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A

An Abstract Interpretation-based Model of Tracing Just-In-Time
Compilation

STEFANO DISSEGNA, University of Padova
FRANCESCO LOGOZZO, Facebook Inc.
FRANCESCO RANZATO, University of Padova

Tracing just-in-time compilation is a popular compilation technique for the efficient implementation of dy-
namic languages, which is commonly used for JavaScript, Python and PHP. It relies on two key ideas.
First, it monitors program execution in order to detect so-called hot paths, i.e., the most frequently executed
program paths. Then, hot paths are optimized by exploiting some information on program stores which
is available and therefore gathered at runtime. The result is a residual program where the optimized hot
paths are guarded by sufficient conditions ensuring some form of equivalence with the original program.
The residual program is persistently mutated during its execution, e.g., to add new optimized hot paths or
to merge existing paths. Tracing compilation is thus fundamentally different from traditional static com-
pilation. Nevertheless, despite the practical success of tracing compilation, very little is known about its
theoretical foundations. We provide a formal model of tracing compilation of programs using abstract inter-
pretation. The monitoring phase (viz., hot path detection) corresponds to an abstraction of the trace seman-
tics of the program that captures the most frequent occurrences of sequences of program points together with
an abstraction of their corresponding stores, e.g., a type environment. The optimization phase (viz., residual
program generation) corresponds to a transform of the original program that preserves its trace semantics
up to a given observation as modeled by some abstraction. We provide a generic framework to express dy-
namic optimizations along hot paths and to prove them correct. We instantiate it to prove the correctness
of dynamic type specialization and constant variable folding. We show that our framework is more general
than the model of tracing compilation introduced by Guo and Palsberg [2011] which is based on operational
bisimulations. In our model we can naturally express hot path reentrance and common optimizations like
dead-store elimination, which are either excluded or unsound in Guo and Palsberg’s framework.

Categories and Subject Descriptors: D.2.4 [Software Engineering]: Software/Program Verification – cor-
rectness proofs, formal methods; D.3.4 [Programming Languages]: Processors – compilers, optimization;
F.3.2 [Logics and Meanings of Programs]: Semantics of Programming Languages – program analysis

Additional Key Words and Phrases: Tracing JIT compilation, abstract interpretation, trace semantics

1. INTRODUCTION
Efficient traditional static compilation of popular dynamic languages like JavaScript,
Python and PHP is very hard if not impossible. In particular, these languages present
so many dynamic features which make all traditional static analyses used for pro-
gram optimization very imprecise. Therefore, practical implementations of dynamic
languages should rely on dynamic information in order to produce an optimized ver-
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A:2 S. Dissegna et al.

sion of the program. Tracing just-in-time (JIT) compilation (TJITC) [Bala et al. 2000;
Bauman et al. 2015; Bebenita et al. 2010; Böhm et al. 2011; Bolz et al. 2009; Bolz
et al. 2011; Gal et al. 2006; Gal et al. 2009; Pall 2005; Schilling 2013] has emerged
as a valuable implementation and optimization technique for dynamic languages (and
not only, e.g. Java [Häubl and Mössenböck 2011; Häubl et al. 2014; Inoue et al. 2011]).
For instance, the Facebook HipHop virtual machine for PHP and the V8 JavaScript
engine of Google Chrome use some form of tracing compilation [Adams et al. 2014;
Facebook Inc. 2013; Google Inc. 2010]. The Mozilla Firefox JavaScript engine used to
have a tracing engine, called TraceMonkey, which has been later substituted by whole-
method just-in-time compilation engines (initially JägerMonkey and then IonMonkey)
[Mozilla Foundation 2010; Mozilla Foundation 2013].

The Problem. Tracing JIT compilers leverage runtime profiling of programs to detect
and record often executed paths, called hot paths, and then they optimize and compile
only these paths at runtime. A path is a linear sequence (i.e., no loops or join points are
allowed) of instructions through the program. Profiling may also collect information
about the values that the program variables may assume during the execution of that
path, which is then used to specialize/optimize the code of the hot path. Of course, this
information is not guaranteed to hold for all the subsequent executions of the hot path.
Since optimizations rely on that information, the hot path is augmented with guards
that check the profiled conditions, such as, for example, variable types and constant
variables. When a guard fails, execution jumps back to the old, non-optimized code.
The main hypotheses of tracing compilers, confirmed by the practice, are: (i) loop bodies
are the most interesting code to optimize, so they only consider paths inside program
loops; and (ii) optimizing straight-line code is easier than a whole-method analysis
(involving loops, goto, etc.).

Hence, tracing JIT compilers look quite different than traditional compilers. These
differences raise some natural questions on trace compilation: (i) what is a viable for-
mal model, which is generic yet realistic enough to capture the behavior of real opti-
mizers? (ii) which optimizations are sound? (iii) how can one prove their soundness? In
this paper we answer these questions.

Our formal model is based on program trace semantics [Cousot 2002] and abstract
interpretation [Cousot and Cousot 1977; Cousot and Cousot 2002]. Hot path detec-
tion is modeled just as an abstraction of the trace semantics of the program, which
only retains: (i) the sequences of program points which are repeated more than some
threshold; (ii) an abstraction of the possible program stores, e.g., the type of the vari-
ables instead of their concrete values. As a consequence, a hot path does not contain
loops nor join points. Furthermore, in the hot path, all the correctness conditions (i.e.,
guards) are explicit, for instance before performing integer addition, we should check
that the operands are integers. If the guard condition is not satisfied then the execu-
tion leaves the hot path, reverting to the non-optimized code. Guards are essentially
elements of some abstract domain, which is then left as a parameter in our model. The
hot path is then optimized using standard compilation techniques—we only require
the optimization to be sound.

We define the correctness of the residual (or extracted) program in terms of an ab-
straction of its trace semantics: the residual program is correct if it is indistinguish-
able, up to some abstraction of its trace semantics, from the original program. Exam-
ples of abstractions are the program store at the exit of a method, or the stores at loop
entry and loop exit points.

Main Contributions. This paper puts forward a formal model of TJITC whose key fea-
tures are as follows:
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– We provide the first model of tracing compilation based on abstract interpretation
of trace semantics of programs.

– We provide a more general and realistic framework than the model of TJITC by
Guo and Palsberg [2011] based on program bisimulations: we employ a less re-
strictive correctness criterion that enables the correctness proof of practically im-
plemented optimizations; hot paths can be annotated with runtime information on
the stores, notably type information; optimized hot loops can be re-entered.

– We formalize and prove the correctness of type specialization of hot paths.

Our model focusses on source-to-source program transformations and optimizations
of a low level imperative language with untyped global variables, which may play the
role of intermediate language of some virtual machine. Our starting point is that pro-
gram optimizations can be seen as transformations that lose some information on the
original program, so that optimizations can be viewed as approximations and in turn
can be formalized as abstract interpretations. More precisely, we rely on the insight
by Cousot and Cousot [2002] that a program source can be seen as an abstraction of
its trace semantics, i.e. the set of all possible execution sequences, so that a source-
to-source optimization can be viewed as an abstraction of a transform of the program
trace semantics. In our model, soundness of program optimizations is defined as pro-
gram equivalence w.r.t. an observational abstract interpretation of the program trace
semantics. Here, an observational abstraction induces a correctness criterion by de-
scribing what is observable about program executions, so that program equivalence
means that two programs are indistinguishable by looking only at their observable
behaviors.

A crucial part of tracing compilation is the selection of the hot path(s) to optimize.
This choice is made at runtime based on program executions, so it can be seen once
again as an abstraction of trace semantics. Here, a simple trace abstraction selects
cyclic instruction sequences, i.e. loop paths, that appear at least N times within a
single execution trace. These instruction sequences are recorded together with some
property of the values assumed by program variables at that point, which is repre-
sented as an abstract store belonging to a suitable store abstraction, which in general
depends on the successive optimizations to perform.

A program optimization can be seen as an abstraction of a semantic transformation
of program execution traces, as described by Cousot and Cousot [2002]. The advantage
of this approach is that optimization properties, such as their correctness, are easier to
prove at a semantic level. The optimization itself can be defined on the whole program
or, as in the case of real tracing JIT compilers, can be restricted to the hot path. This
latter restriction is achieved by transforming the original program so that the hot path
is extracted, i.e. made explicit: the hot path is added to the program as a path with no
join points that jumps back to the original code when execution leaves it. A guard is
placed before each command in this hot path that checks if the necessary conditions,
as selected by the store abstraction, are satisfied. A program optimization can then be
confined to the hot path only, making it linear, by ignoring the parts of the program
outside it. The guards added to the hot path allows us to retain precision.

We apply our TJITC model to type specialization. Type specialization is definitely
the key optimization for dynamic languages such as Javascript [Gal et al. 2009], as
they make available generic operations whose execution depends on the type of run-
time values of their operands. Moreover, as a further application of our model, we
consider the constant variable folding optimization along hot paths, which relies on
the standard constant propagation abstract domain [Wegman and Zadeck 1991].

Related Work. A formal model for tracing JIT compilation has been put forward by
Guo and Palsberg [2011] at POPL symposium. It is based on operational bisimulation
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[Milner 1995] to describe the equivalence between source and optimized programs. We
show how this model can be expressed within our framework through the following
steps: Guo and Palsberg’s language is compiled into ours; we then exhibit an obser-
vational abstraction which is equivalent to Guo and Palsberg’s correctness criterion;
finally, after some minor changes that address a few differences in path selection, the
transformations performed on the source program turn out to be the same. Our frame-
work overcomes some significant limitations in Guo and Palsberg’s model. The bisim-
ulation equivalence model used in [Guo and Palsberg 2011] implies that the optimized
program has to match every change to the store made by the original program, whereas
in practice we only need this match to hold in certain program points and for some
variables, such as in output instructions. This limits the number of real optimizations
that can be modeled in this framework. For instance, dead store elimination is proven
unsound in [Guo and Palsberg 2011], while it is implemented in actual tracing com-
pilers [Gal et al. 2009, Section 5.1]. Furthermore, their formalization fails to model
some important features of actual TJITC implementation: (i) traces are mere linear
paths of instructions, i.e., they cannot be annotated with store properties; (ii) hot path
selection is completely non-deterministic, since they do not model a selection criterion;
and, (iii) once execution leaves an optimized hot path the program will not be able to
re-enter it.

It is also worth citing that abstract interpretation of program trace semantics roots
at the foundational work by Cousot [1997; 2002] and has been widely used as a tech-
nique for defining a range of static program analyses [Barbuti et al. 1999; Colby and
Lee 1996; Handjieva and Tzolovski 1998; Logozzo 2009; Rival and Mauborgne 2007;
Schmidt 1998; Spoto and Jensen 2003]. Also, Rival [2004] describes various program
optimizations as the trace abstractions they preserve. In the Cousot and Cousot termi-
nology [Cousot and Cousot 2002], Rival’s approach corresponds to offline transforma-
tions whereas tracing compilation is an online transformation.

