system `A with suitable assumptions
that guarantee that the sets of possible input states for a Boolean
guard make it complete. This allows us to derive a conditional
proof of completeness for a program P under these assumptions
on the completeness of the Boolean guards of P . These proof
assumptions can then be proved in a later step, e.g. by a static
analysis focused on Boolean guards. Let BExp(P ) denote the set
of Boolean guards occurring in some program point of P and
assume that the set ΓP of Boolean guards of P which are not
complete on A, i.e., ΓP , {b ∈ BExp(P ) | b 6∈ B(A)}, consists
of A-Boolean expressions only. If 6`A P then the completeness
proof for P may fail along some guard b ∈ ΓP . If we are able
to guarantee that this guard b is complete for any set S of possible
input stores at the program point where the guard b occurs in P then
we can safely conclude that b is complete on A for the purpose of
proving that P is complete on A. We therefore add the following
conditional meta-rule [gc] for the completeness of guards b ∈ ΓP :

assume[S : α(JbKt ∩ S) = α(JbKt) ∧A α(S)]

b ∈ B(A)
[gc]

Hence, a conditional completeness proof of P in `A ∪{[gc]}
depends on the collection GP of all the assumptions made for the
guards b ∈ ΓP . The next step consists in designing some domain-
specific—possibly statically checkable—conditions that allow to
validate all the assumptions in GP made in a conditional proof of
P , so as to establish an unconditional proof for P on A.

6.1 Completeness of Int- and Oct-Boolean Guards
Given a set of store, we want to provide a characterization of the
completeness of Boolean expressions which are representable as
intervals or octagons. Namely, we characterize the sets of stores
S that make a Int- and Oct-Boolean expression complete, hence
providing specific conditions for the assumptions of the conditional
rule [gc] for Int and Oct.

In order to keep the notation as simple as possible, in what
follows we consider the abstractions Int and Oct on stores over two
variables (x, y), i.e., S = Z2 and Int,Oct ∈ Abs(〈℘(Z2),⊆〉).
Moreover, for any set of concrete points S ∈ ℘(Z2), we use
Int(S),Oct(S) ∈ ℘(Z2) to denote the corresponding interval and
octagon abstractions. The generalization to N > 2 variables is
conceptually simple but notationally tedious. In two variables, a
(possibly infinite) interval is a (possibly infinite) rectangle R in the



(x, y) plane. A rectangle R can be represented by its set of edges,
denoted by edges(R), which are at most four (this is the case of
finite rectangles). Similarly, an octagon O in two variables can be
represented by its edges in edges(O), which are at most eight.
Any E ∈ edges(R) determines a line in the (x, y) integer plane
which is denoted by lE . If l is a line in the (x, y) integer plane and
S ∈ ℘(Z2) is any set of points then πl(S) denotes the orthogonal
projection of S onto l. Completeness of Int-Boolean guards is then
geometrically characterized as follows.

Theorem 6.1. Let R be a Int-Boolean expression. Then, R is
complete for Int in a set of stores S ∈ ℘(Z2) if and only if the
following condition holds:

∀E ∈ edges(R). πlE (Int(S) ∩R) ⊆ Int(πlE (S ∩R)). (∗)

Proof. Since Int(S ∩R) ⊆ Int(Int(S)∩R) = Int(S)∩R always
holds, let us first observe that R is not complete for Int in S when

Int(S ∩R) 6= Int(Int(S) ∩R)⇔
Int(S ∩R) 6= Int(S) ∩R⇔
Int(S ∩R) ( Int(S) ∩R.

Moreover, it turns out that the rectangle Int(S ∩ R) is strictly
contained into the rectangle Int(S) ∩ R iff there exists an edge
E′ ∈ edges(Int(S) ∩ R) such that πlE′ (Int(S ∩ R)) ( E′ =
πlE′ (Int(S) ∩ R). The following figure helps in explaining this,
where S is given by the set of bullets, Int(S∩R) is the (red) dashed
inner rectangle, and Int(S) ∩R is the (blue) dotted rectangle.