Structure. The rest of the paper is organized as follows. Sections 2 and 3 contain
some necessary background: the language considered in the paper and its operational
trace semantics are defined in Section 2, while Section 3 recalls some basic notions of
abstract interpretation, in particular for defining abstract domains of program stores.
Hot paths are formally defined in Section 4 as a suitable abstract interpretation of
program traces, while Section 5 defines the program transform for extracting a given
hot path. The correctness of the hot path extraction transform is defined and proved
correct in Section 6, which also introduces in Subsection 6.2 program optimizations
along hot paths together with a methodology for proving their correctness. Section 7
applies our model of hot path optimization to type specialization of untyped program
commands, while Section 8 describes an application to constant variable folding along
hot paths. Nested hot paths and the corresponding program transform for their extrac-
tion are the subject of Section 9. Section 10 provides a thorough formal comparison of
our model with Guo and Palsberg [2011]’s framework for tracing compilation. Finally,
Section 11 concludes, also discussing some directions for future work.

This is an expanded and revised version of the POPL symposium article [Dissegna
et al. 2014] including all the proofs.

2. LANGUAGE AND CONCRETE SEMANTICS
2.1. Notation
Given a finite set X of objects, we will use the following notation concerning sequences:
ε is the empty sequence; X+ is the set of nonempty finite sequences of objects of X;
X∗ , X+ ∪ {ε}; if σ ∈ X∗ then |σ| denotes the length of σ; indices of objects in a
nonempty sequence σ ∈ X+ start from 0 and thus range in the interval [0, |σ|) ,
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[0, |σ| − 1]; if σ ∈ X+ and i ∈ [0, |σ|) then σi ∈ X (or σ(i)) denotes the i-th object in σ; if
σ ∈ X∗ and i, j ∈ [0, |σ|) then σ[i,j] ∈ X∗ denotes the subsequence σiσi+1 . . . σj , which is
therefore the empty sequence if j < i, while if k ∈ N then σk� ∈ X∗ denotes the suffix
σkσk+1 . . . σ|σ|−1, which is the empty sequence when k ≥ |σ|.

If f : X → Y is any function then its collecting version f c : ℘(X) → ℘(Y ) is defined
pointwise by f c(S) , {f(x) ∈ Y | x ∈ S}, and when clear from the context, by a slight
abuse of notation, it is sometimes denoted by f itself.

2.2. Syntax
We consider a basic low level language with untyped global variables, a kind of ele-
mentary dynamic language, which is defined through the notation used in [Cousot and
Cousot 2002]. Program commands range in C and consist of a labeled action which
specifies a next label (Ł is the undefined label, where the execution becomes stuck: it
is used for defining final commands).

Labels: L ∈ L Ł 6∈ L
Values: v ∈ Value

Variables: x ∈ Var
Expressions: Exp 3 E ::= v | x | E1 + E2

Boolean Expressions: BExp 3 B ::= tt | ff | E1 ≤ E2 | ¬B | B1 ∧B2

Actions: A 3 A ::= x := E | B | skip
Commands: C 3 C ::= L : A→ L′ (with L′ ∈ L ∪{Ł})

For any command L : A→ L′, we use the following notation:

lbl(L : A→ L′) , L, act(L : A→ L′) , A, suc(L : A→ L′) , L′.

Commands L : B → L′ whose action is a Boolean expression are called conditionals.
A program P ∈ ℘(C) is a (possibly infinite, at least in theory) set of commands. In
order to be well-formed, if a program P includes a conditional C ≡ L : B → L′ then P
must also include a unique complement conditional L : ¬B → L′′, which is denoted by
cmpl(C) or Cc, where ¬¬B is taken to be equal toB, so that cmpl(cmpl(C)) = C. The set
of well-formed programs is denoted by Program. In our examples, programs P will be
deterministic, i.e., for any C1, C2 ∈ P such that lbl(C1) = lbl(C2): (1) if act(C1) 6= act(C2)
then C1 = cmpl(C2); (2) if act(C1) = act(C2) then C1 = C2. We say that two programs
P1 and P2 are equal up to label renaming, denoted by P1

∼= P2, when there exists a
suitable renaming for the labels of P1 that makes P1 equal to P2.

2.3. Transition Semantics
The language semantics relies on values ranging in Value, possibly undefined values
ranging in Valueu, truth values in Bool, possibly undefined truth values ranging in
Boolu and type names ranging in Types, which are defined as follows:

Value , Z ∪ Char∗ Valueu , Z ∪ Char∗ ∪{undef}

Bool , {true, false} Boolu , {true, false,undef}

Types , {Int,String,Undef,>T,⊥T}

where Char is a nonempty finite set of characters and undef is a distinct symbol. The
mapping type : Valueu → Types provides the type of any possibly undefined value:

type(v) ,


Int if v ∈ Z
String if v ∈ Char∗

Undef if v = undef
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E : Exp→ Store→ Valueu

EJvKρ , v EJxKρ , ρ(x)

EJE1 + E2Kρ ,


EJE1Kρ+Z EJE2Kρ if type(EJEiKρ) = Int

EJE1Kρ ·EJE2Kρ if type(EJEiKρ) = String

undef otherwise

B : BExp→ Store→ Boolu

BJttKρ , true BJ ffKρ , false

BJE1 ≤ E2Kρ ,


EJE1Kρ ≤Z EJE2Kρ if type(EJEiKρ) = Int

∃σ ∈ String .EJE2Kρ = (EJE1Kρ)·σ if type(EJEiKρ) = String

undef otherwise

BJ¬BKρ , ¬BJBKρ BJB1 ∧B2Kρ , BJB1Kρ ∧BJB2Kρ

A : A→ Store→ Store∪{⊥}
AJskipKρ , ρ

AJx := EKρ ,

{
ρ[x/EJEKρ] if EJEKρ 6= undef
⊥ if EJEKρ = undef

AJBKρ ,

{
ρ if BJBKρ = true
⊥ if BJBKρ ∈ {false,undef}

Fig. 1. Semantics of program expressions and actions.

The type names ⊥T and >T will be used in Section 7 as, respectively, top and bottom
type, that is, subtype and supertype of all types.

Let Store , Var→ Valueu denote the set of possible stores on variables in Var, where
ρ(x) = undef means that the store ρ is not defined on a program variable x ∈ Var.
Hence, let us point out that the symbol undef will be used to represent both store
undefinedness and a generic error when evaluating an expression (e.g., additions and
comparisons between integers and strings), two situations which are not distinguished
in our semantics. A store ρ ∈ Store will be denoted by [x/ρ(x)]ρ(x) 6=undef, thus omitting
undefined variables, while [ ] will denote the totally undefined store. If P ∈ Program

then vars(P ) denotes the set of variables in Var that occur in P , so that StoreP ,
vars(P )→ Valueu is the set of possible stores for P .

The semantics of expressions E, Boolean expressions B and program actions A is
standard and goes as defined in Fig. 1. Let us remark that:

(i) the binary function +Z denotes integer addition, ≤Z denotes integer comparison,
while · is string concatenation;

(ii) logical negation and conjunction in Boolu are extended in order to handle undef as
follows: ¬undef = undef and undef ∧ b = undef = b ∧ undef;

(iii) ρ[x/v] denotes a store update for the variable x with v ∈ Value;
(iv) the distinct symbol ⊥ 6∈ Valueu is used to denote the result of: AJx := EKρ when the

evaluation of the expression E for ρ generates an error; AJBKρ when the evaluation
of the Boolean expression B for ρ is either false or generates an error.
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With a slight abuse of notation we also consider the collecting versions of the semantic
functions in Fig. 1, which are defined as follows:

E : Exp→ ℘(Store)→ ℘(Valueu)
EJEKS , {EJEKρ ∈ Valueu | ρ ∈ S}

B : BExp→ ℘(Store)→ ℘(Store)
BJBKS , {ρ ∈ S | BJBKρ = true}

A : A→ ℘(Store)→ ℘(Store)
AJAKS , {AJAKρ | ρ ∈ S, AJAKρ ∈ Store}

Let us point out that, in the above collecting versions, if EJEKρ = undef then EJEK{ρ} =
{undef} and AJx := EK{ρ} = ∅, while if BJBKρ ∈ {false,undef} then BJBK{ρ} = ∅ and
AJBK{ρ} = ∅.

Generic program states are pairs of stores and commands: State , Store×C. We
extend the previous functions lbl, act and suc to be defined on states, meaning that
they are defined on the command component of a state. Also, store(s) and cmd(s) re-
turn, respectively, the store and the command of a state s. The transition semantics
S : State→ ℘(State) is a relation between generic states defined as follows:

S〈ρ, C〉 , {〈ρ′, C ′〉 ∈ State | ρ′ ∈ AJact(C)K{ρ}, suc(C) = lbl(C ′)}.

If P is a program then StateP , StoreP ×P is the set of possible states of P . Given
P ∈ Program, the program transition relation SJP K : StateP → ℘(StateP ) between
states of P is defined as:

SJP K〈ρ, C〉 , {〈ρ′, C ′〉 ∈ StateP | ρ′ ∈ AJact(C)K{ρ}, C ′ ∈ P, suc(C) = lbl(C ′)}.
Let us remark that, according to the above definition, if C ≡ L : A→ L′, C1 ≡ L′ : B →
L′′ and Cc1 ≡ L′ : ¬B → L′′′ are all commands in P and ρ′ ∈ AJAKρ then we have that
SJP K〈ρ, C〉 = {〈ρ′, C1〉, 〈ρ′, Cc1〉}.

A state s ∈ StateP is stuck for P when SJP Ks = ∅. Let us point that:

(i) If the conditional command of a state s = 〈ρ, L : B → L′〉 ∈ StateP is such that
BJBKρ = false then s is stuck for P because there exists no store ρ′ ∈ AJBK{ρ} = ∅.

(ii) If the command of a state s = 〈ρ, L : A → Ł〉 ∈ StateP has the undefined label Ł as
next label then s is stuck for P .

(iii) We have a stuck state swhen an error happens. E.g., this is the case for an undefined
evaluation of an addition as in s = 〈[y/3, z/foo], L : x := y + z → L′〉 and for an
undefined evaluation of a Boolean expression as in s = 〈[y/3, z/foo], L : y ≤ x→ L′〉.
Programs typically have an entry point, and this is modeled through a distinct initial

label Lι ∈ L from which execution starts. StateιP , {〈ρ, C〉 | lbl(C) = Lι} denotes the
set of possible initial states for P .

2.3.1. Trace Semantics. A partial trace is any nonempty finite sequence of generic pro-
gram states which are related by the transition relation S. Hence, the set Trace of
partial traces is defined as follows:

Trace , {σ ∈ State+ | ∀i ∈ [1, |σ|). σi ∈ Sσi−1}.
The partial trace semantics of P ∈ Program is in turn defined as follows:

TJP K = TraceP , {σ ∈ (StateP )
+ | ∀i ∈ [1, |σ|). σi ∈ SJP Kσi−1}.

A trace σ ∈ TraceP is complete if for any state s ∈ StateP , σs 6∈ TraceP and sσ 6∈
TraceP . Observe that TraceP contains all the possible partial traces of P , complete
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A:8 S. Dissegna et al.

traces included. Let us remark that a trace σ ∈ TraceP does not necessarily begin with
an initial state, namely it may happen that σ0 6∈ StateιP . Traces of P starting from
initial states are denoted by

TιJP K = TraceιP , {σ ∈ TraceP | σ0 ∈ StateιP }.
Also, a complete trace σ ∈ TraceιP such that suc(σ|σ|−1) = Ł corresponds to a terminat-
ing run of the program P .

Example 2.1. Let us consider the programQ below written in some while-language:

x := 0;
while (x ≤ 20) do

x := x+ 1;
if (x%3 = 0) then x := x+ 3;;

Its translation as a program P in our language is given below, with Lι = L0, where,
with a little abuse, we assume an extended syntax that allows expressions like
x%3 = 0.

P =
{
C0 ≡ L0 : x := 0→ L1,

C1 ≡ L1 : x ≤ 20→ L2, C
c
1 ≡ L1 : ¬(x ≤ 20)→ L5,

C2 ≡ L2 : x := x+ 1→ L3,

C3 ≡ L3 : (x%3 = 0)→ L4, C
c
3 ≡ L3 : ¬(x%3 = 0)→ L1

C4 ≡ L4 : x := x+ 3→ L1, C5 ≡ L5 : skip→ Ł
}

Its trace semantics from initial states TraceιP includes the following complete traces,
where [ ] is the initial totally undefined store.

〈[ ], C0〉〈[x/0], Cc1〉
〈[ ], C0〉〈[x/0], C1〉〈[x/0], C2〉〈[x/1], C3〉
〈[ ], C0〉〈[x/0], C1〉〈[x/0], C2〉〈[x/1], Cc3〉〈[x/1], Cc1〉
· · ·
· · ·
〈[ ], C0〉〈[x/0], C1〉〈[x/0], C2〉〈[x/1], Cc3〉〈[x/1], C1〉 · · · 〈[x/21], C4〉〈[x/24], C1〉
〈[ ], C0〉〈[x/0], C1〉〈[x/0], C2〉〈[x/1], Cc3〉〈[x/1], C1〉 · · · 〈[x/21], C4〉〈[x/24], Cc1〉〈[x/24], C5〉

Observe that the last trace corresponds to a terminating run of P .

3. ABSTRACTIONS
3.1. Abstract Interpretation Background
In standard abstract interpretation [Cousot and Cousot 1977; Cousot and Cousot
1979], abstract domains, also called abstractions, are specified by Galois connection-
s/insertions (GCs/GIs for short) or, equivalently, adjunctions. Concrete and abstract
domains, 〈C,≤C〉 and 〈A,≤A〉, are assumed to be complete lattices which are related
by abstraction and concretization maps α : C → A and γ : A → C such that, for
all a and c, α(c) ≤A a ⇔ c ≤C γ(a). A GC is a GI when α ◦ γ = λx.x. It is well
known that a join-preserving α uniquely determines, by adjunction, γ as follows:
γ(a) = ∨{c ∈ C | α(c) ≤A a}; conversely, a meet-preserving γ uniquely determines,
by adjunction, α as follows: α(c) = ∧{a ∈ A | c ≤C γ(a)}.

Let f : C → C be some concrete monotone function—for simplicity, we consider 1-ary
functions—and let f ] : A→ A be a corresponding monotone abstract function defined
on some abstraction A related to C by a GC. Then, f ] is a correct abstract interpre-
tation of f on A when α ◦ f v f ] ◦ α holds, where v denotes the pointwise ordering
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between functions. Moreover, the abstract function fA , α ◦ f ◦ γ : A→ A is called the
best correct approximation of f on A because any abstract function f ] is correct iff
fA v f ]. Hence, for any A, fA plays the role of the best possible approximation of f on
the abstraction A.

3.2. Store Abstractions
As usual in abstract interpretation [Cousot and Cousot 1977], a store property is mod-
eled by some abstraction Store] of ℘(Store) which is formalized through a Galois con-
nection:

(αstore , 〈℘(Store),⊆〉, 〈Store],≤〉, γstore).

Given a program P , when Store] is viewed as an abstraction of 〈℘(StoreP ),⊆〉 we
emphasize it by adopting the notation Store]P . A store abstraction Store]P also induces
a state abstraction State]P , Store]P ×P and, in turn, a trace abstraction defined by
Trace]P , (State]P )

∗.

3.2.1. Nonrelational Abstractions. Nonrelational store abstractions (i.e., relationships be-
tween program variables are not taken into account) can be easily designed by a stan-
dard pointwise lifting of some value abstraction. Let Value] be an abstraction of sets of
possibly undefined values in ℘(Valueu) as formalized by a Galois connection

(αvalue , 〈℘(Valueu),⊆〉, 〈Value],≤Value]〉, γvalue).

The abstract domain Value] induces a nonrelational store abstraction

ρ] ∈ Store]value , 〈Var→ Value],v〉

where v is the pointwise ordering induced by ≤Value] : ρ
]
1 v ρ]2 iff for all x ∈ Var,

ρ]1(x) ≤Value] ρ]2(x). Hence, the bottom and top abstract stores are, respectively,
λx.⊥Value] and λx.>Value] . The abstraction map αvvalue : ℘(Store)→ Store]value is defined
as follows:

αvvalue(S) , λx.αvalue({ρ(x) ∈ Valueu | ρ ∈ S})

The corresponding concretization map γvvalue : Store]value → ℘(Store) is defined, as re-
called in Section 3.1, by adjunction from the abstraction map αvvalue and it is easy to
check that it can be given as follows:

γvvalue(ρ
]) = {ρ ∈ Store | ∀x ∈ Var . ρ(x) ∈ γvalue(ρ](x))}.

Let us observe that:

(i) αvvalue(∅) = λx.αvalue(∅) = λx.⊥Value] because αvalue(∅) = ⊥Value] always holds in a
GC;

(ii) αvvalue({[ ]}) = λx.αvalue({undef});
(iii) if γvalue(⊥Value]) = ∅, ρ] ∈ Store]value and ρ](x) = ⊥Value] then γvvalue(ρ

]) = ∅;
(iv) if γvalue(⊥Value]) = {undef} then γvvalue(λx.⊥Value]) = {[ ]}.

Example 3.1 (The constant propagation abstraction). The constant propaga-
tion (see [Wegman and Zadeck 1991]) lattice 〈CP,�〉 is depicted below.
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⊥

· · · v−2 v−1 v0 v1 v2 · · ·

>

where {vi}i∈Z is any enumeration of Valueu, thus undef is included. Abstraction
αcp : ℘(Valueu)→ CP and concretization γcp : CP → ℘(Valueu) functions are defined
as follows:

αcp(S) ,


⊥ if S = ∅
vi if S = {vi}
> otherwise

γcp(a) ,


∅ if a = ⊥
{vi} if a = vi
Valueu if a = >

and give rise to a GI (αcp, 〈℘(Valueu),⊆〉, 〈CP,�〉, γcp). The corresponding nonrelational
store abstraction is denoted by CPst , 〈Var→ CP, �̇〉, where αCP : ℘(Store)→ CPst and
γCP : CPst → ℘(Store) denote the abstraction and concretization maps. For example,
for Var = {x, y, z, w} and omitting the bindings v/undef also in abstract stores, we have
that:
αCP({[x/2, y/foo, z/1], [x/2, y/bar]}) = [x/2, y/>, z/>],
γCP([x/2, y/>, w/foo]) = {ρ ∈ Store | ρ(x) = 2, ρ(y) ∈ Valueu, ρ(z) = undef, ρ(w) = foo},
γCP([x/2, y/>, w/⊥]) = ∅.

4. HOT PATH SELECTION
A loop path is a sequence of program commands which is repeated in some execution of
a program loop, together with a store property which is valid at the entry of each com-
mand in the path. A loop path becomes hot when, during the execution, it is repeated
at least a fixed number N of times. In a TJITC, hot path selection is performed by a
loop path monitor that also records store properties (see, e.g., [Gal et al. 2009]). Here,
hot path selection is not operationally defined, it is instead semantically modeled as
an abstraction map over program traces, i.e., program executions.

Given a program P and therefore its trace semantics TraceP , we first define a map-
ping loop : TraceP → ℘(TraceP ) that returns all the loop paths in some execution trace
of P . More precisely, a loop path is a proper substring (i.e., a segment) τ of a program
trace σ such that:

(1) the successor command in σ of the last state in τ exists and coincides with the
command – or its complement, when this is the last loop iteration – of the first
state in τ ;

(2) there is no other such command within τ (otherwise the sequence τ would contain
multiple iterations);

(3) the last state of τ performs a backward jump in the program P .

To recognize backward jumps, we consider a topological order on the control flow graph
of commands in P , denoted by l. This leads to the following formal definition:

loop(〈ρ0, C0〉 · · · 〈ρn, Cn〉) ,
{
〈ρi, Ci〉〈ρi+1, Ci+1〉 · · · 〈ρj , Cj〉 | 0 ≤ i ≤ j < n, Ci l Cj ,

suc(Cj) = lbl(Ci),∀k ∈ (i, j]. Ck 6∈ {Ci, cmpl(Ci)}
}
.

Let us remark that a loop path
〈ρi, Ci〉 · · · 〈ρj , Cj〉 ∈ loop(〈ρ0, C0〉 · · · 〈ρn, Cn〉)
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may contain some sub-loop path, namely it may happen that loop(〈ρi, Ci〉 · · · 〈ρj , Cj〉) 6=
∅ so that some commands Ck, with k ∈ [i, j], may occur more than once in
〈ρi, Ci〉 · · · 〈ρj , Cj〉; for example, this could be the case of a while loop whose body in-
cludes a nested while loop.

We abuse notation by using αstore to denote a map αstore : TraceP → Trace]P which
“abstracts” a program trace τ into Trace]P by abstracting the sequence of stores occur-
ring in τ :

αstore(〈ρ0, C0〉 · · · 〈ρn, Cn〉) , 〈αstore({ρ0}), C0〉 · · · 〈αstore({ρn}), Cn〉.