R •
•

•

•
•

Since the rectangle Int(S)∩R is contained in R, the last condition
Int(S ∩ R) ( Int(S) ∩ R holds iff there exists an edge E ∈
edges(R) such that πlE (Int(S∩R)) ( πlE (Int(S)∩R). Also, the
orthogonal projection πlE onto the line lE satisfies the following
property: πlE (Int(S ∩ R)) = Int(πlE (S ∩ R)), so that Int(S ∩
R) ( Int(S)∩R holds iff Int(πlE (S∩R)) ( πlE (Int(S)∩R). It
is now easy to check that this latter condition holds iff the negation
of (∗) holds.

Observe that in the condition (∗) we have that πlE (Int(S)∩R)
is always an interval because Int(S) ∩ R is always a rectangle.
Furthermore, if S is already a rectangle, namely Int(S) = S,
then condition (∗) holds so that we have completeness. Let us also
observe that (∗) is trivially satisfied when one of the following
conditions hold: Int(S) ∩ R = ∅ or S ⊆ R or R ⊆ S. Finally,
if S ∩ R = ∅ but Int(S) ∩ R 6= ∅, then (∗) boils down to
∀E ∈ edges(R). πlE (Int(S) ∩ R) = ∅, which is always false,
so that completeness does not hold.

Example 6.2. In the following pictures, the set of points S in the
(x, y) plane is given by the set of bullets. Let us first consider the
following example.

R •
•
•
• •

In this case, the rectangle R turns out to be complete for Int
in S. In fact, for any edge E ∈ edges(R), the two projections
πlE (Int(S) ∩ R) and πlE (S ∩ R) give the same intervals, which
are depicted with (blue and red) thick lines. Let us now consider

the following modified picture, where the rightmost point of S is
moved one step down.

R •
•
•
•
•

Here, completeness of R for Int in S is lost. In fact, for the
rightmost vertical edge E ∈ edges(R), Int(πlE (S ∩ R)) is the
(red) dashed interval which is strictly contained in the interval
πlE (Int(S)∩R) obtained by projecting S ontoE: the gap between
these two intervals is depicted by the (blue) dotted segment.

Of course, Theorem 6.1 can be stated in general for a N -
dimensional space, with N ≥ 1: in the general geometric formula-
tion, R is a N -dimensional hyperrectangle (also called orthotope),
S ∈ ℘(ZN ) is any set of points in the N -dimensional space, edges
of R are replaced by the 2N facets of the hyperrectangle R and
lines determined by edges are the (N−1)-dimensional hyperplanes
determined by facets.

Furthermore, Theorem 6.1 also holds for octagons with the
same statement where the abstraction Oct replaces Int. Here, in
the 2-dimensional case, the edges of an octagon are at most eight
while the abstraction in Oct of a projection onto a line boils down
to an interval abstraction. Thus, if O is a Oct-Boolean guard then
O is complete for Oct in S iff the following condition holds:

∀E ∈ edges(O). πlE (Oct(S) ∩O) ⊆ Int(πlE (S ∩O)). (∗)

Example 6.3. In the following picture, the octagon O is complete
for Oct in the set S of points depicted as bullets. In the picture,
Oct(S) is depicted with (blue) dotted edges, while Oct(S ∩ O) is
depicted with (red) dashed edges. Condition (∗) holds: for exam-
ple, for the edgeE ∈ edges(O) in the picture πlE (Oct(S)∩O) =
Int(πlE (S ∩O)) is the (red) dashed interval.

O

E
•

•
•
•

•

•

On the other hand, let us consider the following modified picture,
where the leftmost point of S is moved two steps down.

O

E

• •
•
•

•

•

Here, completeness of O for Oct in S is lost: the gap between the
two orthogonal projections on the edge E ∈ edges(O) is depicted
with a (gray) thick segment, i.e., condition (∗) does not hold.

Theorem 6.1 explains precisely why the Int/Oct-Boolean ex-
pression R ≡ x ≤ 0, which is the negation of the loop guard of the
program DecInc in Figure 4 discussed in Section 1, is not complete
for Int in the set of input stores S = {(9, 0), (8, 1), . . . , (0, 9)}.
Here, Int(S) ∩ R = 〈x = 0, 0 ≤ x ≤ 9〉 and S ∩ R = {(0, 9)},
and for the edge E ≡ 〈x = 0〉 ∈ edges(R), we have that
πlE (Int(S) ∩ R) = 〈x = 0, 0 ≤ y ≤ 9〉 is not contained in
Int(πlE (S ∩ R)) = {(0, 9)}. Instead, this incompleteness does



not arise with Oct because πlE (Oct(S) ∩ R) = {(0, 9)} =
Int(πlE (S ∩R)).