Given a static integer parameter N > 0, we define a function

hotN : TraceP → ℘(Trace]P )

which returns the set of Store]-abstracted loop paths appearing at least N times in
some program trace. In order to count the number of times a loop path appears within
a trace we need an auxiliary function count : Trace]P ×Trace]P → N such that count(σ, τ)
yields the number of times an abstract path τ occurs in an abstract trace σ:

count(〈a0, C0〉 · · · 〈an, Cn〉, 〈b0, C ′0〉 · · · 〈bm, C ′m〉) ,
n−m∑
i=0

{
1 if 〈ai, Ci〉 · · · 〈ai+m, Ci+m〉 = 〈b0, C ′0〉 · · · 〈bm, C ′m〉
0 otherwise

Hence, hotN can be defined as follows:

hotN (σ ≡ 〈ρ0, C0〉 · · · 〈ρn, Cn〉) ,
{
〈ai, Ci〉 · · · 〈aj , Cj〉 | ∃〈ρi, Ci〉 · · · 〈ρj , Cj〉 ∈ loop(σ) s.t.
αstore(〈ρi, Ci〉 · · · 〈ρj , Cj〉) = 〈ai, Ci〉 · · · 〈aj , Cj〉,
count(αstore(σ), 〈ai, Ci〉 · · · 〈aj , Cj〉) ≥ N

}
.

Finally, an abstraction map αNhot : ℘(TraceP )→ ℘(Trace]P ) collects the results of apply-
ing hotN to a set of traces:

αNhot(T ) ,
⋃
σ∈T

hotN (σ).

A N -hot path hp in a program P is therefore any hp ∈ αNhot(TraceP ) and is compactly
denoted as hp = 〈a0, C0, ..., an, Cn〉. Let us observe that if the hot path corresponds to
the body of some while loop then its first command C0 is a conditional, namely C0 is
the Boolean guard of the while loop. We define the successor function next for indices
in a hot path 〈a0, C0, ..., an, Cn〉 as follows: next , λi. i = n ? 0 : i + 1. For a N -hot
path 〈a0, C0, ..., an, Cn〉 ∈ αNhot(TraceP ), for any i ∈ [0, n], if Ci is a conditional command
Li : Bi → Lnext(i) then throughout the paper its complement Cci = cmpl(Ci) will be also
denoted by Li : ¬Bi → Lcnext(i).

Example 4.1. Let us consider the program P in Example 2.1 and a trivial one-point
store abstraction Store] = {>}, where all the stores are abstracted to the same abstract
store >, i.e., αstore = λS.>. Here, we have two 2-hot paths in P , that is, it turns out
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that α2
hot(TraceP ) = {hp1, hp2} where:

hp1 = 〈>, C1 ≡ L1 : x ≤ 20→ L2,>, C2 ≡ L2 : x := x+ 1→ L3,

>, Cc3 ≡ L3 : ¬(x%3 = 0)→ L1〉;

hp2 = 〈>, C1 ≡ L1 : x ≤ 20→ L2,>, C2 ≡ L2 : x := x+ 1→ L3,

>, C3 ≡ L3 : (x%3 = 0)→ L4,>, C4 ≡ x := x+ 3→ L1〉.

Therefore, the hot paths hp1 and hp2 correspond, respectively, to the cases where the
Boolean test (x%3 = 0) fails and succeeds. Observe that the maximal sequence of
different values assumed by the program variable x is as follows:

? 7→ 0 7→ 1 7→ 2 7→ 3 7→ 6 7→ 7 7→ 8 7→ 9 7→ 12 7→ 13 7→ 14 7→ 15 7→ 18 7→ 19 7→ 20 7→ 21 7→ 24

Hence, if σ is the complete terminating trace of P in Example 2.1 then it turns out that
count(αstore(σ), hp1) = 8 and count(αstore(σ), hp2) = 4.

5. TRACE EXTRACTION
For any abstract store a ∈ Store], a corresponding Boolean expression denoted by
guardEa ∈ BExp is defined (where the notation Ea should hint at an expression which
is induced by the abstract store a), whose semantics is as follows: for any ρ ∈ Store,

BJguard EaKρ ,

{
true if ρ ∈ γstore(a)
false if ρ 6∈ γstore(a)

In turn, we also have program actions guard Ea ∈ A such that:

AJguard EaKρ ,

{
ρ if ρ ∈ γstore(a)
⊥ if ρ 6∈ γstore(a)

Let P be a program and hp = 〈a0, C0, ..., an, Cn〉 ∈ αNhot(TraceP ) be a hot path on some
store abstraction Store]. We define a syntactic transform of P where the hot path hp is
explicitly extracted from P . This is achieved by a suitable relabeling of each command
Ci in hp which is in turn preceded by the conditional guard Eai induced by the corre-
sponding store property ai. To this aim, we consider three injective relabeling functions

` : [0, n]→ L1 l : [1, n]→ L2 (·) : L→ L (∗)

where L1, L2 and L are pairwise disjoint sets of fresh labels, so that labels(P )∩(L1∪L2∪
L) = ∅. The transformed program extrhp(P ) for the hot path hp is defined as follows
and a graphical example of this transform is depicted in Fig. 2.

Definition 5.1 (Trace extraction transform). The trace extraction transform of P
for the hot path hp = 〈a0, C0, ..., an, Cn〉 is:

extrhp(P ) , P r
(
{C0} ∪ {cmpl(C0) | cmpl(C0) ∈ P}

)
∪ {L0 : act(C0)→ L1} ∪ {L0 : ¬act(C0)→ Lc1 | cmpl(C0) ∈ P} ∪ stitchP (hp)

where the stitch of hp into P is defined as follows:

stitchP (hp) , {L0 : guard Ea0 → `0, L0 : ¬guard Ea0 → L0}
∪ {`i : act(Ci)→ li+1 | i ∈ [0, n− 1]}∪{`n : act(Cn)→ L0}
∪ {`i : ¬act(Ci)→ Lcnext(i) | i ∈ [0, n], cmpl(Ci) ∈ P}
∪ {li : guard Eai → `i, li : ¬guard Eai → Li | i ∈ [1, n]}.
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Fig. 2. An example of trace extraction transform: on the left, a hot path hp with commands in pink (in
black/white: loosely dotted) shapes; on the right, the corresponding trace transform extrhp(P ) with new
commands in blue (in black/white: densely dotted) shapes.

The new command L0 : guard Ea0 → `0 is therefore the entry conditional of the
stitched hot path stitchP (hp), while any command C ∈ stitchP (hp) such that suc(C) ∈
labels(P ) ∪ L is a potential exit (or bail out) command of stitchP (hp).

LEMMA 5.2. If P is well-formed then, for any hot path hp, extrhp(P ) is well-formed.

PROOF. Recall that a program is well-formed when for any its conditional command
it also includes a unique complement conditional. It turns out that extrhp(P ) is well-
formed because: (1) P is well-formed; (2) for each conditional in Pnew = extrhp(P )rP =

stitchP (hp) ∪ {L0 : act(C0) → L1} ∪ {L0 : ¬act(C0) → Lc1 | cmpl(C0) ∈ P} we also have
a unique complement conditional in Pnew . Moreover, observe that if P is deterministic
then extrhp(P ) still is deterministic.

Let us remark that the stitch of the hot path hp into P is always a linear sequence
of different commands, namely, stitchP (hp) does not contain loops nor join points. Fur-
thermore, this happens even if the hot path hp does contain some inner sub-loop. Tech-
nically, this is achieved as a consequence of the fact that the above relabeling functions
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` and l are required to be injective. Hence, even if some command C occurs more than
once inside hp, e.g., Ci = C = Cj for some i, j ∈ [0, n − 1] with i 6= j, then these
multiple occurrences of C in hp are transformed into differently labeled commands in
stitchP (hp), e.g., because `i 6= `j and li+1 6= lj+1.

Let us now illustrate the trace extraction transform on a first simple example.

Example 5.3. Let us consider the program P in Example 2.1 and the hot path hp =
〈>, C1,>, C2,>, Cc3〉 in Example 4.1 (denoted there by hp1), where stores are abstracted
to the trivial one-point abstraction Store] = {>}. Here, for any ρ ∈ Store, we have
that BJguard E>Kρ = true. The trace extraction transform of P w.r.t. hp is therefore as
follows:

extrhp(P ) = P r {C1, C
c
1} ∪ {L1 : x ≤ 20→ L2, L1 : ¬(x ≤ 20)→ L5} ∪ stitchP (hp)

where

stitchP (hp) = {H0 ≡ L1 : guard E> → `0, H
c
0 ≡ L1 : ¬guard E> → L1}

∪ {H1 ≡ `0 : x ≤ 20→ l1, H
c
1 ≡ `0 : ¬(x ≤ 20)→ L5}

∪ {H2 ≡ l1 : guard E> → `1, H
c
2 ≡ l1 : ¬guard E> → L2}

∪ {H3 ≡ `1 : x := x+ 1→ l2}
∪ {H4 ≡ l2 : guard E> → `2, H

c
4 ≡ l2 : ¬guard E> → L3}

∪ {H5 ≡ `2 : ¬(x%3 = 0)→L1, H
c
5 ≡ `2 : (x%3 = 0)→L4}.

The flow graph of extrhp(P ) is depicted in Figure 3, while a higher level representation
using while-loops and gotos is as follows:

x := 0;
L1 : while guard E> do

if ¬(x ≤ 20) then goto L5;
if ¬guard E> then goto L2;
x := x+ 1;
if ¬guard E> then goto L3;
if (x%3 = 0) then goto L4;

if ¬(x ≤ 20) then goto L5;
L2 : x := x+ 1;
L3 : if ¬(x%3 = 0) then goto L1;
L4 : x := x+ 3;
goto L1;
L5 : skip;

6. CORRECTNESS
As advocated by Cousot and Cousot [2002, par. 3.8], correctness of dynamic program
transformations and optimizations should be defined with respect to some observa-
tional abstraction of program trace semantics: a dynamic program transform is correct
when, at some level of abstraction, the observation of the execution of the subject pro-
gram is equivalent to the observation of the execution of the transformed/optimized
program.

Store Changes Abstraction. The approach by Guo and Palsberg [2011] to tracing com-
pilation basically relies on a notion of correctness that requires the same store changes
to happen in both the transformed/optimized program and the original program. This
can be easily encoded by an observational abstraction αsc : ℘(Trace) → ℘(Store∗) of
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Fig. 3. The flow graph of the trace extraction transform extrhp(P ) in Example 5.3, where commands of
stitchP (hp) are in blue (in black/white: densely dotted) shapes, while commands of the source program P
are in pink (in black/white: loosely dotted) shapes.

partial traces that observes store changes in execution traces:

sc : Trace→ Store∗

sc(σ) ,


ε if σ = ε

ρ if σ = 〈ρ, C〉
sc(〈ρ, C1〉σ′) if σ = 〈ρ, C0〉〈ρ, C1〉σ′
ρ0 sc(〈ρ1, C1〉σ′) if σ =〈ρ0, C0〉〈ρ1, C1〉σ′, ρ0 6= ρ1

αsc(T ) , {sc(σ) | σ ∈ T}

Since the function αsc obviously preserves arbitrary set unions, as recalled in Sec-
tion 3.1, it admits a right adjoint γsc : ℘(Store∗) → ℘(Trace) defined as γsc(S) , ∪{T ∈
℘(Trace) | αsc(T ) ⊆ S}, that gives rise to a GC (αsc , 〈℘(Trace),⊆〉, 〈℘(Store∗),⊆〉, γsc).
By a slight abuse of notation, αsc is also used as an abstraction of the partial trace
semantics of a given program P , that is, αsc : ℘(TraceP ) → ℘(Store∗P ), which, clearly,
gives rise to a corresponding GC (αsc , 〈℘(TraceP ),⊆〉, 〈℘(Store∗P ),⊆〉, γsc).

Output Abstraction. The store changes abstraction αsc may be too strong in prac-
tice. This can be generalized to any observational abstraction of execution traces
αo : 〈℘(Trace),⊆〉 → 〈A,≤A〉 (which gives rise to a GC). As a significant example, one
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may consider an output abstraction that demands to have the same stores (possibly
restricted to some subset of program variables) only at some specific output points. For
example, in a language with no explicit output primitives, as that considered by Guo
and Palsberg [2011], one could be interested just in the final store of the program (when
it terminates), or in the entry and exit stores of any loop containing an extracted hot
path. If we consider a language including a distinct primitive command “put X ” that
“outputs” the value of program variables ranging in some set X then we may want to
have the same stores for variables in X at each output point put X . In this case, opti-
mizations should preserve the same sequence of outputs, i.e. optimizations should not
modify the order of output commands. More formally, this can be achieved by adding
a further sort of actions: put X ∈ A, where X ⊆ Var is a set of program variables.
The semantics of put X obviously does not affect program stores, i.e., AJput X Kρ , ρ.
Correspondingly, if StoreX denotes stores on variables ranging in X then the follow-
ing output abstraction αout : ℘(Trace) → ℘(Store∗X ) of partial traces observes program
stores at output program points only:

out : Trace→ Store∗X

out(σ) ,


ε if σ = ε

out(σ′) if σ = sσ′ ∧ act(s) 6= put X
ρ|X out(σ′) if σ = 〈ρ, L : put X → L′〉σ′

αout(T ) , {out(σ) | σ ∈ T}

where ρ|X denotes the restriction of the store ρ to variables in X . Similarly to αsc , here
again we have a GC (αo, 〈℘(Trace),⊆〉, 〈℘(Store∗X ),⊆〉, γo).

Example 6.1 (Dead store elimination). This approach based on a generic obser-
vational abstraction enables to prove the correctness of program optimizations that
are unsound in Guo and Palsberg [2011]’s framework based on the store changes ab-
straction, such as dead store elimination. For example, in a program fragment such
as

while (x ≤ 0) do
z := 0;
x := x+ 1;
z := 1;

one can extract the hot path hp = 〈x ≤ 0, z := 0, x := x + 1, z := 1〉 (here we ignore
store abstractions) and perform dead store elimination of the command z := 0 by opti-
mizing hp to hp′ = 〈x ≤ 0, x := x + 1, z := 1〉. As observed by Guo and Palsberg [2011,
Section 4.3], this is clearly unsound in bisimulation-based correctness because this hot
path optimization does not output bisimilar code. By contrast, this optimization can be
made sound by choosing and then formalizing an observational abstraction of program
traces which requires to have the same stores at the beginning and at the exit of loops
containing an extracted hot path, while outside of hot paths one could still consider
the store changes abstraction.

Observational Abstraction. One can generalize the store changes abstraction αsc by
considering any observational abstraction αo : 〈℘(Trace),⊆〉 → 〈A,≤A〉 which is less
precise (i.e., more approximate) than αsc : this means that for any T1, T2 ∈ ℘(Trace),
if αsc(T1) = αsc(T2) then αo(T1) = αo(T2), or, equivalently, for any T ∈ ℘(Trace),
γsc(αsc(T )) ⊆ γo(αo(T )). Informally, this means that αo abstracts more information
than αsc . As an example, when considering programs with output actions, the follow-
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ing abstraction αosc : ℘(Trace) → ℘(Store∗X ) observes store changes at output program
points only:

osc : Trace→ Store∗X

osc(σ) ,



ε if σ = ε or σ = 〈ρ, C〉, act(C) 6= put X
ρ|X if σ =〈ρ, C〉, act(C) = put X ,
osc(〈ρ, L1 : put X → L′1〉σ′) if σ =〈ρ, C0〉〈ρ, L1 : A1 → L′1〉σ′, act(C0) = put X
osc(〈ρ, L1 : A1 → L′1〉σ′) if σ =〈ρ, C0〉〈ρ, L1 : A1 → L′1〉σ′, act(C0) 6= put X
ρ0|X osc(〈ρ1, C1〉σ′) if σ =〈ρ0, C0〉〈ρ1, C1〉σ′, ρ0 6= ρ1, act(C0) = put X
osc(〈ρ1, C1〉σ′) if σ =〈ρ0, C0〉〈ρ1, C1〉σ′, ρ0 6= ρ1, act(C0) 6= put X

αosc(T ) , {osc(σ) | σ ∈ T}
Clearly, it turns out that αosc is more approximate than αsc since osc(σ) records a store
change ρ0ρ1 only when the two contiguous subsequences of commands whose common
stores are ρ0 and ρ1 contain among them at least a put command.

6.1. Correctness of Trace Extraction
It turns out that the observational correctness of the hot path extraction transform in
Definition 5.1 can be proved w.r.t. the observational abstraction αsc of store changes.

THEOREM 6.2 (CORRECTNESS OF TRACE EXTRACTION). For any P ∈ Program
and hp ∈ αNhot(TraceP ), we have that αsc(TJextrhp(P )K) = αsc(TJP K).

This is the crucial result concerning the correctness of our hot path extraction trans-
form. We will show in Section 10.5 (see Theorem 10.12) that the correctness of the hot
path extraction strategy defined in [Guo and Palsberg 2011] can be proved by a simple
adaptation of the proof technique that we will use here.

In order to prove Theorem 6.2, we need to define some suitable “dynamic” transfor-
mations of execution traces. Let us fix a hot path hp = 〈a0, C0, ..., an, Cn〉 ∈ αNhot(TraceP )
(w.r.t. some store abstraction) and let Php , extrhp(P ) denote the corresponding trans-
form of P given by Definition 5.1. We first define a mapping trouthp of the execution traces
of the program P into execution traces of the transformed program Php that unfolds
the hot path hp (or any prefix of it) according to the hot path extraction strategy given
by Definition 5.1: a function application trouthp (τ) should replace any occurrence of the
hot path hp in the execution trace τ ∈ TraceP with its corresponding guarded and suit-
ably relabeled path obtained through Definition 5.1. More precisely, Fig. 4 provides the
definitions for the following two functions:

trouthp : TraceP → TracePhp
trinhp : TraceP → (StateP ∪StatePhp

)∗

Let us first describe how the trace transform trouthp works. A function application
trouthp (sσ) on a trace sσ of P—the superscript out hints that the first state s of the
trace sσ is still outside of the hot path hp so that trouthp (sσ) could either enter into the
transform of hp or remain outside of hp—triggers the unfolding of the hot path hp in
Php when the first state s is such that:

(i) s = 〈ρ, C0〉, where C0 is the first command of hp;
(ii) the entry conditional guard Ea0 of stitchP (hp) is satisfied in the store ρ of the state

s = 〈ρ, C0〉, that is, αstore({ρ}) ≤ a0.

If the unfolding for the trace 〈ρ, C0〉σ is actually started by applying trouthp (〈ρ, C0〉σ)
then:
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(iii) the first state 〈ρ, C0〉 is unfolded into the following sequence of two states of Php:
〈ρ, L0 : guard Ea0 → `0〉〈ρ, `0 : act(C0)→ l1〉;

(iv) in turn, the unfolding of the residual trace σ is carried on by applying trinhp(σ).

Let us now focus on the function trinhp. A function application trinhp(sσ)—here the su-
perscript in suggests that we are currently inside the hot path hp so that trinhp(sσ) could
either exit from the unfolding of hp or advance with the unfolding of hp—carries on the
unfolding of hp as a trace in Php when the current state s is such that:

(i) s = 〈ρ, Ci〉, where i ∈ [1, n − 1], meaning that the command Ci is strictly inside hp,
i.e., Ci is different from the first command C0 and the last command Cn of hp;

(ii) the guarded conditional guard Eai is satisfied in the store ρ of the state s = 〈ρ, Ci〉,
that is, αstore({ρ}) ≤ ai.

If one of these two conditions does not hold then the trace transformation trinhp(〈ρ, Ci〉σ),
after a suitable unfolding step for 〈ρ, Ci〉, jumps back to the “outside of hp” modality by
progressing with trouthp (σ).

Example 6.3. Consider the transform Php of Example 5.3 for the program P in
Example 2.1 w.r.t. the hot path hp = 〈>, C1,>, C2,>, Cc3〉. In particular, we refer to the
notation Hi, H

c
i used to denote the commands in the stitch of hp into P . Consider the

following trace fragment τ ∈ TraceP :

τ = 〈[x/3], C0〉〈[x/0], C1〉〈[x/0], C2〉〈[x/1], Cc3〉〈[x/1], C1〉〈[x/1], C2〉〈[x/2], Cc3〉
〈[x/2], C1〉〈[x/2], C2〉〈[x/3], C3〉〈[x/3], C4〉

Then, we have that the dynamic transformation trouthp (τ) acts as follows:

trouthp (τ) = 〈[x/3], C0〉trouthp (τ1� ) = 〈[x/3], C0〉〈[x/0], H0〉〈[x/0], H1〉trinhp(τ2� )

trinhp(τ2� ) = 〈[x/0], H2〉〈[x/0], H3〉trinhp(τ3� )

trinhp(τ3� ) = 〈[x/1], H4〉〈[x/1], H5〉trinhp(τ4� )

· · ·
trinhp(τ9� ) = trinhp(〈[x/3], C3〉〈[x/3], C4〉) = 〈[x/3], H4〉〈[x/3], Hc

5〉trouthp (〈[x/3], C4〉)
= 〈[x/3], H4〉〈[x/3], Hc

5〉〈[x/3], C4〉trouthp (ε)

= 〈[x/3], H4〉〈[x/3], Hc
5〉〈[x/3], C4〉

Summing up, using the colors in the flow graph of Php in Fig. 3 and representing traces
as sequences of commands only, we have that:

τ ≡ C0 → C1 → C2 → Cc3 → C1 → C2 → Cc3 → C1 → C2 → C3 → C4

trouthp (τ) ≡ C0 → H0 → H1 → H2 → H3 → H4 → H5 → H0 → H1 → H2 →

→ H3 → H4 → H5 → H0 → H1 → H2 → H3 → H4 → Hc
5 → C4

where red boxes denote commands of τ and trouthp (τ) outside of the hot path hp, black
boxes with red commands denote commands of τ inside hp, while black boxes with blue
commands denote commands of trouthp (τ) in stitchP (hp). Hence, trouthp (τ) carries out the
unfolding of the hot path hp for the execution trace τ of P , and therefore provides an
execution trace of the transformed program Php.
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hp = 〈a0, C0, ..., an, Cn〉 is a given hot path

trouthp (ε) , ε

trouthp (sσ) ,



〈ρ, L0 : guard Ea0 → `0〉〈ρ, `0 : act(C0)→ l1〉 trinhp(σ)
if s = 〈ρ, C0〉, αstore({ρ}) ≤ a0

〈ρ, L0 : ¬guard Ea0 → L0〉〈ρ, L0 : act(C0)→ L1〉 trouthp (σ)

if s = 〈ρ, C0〉, αstore({ρ}) 6≤ a0
〈ρ, L0 : guard Ea0 → `0〉〈ρ, `0 : ¬act(C0)→ Lc1〉 trouthp (σ)

if s = 〈ρ, cmpl(C0)〉, αstore({ρ}) ≤ a0
〈ρ, L0 : ¬guard Ea0 → L0〉〈ρ, L0 : ¬act(C0)→ Lc1〉 trouthp (σ)

if s = 〈ρ, cmpl(C0)〉, αstore({ρ}) 6≤ a0
s · trouthp (σ) otherwise

trinhp(ε) , ε

trinhp(sσ) ,



〈ρ, li : guard Eai → `i〉〈ρ, `i : act(Ci)→ li+1〉 trinhp(σ)
if s = 〈ρ, Ci〉, i ∈ [1, n− 1], αstore({ρ}) ≤ ai

〈ρ, ln : guard Ean → `n〉〈ρ, `n : act(Cn)→ L0〉 trouthp (σ)

if s = 〈ρ, Cn〉, αstore({ρ}) ≤ an
〈ρ, li : ¬guard Eai → Li〉〈ρ, Ci〉 trouthp (σ)

if s = 〈ρ, Ci〉, i ∈ [1, n], αstore({ρ}) 6≤ ai
〈ρ, li : guard Eai → `i〉〈ρ, `i : ¬act(Ci)→ Lcnext(i)〉 tr

out
hp (σ)

if s = 〈ρ, cmpl(Ci)〉, i ∈ [1, n], αstore({ρ}) ≤ ai
〈ρ, li : ¬guard Eai → Li〉〈ρ, cmpl(Ci)〉 trouthp (σ)

if s = 〈ρ, cmpl(Ci)〉, i ∈ [1, n], αstore({ρ}) 6≤ ai
s · trouthp (σ) otherwise

Fig. 4. Definitions of trouthp and trinhp.

It turns out that trouthp maps traces of P into traces of Php and does not alter store
change sequences.

LEMMA 6.4. trouthp is well-defined and for any σ ∈ TraceP , sc(trouthp (σ)) = sc(σ).

PROOF. We first show that: (1) trouthp is well-defined, i.e., for any σ ∈ TraceP ,
trouthp (σ) ∈ TracePhp

, and (2) for any σ ∈ TraceP , if cmd(σ0) 6∈ {C0, cmpl(C0)} then
trinhp(σ) ∈ TracePhp

. In order to prove these two points, it is enough an easy induction
on the length of the execution trace σ and to observe that:

(i) for the first four clauses that define trouthp (sσ) in Fig. 4 we have that trouthp (sσ) =

s′s′′trouthp (σ) or trouthp (sσ) = s′s′′trinhp(σ), where s′ is a guard command of Php and s′s′′
is in turn a legal sub-execution trace of Php;
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hp = 〈a0, C0, ..., an, Cn〉 is a given hot path

rtrhp(ε) , ε

rtrhp(sσ) ,



〈store(s), Ci〉 if σ = ε, act(s) ∈ {guard Eai ,¬guard Eai}, i ∈ [1, n]

rtrhp(σ) if σ 6= ε, act(s) ∈ {guard Eai ,¬guard Eai}, i ∈ [1, n]

〈ρ, C0〉rtrhp(σ) if s = 〈ρ, L0 : act(C0)→ L1〉

〈ρ, Cc0〉rtrhp(σ) if s = 〈ρ, L0 : ¬act(C0)→ Lc1〉

〈ρ, Ci〉rtrhp(σ) if s = 〈ρ, `i : act(Ci)→ li+1〉, i ∈ [1, n− 1]

〈ρ, Cci 〉rtrhp(σ) if s = 〈ρ, `i : ¬act(Ci)→ Lcnext(i)〉, i ∈ [1, n]

〈ρ, Cn〉rtrhp(σ) if s = 〈ρ, `n : act(Cn)→ L0〉

s · rtrhp(σ) otherwise

Fig. 5. Definition of rtrhp.

(ii) for the last clause that defines trouthp (sσ) in Fig. 4 we have that cmd(s) 6∈
{C0, cmpl(C0)}, hence s is a legal state in Php and, in turn, trouthp (sσ) = s · trouthp (σ) is
a trace of Php;

(iii) for the clauses 1, 2 and 4 that define trinhp(sσ) in Fig. 4 we have that trinhp(sσ) =

s′s′′trinhp(σ) or trinhp(sσ) = s′s′′trouthp (σ), where s′ is a guard command and s′′ is an
action command such that s′s′′ is a legal sub-execution trace of Php;

(iv) for the clauses 3 and 5 that define trinhp(sσ) in Fig. 4 we have that trinhp(sσ) =

s′strinhp(σ) where s′ is a guard command and s′s turns out to be a legal sub-execution
trace of Php;

(v) for the last clause that defines trinhp(sσ) in Fig. 4 we have that cmd(s) 6∈
{Ci, cmpl(Ci) | i ∈ [1, n]}; by hypothesis, cmd(s) 6∈ {C0, cmpl(C0)}, so that cmd(s) 6∈
{Ci, cmpl(Ci) | i ∈ [0, n]}, hence s is a legal state in Php and in turn trinhp(sσ) =

s · trouthp (σ) is a trace of Php;
(vi) trinhp(sσ) is never recursively called by a function application trouthp (s0sσ) when

cmd(s) ∈ {C0, cmpl(C0)}.

Then, it is immediate to check from the definitions in Fig. 4 that if trouthp (sσ) = s′s′′τ
then store(s) = store(s′) = store(s′′). Therefore, for any σ ∈ TraceP , we obtain that
sc(trouthp (σ)) = sc(σ).

Vice versa, it is a simpler task to define a reverse transformation function rtrhp
that “decompiles” an execution trace σ of Php into an execution trace of P by removing
guarded commands in σ, as generated by the hot path hp, and by mapping the relabeled
commands of hp in σ back to their corresponding source commands of hp. This function
rtrhp : TracePhp

→ TraceP is correctly defined by the clauses in Fig. 5 and it preserves
store change sequences.

LEMMA 6.5. rtrhp is well-defined and for any σ ∈ TracePhp
, sc(rtrhp(σ)) = rtrhp(σ).

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



An Abstract Interpretation-based Model of Tracing Just-In-Time Compilation A:21

PROOF. We show that rtrhp is well-defined, i.e., for any σ ∈ TracePhp
, rtrhp(σ) ∈

TraceP . This follows by an easy induction on the length of the execution trace σ by
observing that:

(i) the first clause that defines rtrhp(sσ) in Fig. 5 is an extremal base case where sσ = s
and the command action of s is a guard command guard Eai (or its complement);
in this case, we simply retain the store of s and pick the command Ci of P .

(ii) the clause 2 of rtrhp(sσ) in Fig. 5 simply removes the states whose commands are
some guard Eai ; since guard Eai does not alter stores, this removal preserves the
sequence of store changes.

(iii) the clauses 3-7 of rtrhp(sσ) in Fig. 5 map a state s of Php whose command Hi is
a relabeled action act(Ci) or ¬act(Ci) of the hot path hp to a corresponding state
of P that has the same store(s) and whose command is: Ci for act(Ci) and Cci for
¬act(Ci); here, we observe that since guards in σ are removed, by induction, these
definitions allow us to obtain that sσ is mapped to a legal trace of P that does not
alter the sequence of store changes.

(iv) the clause 8 of rtrhp(sσ) in Fig. 5 states that if s is already a state of P then it is
left unchanged.

Hence, the above points also show that the sequence of store changes is not affected by
rtrhp, i.e., for any σ ∈ TracePhp

, sc(rtrhp(σ)) = sc(σ).

Example 6.6. We carry on Example 6.3 by considering the following trace fragment
σ ∈ TracePhp

, where the transformed program Php is in Example 5.3:

σ = 〈[x/2], H4〉〈[x/2], H5〉〈[x/2], H0〉〈[x/2], H1〉〈[x/2], H2〉〈[x/2], H3〉〈[x/3], H4〉
〈[x/3], Hc

5〉〈[x/3], C4〉〈[x/6], C1〉

Here, the decompilation of σ back into an execution trace of P through rtrhp yields:

rtrhp(σ) = rtrhp(σ1� ) = 〈[x/2], Cc3〉rtrhp(σ2� ) = 〈[x/2], Cc3〉rtrhp(σ3� )

= 〈[x/2], Cc3〉〈[x/2], C1〉rtrhp(σ4� ) = 〈[x/2], Cc3〉〈[x/2], C1〉rtrhp(σ5� )

= 〈[x/2], Cc3〉〈[x/2], C1〉〈[x/2], C2〉rtrhp(σ6� )

= 〈[x/2], Cc3〉〈[x/2], C1〉〈[x/2], C2〉rtrhp(σ7� )

= 〈[x/2], Cc3〉〈[x/2], C1〉〈[x/2], C2〉〈[x/3], C3〉rtrhp(σ8� )

= 〈[x/2], Cc3〉〈[x/2], C1〉〈[x/2], C2〉〈[x/3], C3〉〈[x/3], C4〉rtrhp(σ9� )

= 〈[x/2], Cc3〉〈[x/2], C1〉〈[x/2], C2〉〈[x/3], C3〉rtrhp(σ8� )

= 〈[x/2], Cc3〉〈[x/2], C1〉〈[x/2], C2〉〈[x/3], C3〉〈[x/3], C4〉〈[x/6], C1〉

Indeed, 〈[x/2], Cc3〉〈[x/2], C1〉〈[x/2], C2〉〈[x/3], C3〉〈[x/3], C4〉〈[x/6], C1〉 is a well-defined
execution trace of P .

We are now in the position to prove Theorem 6.2.