Validating Assumptions on Guards. Consider the following pro-
gram template

P , x := k1; y := k2; while (x, y ∈ R) do {x := a1; y := a2}
which subsumes the examples of Figures 2, 3 and 4. We assume
that: (i) ki ∈ Z are constant values; (ii) R is any (finite or infinite)
2-dimensional rectangle in Int such that its complement ¬R is a
rectangle as well; (iii) the arithmetic expressions ai ∈ AExp are
complete for Int, i.e., ai ∈ A(Int). By assumption (i):

k1 ∈ A(Int)

`NR
Int x := k1

k2 ∈ A(Int)

`NR
Int y := k2

`NR
Int x := k1; y := k2

Also, by assumption (iii), the body of the while-loop can be proved
complete for Int:

a1 ∈ A(Int)

`NR
Int x := a1

a2 ∈ A(Int)

`NR
Int y := a2

`NR
Int x := a1; y := a2

Let us then consider the set S of stores, i.e., concrete (x, y)-
points, computed by the body of the while-loop of P , i.e., if I =
{(k1, k2)} ∈ ℘(Z2) is the set of input stores for the while-loop
then S is given by

S = lfp(λX.I ∪ Jx := a1; y := a2KJRKX).

We thus have a conditional proof `NR
Int P which depends on the

assumptions on the Boolean guard R and its negation ¬R:

assume[S : Int(R ∩ S) = R ∩ Int(S)],

assume[S : Int(¬R ∩ S) = ¬R ∩ Int(S)].

We apply Theorem 6.1 to derive the validity of these assumptions.
Let us consider the following cases.

(A) If JRKI 6= I , i.e. JRKI = ∅, then the while-loop is not
entered, so that S = I , and R ∩ S = ∅ and ¬R ∩ S = S. For
example, this happens with:

x := 2; y := 4; while (x < 0) do {x := x+ 1; y := y + 1}
In this case, completeness of R and ¬R for S is a trivial case of
condition (∗) in Theorem 6.1.

(B) If JRKI = I then the while-loop is entered. If S is an
infinite set then we have nontermination. This means that S ⊆ R
and ¬R ∩ S = ∅. This happens, for example, with the program:

x := 2; y := 4; while (x > 0) do {x := x+ 1; y := y + 1}
Here, condition (∗) forR and¬R follows trivially because we have
that, respectively, S ⊆ R and ¬R ∩ S = ∅.

(C) If JRKI = I and S is finite then the while-loop is entered
and we have termination. This means thatR∩S 6= ∅ and¬R∩S 6=
∅. This is the case of the following two programs:

P1 , x := 2; y := 4; while (x > 0) do{x := x−1; y := y−1}
P2 , x := 2; y := 4; while (x > 0) do {x := x−1; y := y}

Here, we have that:

SP1 = {(2, 4), (1, 3), (0, 2)}; SP2 = {(2, 4), (1, 4), (0, 4)}.
By condition (∗), we obtain that R is not complete for SP1 while
bothR and¬R are complete for SP2 . While forP1 the assumptions
of its conditional proof cannot be validated, the assumptions for P2

are validated by Theorem 6.1, hence we have `NR
Int P2.

(D) Finally, let us consider the analyses of the programs
P1 and P2 of point (C) for the abstraction Oct. In this case, by
Lemma 5.7, we have that all the assignments in P1 and P2 are
complete for Oct. Moreover, while `Oct P2 can obviously be in-
ferred as in point (C), here we are also able to infer that `Oct P1.
In fact, since the set SP1 is an octagon, i.e., Oct(SP1) = SP1 , the
condition (∗) is trivially satisfied both for R and ¬R, so that the
assumptions for R and ¬R of the conditional proof of P1 can be
validated.