PROOF OF THEOREM 6.2. With an abuse of notation for rtrhp, let us define two
functions trhp : ℘(TraceP ) → ℘(TracePhp

) and rtrhp : ℘(TracePhp
) → ℘(TraceP ) which

are the collecting versions of trouthp and rtrhp, that is, trhp(T ) , {trouthp (σ) | σ ∈ T} and
rtrhp(T ) , {rtrhp(σ) | σ ∈ T}. As consequences of the above lemmata, we have the
following properties.

(A) αsc ◦ trhp = αsc : by Lemma 6.4.
(B) trhp(TJP K) ⊆ TJPhpK: because, by Lemma 6.4, trouthp is well-defined.
(C) αsc ◦ rtrhp = αsc : by Lemma 6.5.
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(D) rtrhp(TJPhpK) ⊆ TJP K: because, by Lemma 6.5, rtrhp is well-defined.

We therefore obtain:

αsc(TJP K) = [By point (A)]
αsc(trhp(TJP K)) ⊆ [By point (B)]

αsc(TJPhpK) = [By point (C)]
αsc(rtrhp(TJPhpK)) ⊆ [By point (D)]

αsc(TJP K)

and this closes the proof.

6.2. Correctness of Hot Path Optimizations
Guarded hot paths are a key feature of our tracing compilation model and are meant
to be dynamically recorded by a hot path monitor. An abstract guard for a command
C of some stitched hot path stitchP (hp) encodes a property of program stores which is
represented as an element of an abstract domain Store] and is guaranteed to hold at
the entry of C. This information on program stores, as encapsulated by the abstract
guards in stitchP (hp), can then be used in hot path optimizations, namely, to optimize
the commands in hp.

We follow a modular approach for proving the correctness of hot path optimizations.
A hot path optimizationO should optimize P along some hot path hp of P , by relying on
the abstract store information recorded in hp, while leaving unchanged the commands
outside of hp. Hence, in our framework, fixed P ∈ Program, an optimizationO is defined
to be a program transform of the commands in stitchP (hp), that is,

O : {stitchP (hp) | hp ∈ αNhot(TraceP )} → Program

where Program may allow new optimized expressions and/or actions introduced by O,
as it will be the case of type-specific additions +Type in the type specialization optimiza-
tion described in Section 7. Let P¬hp , extrhp(P ) r stitchP (hp) denote the commands
outside of the stitched hot path. Then, the corresponding full optimization Ofull of the
whole program P w.r.t. the hot path hp should extract and simultaneously optimize hp,
namely, this is defined by

Ofull(P, hp) , P¬hp ∪O(stitchP (hp))

where Ofull(P, hp) is required to be a well-formed program, i.e., Ofull(P, hp) ∈ Program.
This full optimization Ofull(P, hp) has to be proved correct w.r.t. some observational ab-
straction αo : ℘(TraceP )→ A of program traces, which is assumed to be more abstract
than the store changes abstraction αsc (cf. Section 6). Then, this full optimization is
correct for αo when:

αo(TJOfull(P, hp)K) = αo(TJP K).

Since Theorem 6.2 ensures that the unoptimized trace extraction transform is already
correct for the store changes abstraction αsc , which is more precise than αo, the in-
tuition is that in order to prove the correctness of Ofull w.r.t. αo, it is enough to focus
on the correctness of the optimization O along the stitched hot path stitchP (hp). This
therefore leads to the following definition of correctness for a hot path optimization.

Definition 6.7 (Correctness of hot path optimization). O is correct for the ob-
servational abstraction αo if for any P ∈ Program and for any hp ∈ αNhot(TraceP ),
αo(TJO(stitchP (hp))K) = αo(TJstitchP (hp)K).
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In order to prove that this correctness of a hot path optimization implies the correct-
ness of the corresponding full optimization, we define two functions

to : TracestitchP (hp) → TraceO(stitchP (hp)) tdo : TraceO(stitchP (hp)) → TracestitchP (hp)

which must be well-defined, i.e. they have to map well-formed traces into well-formed
traces, and, intuitively, encode the effect of optimizing (function to) and de-optimizing
(function tdo) execution traces along a stitched hot path. Since TracestitchP (hp) ⊆
Traceextrhp(P ) and TraceO(stitchP (hp)) ⊆ TraceOfull (P,hp), we then extend to and tdo to two
functions

tofull : Traceextrhp(P ) → TraceOfull (P,hp) tdofull : TraceOfull (P,hp) → Traceextrhp(P )

which simply apply to and tdo to maximal subtraces, respectively, in TracestitchP (hp)

and TraceO(stitchP (hp)), while leaving unchanged the remaining states. Let us formal-
ize this idea. If σ ∈ Traceextrhp(P ) is nonempty and, for some k ∈ [0, |σ|), cmd(σk) ∈
stitchP (hp) then σ[k,nst] denotes the maximal subtrace of σ beginning at σk which
belongs to TracestitchP (hp), that is, the index nst ≥ k is such that: (1) cmd(σnst) ∈
stitchP (hp), (2) if nst < |σ| − 1 then cmd(σnst+1) 6∈ stitchP (hp), (3) for any j ∈ [k, nst],
cmd(σj) ∈ stitchP (hp). Analogously, if τ ∈ TraceOfull (P,hp) is nonempty and cmd(τk) ∈
O(stitchP (hp)) then τ[k,nst] denotes the maximal subtrace of τ beginning at τk which
belongs to TraceO(stitchP (hp)). Then, the formal definition of tofull goes as follows:

tofull(σ) ,


ε if σ = ε

σ0 tofull(σ1� ) if σ 6= ε, cmd(σ0) 6∈ stitchP (hp)

to(σ[0,nst]) tofull(σ(nst+1)
� ) if σ 6= ε, cmd(σ0) ∈ stitchP (hp)

and analogously for tdofull . Since to and tdo are supposed to be well-defined, it turns
out that tofull and tdofull are well-defined once we make the weak and reasonable as-
sumption that to and tdo do not modify the entry (which is always L0) and exit labels
of the stitched hot path. This assumption, e.g., for to can be formalized as follows:
if σ ∈ TracestitchP (hp) and to(σ) = τ then (i) if lbl(σ0) = L0 then lbl(τ0) = L0; (ii) if
suc(σ|σ|−1) = L′ 6∈ labels(P ) then suc(τ|τ |−1) = L′. In the following, tofull and tdofull are
also used to denote their corresponding collecting functions defined on sets of traces.

LEMMA 6.8. Assume that αo ◦ tofull = αo = αo ◦ tdofull . If O is correct for αo then
Ofull is correct for αo.

PROOF. We have that:

αo(TJOfull(P, hp)K) = [By αo ◦ tdofull = αo]
αo(tdofull(TJOfull(P, hp)K)) ⊆ [Since tdofull is well-defined]

αo(TJextrhp(P )K) = [By αo ◦ tofull = αo]
αo(tofull(TJextrhp(P )K)) ⊆ [Since tofull is well-defined]

αo(TJOfull(P, hp)K)

Thus, αo(TJOfull(P, hp)K) = αo(TJextrhp(P )K). By Theorem 6.2, αsc(TJextrhp(P )K) =
αsc(TJP K), so that, since αsc is more precise than αo, αo(TJextrhp(P )K) = αo(TJP K),
and, in turn, αo(TJOfull(P, hp)K) = αo(TJP K).

We will see in Sections 7 and 8 two significant examples of hot path optimizations,
namely, type specialization and constant folding.
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7. TYPE SPECIALIZATION
One key optimization for dynamic languages like JavaScript and PHP is type spe-
cialization, that is, the use of type-specific primitives in place of generic untyped op-
erations whose runtime execution can be costly. As a paradigmatic example, a generic
addition operation could be defined on more than one type, so that the runtime environ-
ment must check the type of its operands and execute a different operation depending
on these types: this is the case of the addition operation in JavaScript (see its runtime
semantics in the ECMA-262 standard [Ecma International 2015, Section 12.7.3.1])
and of the semantics of + in our language as given in Section 2.3. Of course, type
specialization avoids the overhead of dynamic type checking and dispatch of generic
untyped operations. When a type is associated to each variable before the execution
of a command in some hot path, this type environment can be used to replace generic
operations with type-specific primitives. In this section, we show that type specializa-
tion can be viewed as a particular hot path optimization which can be proved correct
according to our definition in Section 6.2.

7.1. Type Abstraction
Let us recall that the set of type names is Types = {>T, Int,String,Undef,⊥T}, which
can be viewed as the following finite lattice 〈Types,≤t〉:

⊥T

Int String Undef

>T

The abstraction αtype : ℘(Valueu) → Types and concretization γtype : Types →
℘(Valueu) functions are defined as follows:

αtype(S) ,



⊥T if S = ∅
Int if ∅ 6= S ⊆ Z
String if ∅ 6= S ⊆ Char∗

Undef if ∅ 6= S = {undef}
>T otherwise

γtype(T ) ,



∅ if T = ⊥T
Z if T = Int

Char∗ if T = String

{undef} if T = Undef

Valueu if T = >T

Thus, αtype(S) provides the smallest type in 〈Types,≤t〉 for a set S of values. In par-
ticular, given v ∈ Valueu, αtype({v}) coincides with type(v). Following the approach
described in Section 3.2.1, we then consider a simple nonrelational store abstraction
for types

Storet , 〈Var→ Types, ≤̇t〉

where ≤̇t is the standard pointwise lifting of ≤t, so that λx.⊥T and λx.>T are, respec-
tively, the bottom and top abstract stores in Storet. The abstraction and concretization
maps αstore : ℘(Store) → Storet and γstore : Storet → ℘(Store) are defined as a straight
instantiation of the definitions in Section 3.2.1.

The abstract type semantics Et : Exp → Storet → Types of expressions is defined
as the best correct approximation of the concrete collecting semantics E : Exp →
℘(Store)→ ℘(Value) on the type abstractions Storet and Types, i.e.,

EtJEKρt , αtype(EJEKγstore(ρt)).
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Hence, this definition leads to the following equalities:

EtJvKρt = type(v)

EtJxKρt = ρt(x)

EtJE1 + E2Kρt =


⊥T if ∃i.EtJEiKρt = ⊥T
EtJE1Kρt else if EtJE1Kρt = EtJE2Kρt ∈ {Int,String}
Undef else if ∀i.EtJEiKρt < >T
>T otherwise

For instance, we have that:

EtJx+ yK[x/ String, y/⊥T] = αtype(EJx+ yK∅) = αtype(∅) = ⊥T

EtJx+ yK[x/ String, y/String] = αtype(EJx+ yK{ρ | ρ(x), ρ(y) ∈ Char∗}) =
= αtype(Char

∗) = String,

EtJx+ yK[x/ Int, y/String] = αtype(EJx+ yK{ρ | ρ(x) ∈ Z, ρ(y) ∈ Char∗}) =
αtype({undef}) = Undef,

EtJx+ yK[x/ Int, y/>T] = αtype(EJx+ yK{ρ | ρ(x) ∈ Z, ρ(y) ∈ Valueu}) =
αtype(Z ∪ {undef}) = >T

Being defined as best correct approximation, it turns out that the abstract type seman-
tics Et of expressions is correct by definition.