7. Related Work
To the best of our knowledge, this is the first attempt to systemat-
ically extract a property concerning the precision of a static pro-
gram analysis through a proof system. The subject of our analysis
is a given abstract interpretation of a program, while the property
to analyze is the completeness of this abstract interpretation. Com-
pleteness for an abstract interpretation is particularly important be-
cause it formalizes the absence of false alarms, and therefore it is
deeply related with the quality of the program analysis. The most
related approach is in [13], where the authors define a constructive
optimal abstraction refinement for deriving the most abstract com-
plete domain which refines a given (incomplete) abstraction for a
generic program statement. Our method follows an orthogonal pat-
tern. We are not interested in refining an abstract domain for ob-
taining completeness with respect to a given class of programs, but
rather in studying the class of programs for which a given abstrac-
tion is complete. This different starting point leads us to design a
deductive system for deriving a completeness proof for programs
on a given abstraction. This new perspective allows us to decom-
pose the problem of attaining a complete abstraction for a given
program, which becomes modular and inductive on the program’s
syntax. The ubiquity of completeness properties in static analysis is
also studied in [22], where it is argued how completeness can play
a beneficial role for designing static analyses by reasoning on the
completeness properties of their underlying abstract domains.

Provably precise static analyses usually make some assumption
on the syntactic form of the analyzed program. For instance the
precise interprocedural analysis of [21] computes, for each pro-
gram point, all the affine relations among program variables. What
the authors call “precision” is effectively our notion of complete-
ness. They achieve precision by focusing on a particular class of
programs, namely affine programs. Affine programs are such that:
(i) all guards are non-deterministic; and (ii) the right-hand side of
assignments are either affine expressions or unknown values. Sim-
ilarly, in type systems, it is customary to ignore the guards in or-
der to prove the completeness of the type inference algorithm, e.g.,
in [9]. We argued in this article that the main problem for prov-
ing completeness is the handling of assignments and of Boolean
guards.

Our research follows the lines of a recent approach by Cousot
and Cousot [5] who put forward a type system for typing the struc-
ture of an abstract interpretation. A type represents inductively the
way an abstraction has been built by composing simpler abstrac-
tions through systematic domain operations like reduced product.
It could be interesting to investigate the possibility of combining
our proof system with a structural type system for abstract inter-
pretations as in [5], with the aim of providing along a derivation in
`A some additional information about the used sub-domains and
their composition through domain operations.

8. Conclusion
Static analysis is, by design, incomplete. Nevertheless, experience
has shown that it can be made precise enough to be used for ver-
ification [6, 11]. We envision static analyses which in addition to



the inferred invariants also provide completeness certificates. The
completeness certificate is used to provide confidence to the anal-
ysis of alarms. As a foundational step towards this goal, we in-
troduced a theoretical framework to prove the completeness of a
static analysis. We have shown that the source of incompleteness
lies in the handling of Boolean guards and, for relational abstrac-
tions, in assignments. For nonrelational abstractions we introduced
an abstraction-independent core proof system which pushes the
completeness of the analysis to the numerical expressions and the
Boolean guards of conditionals and loops. For relational abstrac-
tions, instead, the structure of complete assignments has to be de-
rived in advance in order to obtain a sound proof system. We argued
that the designer of a static analyzer should also provide complete-
ness conditions for the Boolean guards and that these conditions
could be automatically checked by further, yet less sophisticated,
static analyses—we leave the design of such automated analyses
for future work. We studied the completeness of Boolean guards in
widely used numerical abstractions such as Intervals and Octagons.
Most known abstract domains have been indeed designed to pre-
cisely capture properties of some given programs. This is justified
by the fact that the class of completeness C(A) of any abstraction
A is always an infinite set. Therefore, deriving an abstract domain
which is complete for a specific program P provides at the same
time a domain which is complete for an infinite class of programs.

As future work, we think that proving completeness of static
analyses could be also beneficial to: (i) automatically apply abstract
code repairs [18]—if the analysis of the original and the repaired
programs can both be proven complete, then the repair is very likely
to have fixed a concrete bug; (ii) validate refactorings [8]—among
different program refactorings one may only keep the one(s) for
which she can prove it preserves the completeness of the analy-
sis; (iii) provide a better understanding of why over-approximating
analyses of arrays [7] works well in practice even without perform-
ing under-approximations, argued as necessary in [15].
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MONNIAUX, D., AND RIVAL, X. The ASTRÉE analyzer. In Proceed-
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