COROLLARY 7.1. If ρ ∈ γstore(ρt) then EJEKρ ∈ EtJEKρt.

According to Section 5, for any abstract type store (that we also call type environ-
ment) [xi/Ti | xi ∈ Var] ∈ Storet we consider a corresponding Boolean action guard
denoted by

guard x0 : T0, . . . , xn : Tn ∈ BExp

whose corresponding action semantics is automatically induced, as defined in Sec-
tion 5, by the Galois connection (αstore , ℘(Store),Store

t, γstore): for any ρ ∈ Store,

AJguard x0 : T0, ..., xn : TnKρ ,

{
ρ if ρ ∈ γstore([xi/Ti | xi ∈ Var])

⊥ otherwise

=

{
ρ if ∀i. ρ(xi) ∈ γtype(Ti)
⊥ ∃i. ρ(xi) 6∈ γtype(Ti)

For example, we have that:

AJguard x : String, y : StringK[x/foo, y/bar] = [x/foo, y/bar],

AJguard x : String, y : >TK[x/foo, y/3] = [x/foo, y/3],

AJguard x : String, y : >TK[x/1, y/3] = ⊥,
AJguard x : String, y : UndefK[x/foo] = [x/foo].

7.2. Type Specialization of Hot Paths
Let us consider some hot path hp = 〈ρt0, C0, . . . , ρ

t
n, Cn〉 ∈ αNhot(TraceP ) on the type ab-

straction 〈StoretP , ≤̇t〉, where each ρti is therefore a type environment for P . Thus, in
the transformed program extrhp(P ), the stitched hot path stitchP (hp) contains n + 1
typed guards, that, for any i ∈ [0, n], we simply denote as guard ρti. Typed guards allow
us to perform type specialization of commands in the stitched hot path. In order to
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keep the notation simple, we only focus on type specialization of addition operations
occurring in assignments, while one could also consider an analogous type specializa-
tion of Boolean comparisons in conditional commands. This is defined as a program
transform that instantiates most type-specific addition operations in place of generic
untyped additions by exploiting the type information dynamically recorded by typed
guards in stitchP (hp). Note that if C ∈ stitchP (hp) and act(C) ≡ x := E1 + E2 then
C ≡ `i : x := E1 + E2 → L′, for some i ∈ [0, n], where L′ ∈ {li+1, L0}. Let Ct denote the
extended set of commands which includes type specific additions +Int and +String and,
in turn, let Programt denote the possibly type-specialized programs with commands
ranging in Ct. The semantic function E for expressions is then updated to type specific
additions as follows:

EJE1 +Int E2Kρ ,

{
EJE1Kρ+Z EJE2Kρ if type(EJEiKρ) = Int

undef otherwise

EJE1 +String E2Kρ ,

{
EJE1Kρ ·EJE2Kρ if type(EJEiKρ) = String

undef otherwise

Given a hot path hp = 〈ρt0, C0, . . . , ρ
t
n, Cn〉, the type specialization function

tshp : stitchP (hp)→ Ct is defined as follows:

tshp(`i : x := E1 + E2→L′) ,


`i : x := E1 +Int E2→L′ if EtJE1 + E2Kρti = Int

`i : x := E1 +String E2→L′ if EtJE1 + E2Kρti = String

`i : x := E1 + E2 → L′ otherwise

tshp(C) , C if C 6≡ `i : x := E1 + E2→L′

Hence, if a typed guard guard ρti preceding a command `i : x := E1 + E2→ L′ allows
us to derive abstractly on Storet that E1 and E2 have the same type (Int or String) then
the addition E1 + E2 is accordingly type specialized. This function allows us to define
the hot path type specialization optimization

Ots : {stitchP (hp) | hp ∈ αNhot(TraceP )} → Programt

simply by

Ots(stitchP (hp)) , {tshp(C) | C ∈ stitchP (hp)}.
In turn, as described in Section 6.2, this induces the full type specialization optimiza-
tion

Ots
full(P, hp) , extrhp(P )r stitchP (hp) ∪Ots(stitchP (hp)).

Ots
full(P, hp) is also called typed trace extraction since it extracts and simultaneously

type specializes a typed hot path hp in a program P . The correctness of this program
optimization can be proved for the store changes observational abstraction by relying
on Lemma 6.8.

THEOREM 7.2 (CORRECTNESS OF TYPED TRACE EXTRACTION). For any typed
hot path hp ∈ αNhot(TraceP ), we have that αsc(TJOts

full(P, hp)K) = αsc(TJP K).
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PROOF. Let td : TraceOts(stitchP (hp)) → TracestitchP (hp) be the following type de-
specialization function, where Type is either Int or String:

td(ε) , ε

td(sσ) ,



〈ρ, `i : x := E1 + E2 → L′〉 if s = 〈ρ, `i : x := E1 +Type E2 → L′〉,
type(EJE1 + E2Kρ) 6= Type

〈ρ, `i : x := E1 + E2 → L′〉 · td(σ) if s = 〈ρ, `i : x := E1 +Type E2 → L′〉,
type(EJE1 + E2Kρ) = Type

s · td(σ) otherwise

Let us explain the first defining clause of td(sσ), i.e., s = 〈ρ, `i : x := E1 +Type E2 → L′〉
and type(EJE1 + E2Kρ) 6= Type. These conditions can never hold in an inductive call
of the function td: in fact, when td(sσ) is recursively called by td(s′sσ), we necessarily
have that s′ = 〈ρ, li : guard ρti → `i〉, so that ρ ∈ γstore(ρti), and, in turn, by Corollary 7.1,
EJE1 + E2Kρ ∈ EtJE1 + E2Kρt, which implies type(EJE1 + E2Kρ) = Type, which is a
contradiction. Thus, the first defining clause of td(sσ) only applies to type specialized
traces in TraceOts(stitchP (hp)) whose first state is s = 〈ρ, `i : x := E1 +Type E2 → L′〉: in
this case, we necessarily have that σ = ε, because AJE1 +Type E2Kρ = undef so that
Ss = ∅. This clarifies the definition of td in this particular case. Also, observe that
in this case, sc(td(s)) = sc(s) trivially holds. In all the remaining cases, it is clear
that td maps type specialized traces into legal unspecialized traces of stitchP (hp) since
labels are left unchanged. Moreover, sc ◦ td = sc holds, in particular because in the
second defining clause of td(sσ), the condition type(EJE1 + E2Kρ) = Type guarantees
that EJE1 + E2Kρ = EJE1 +Type E2Kρ.
On the other hand, we define a trace specialization function sp : TracestitchP (hp) →
TraceOts(stitchP (hp)) as follows:

sp(ε) , ε

sp(〈µ0, H0〉· · ·〈µk, Hk〉),


〈µ0, tshp(H0)〉 if tshp(H0) ≡ `i : x := E1+TypeE2 → L′,

µ0 6∈ γstore(ρti)

〈µ0, tshp(H0)〉· · ·〈µk, tshp(Hk)〉 otherwise

Let us comment on this definition. If σ ∈ TracestitchP (hp) and σ 6= ε then it may
happen that the first state 〈µ0, H0〉 of σ is such that the command H0 is `i : x :=
E1 +E2 → L′ and, since EtJE1 + E2Kρti = Type (Int or String), H0 is type special-
ized to tshp(H0) ≡ `i : x := E1 +TypeE2 → L′, while the store µ0 is not approxi-
mated by the abstract store ρti, i.e., µ0 6∈ γstore(ρ

t
i). Thus, in this case, the trace in

Ots(stitchP (hp)) beginning at 〈µ0, tshp(H0)〉 is stuck, because the concrete semantics of
addition is EJE1 +Type E2Kµ0 = undef, and in turn AJx := E1 +Type E2Kµ0 = ⊥, so that
we necessarily have to define sp(σ) = 〈µ0, tshp(H0)〉. Otherwise, sp(σ) simply type spe-
cializes through tshp all the commands (actually, addition expressions) occurring in σ.
Here, it turns out that sp is well-defined, i.e. sp(σ) is a legal trace of Ots(stitchP (hp)),
because any state 〈ρ, `i : x := E1 + E2 → L′〉 of σ is always preceded by the state
〈ρ, li : guard ρti → `i〉 and ρ ∈ γstore(ρti) must hold. Thus, by Corollary 7.1, EJE1 + E2Kρ ∈
EtJE1 + E2Kρt = Type, so that AJx := E1 +Type E2Kρ = AJx := E1 + E2Kρ holds. Conse-
quently, the trace fragment

sp(〈ρ, li : guard ρti → `i〉〈ρ, `i : x := E1 + E2 → L′〉) =
〈ρ, li : guard ρti → `i〉〈ρ, `i : x := E1 +Type E2 → L′〉
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is legal in Ots(stitchP (hp)). Furthermore, let us also observe that sc ◦ ts = sc trivially
holds.
Thus, following the scheme in Section 6.2, these two functions td and ts allow us to
define tdfull : TraceOts

full (P,hp)
→ Traceextrhp(P ) and tsfull : Traceextrhp(P ) → TraceOts

full (P,hp)

such that αsc ◦ tdfull = αsc = αsc ◦ tsfull , so that the thesis follows by Lemma 6.8.

Example 7.3. Let us consider the following sieve of Eratosthenes in a Javascript-
like language—this is taken from the running example in [Gal et al. 2009]—where
primes is an array initialized with 100 true values:

for (var i = 2; i < 100; i = i+ 1) do
if (!primes[i]) then continue;
for (var k = i+ i; k < 100; k = k + i) do primes[k] = false;

With a slight abuse, we assume that our language is extended with arrays and Boolean
values ranging in the type Bool. The semantics of read and store for arrays is standard:
first, the index expression is checked to be in bounds, then the value is read or stored
into the array. If the index is out of bounds then the corresponding action command
gives ⊥, that is, we assume that the program generates an error (e.g., it is aborted).
The above program is encoded in our language as follows:

P =
{
C0 ≡ L0 : i := 2→ L1, C1 ≡ L1 : i < 100→ L2, C

c
1 ≡ L1 : ¬(i < 100)→ L8,

C2 ≡ L2 : primes[i] = tt → L3, C
c
2 ≡ L2 : ¬(primes[i] = ff )→ L7,

C3 ≡ L3 : k := i+ i→ L4, C4 ≡ L4 : k < 100→ L5, C
c
4 ≡ L4 : ¬(k < 100)→ L7,

C5 ≡ L5 : primes[k] := ff → L6, C6 ≡ L6 : k := k + i→ L4,

C7 ≡ L7 : i := i+ 1→ L1, C8 ≡ L8 : skip→ Ł
}
.

Let us consider the following type environment

ρt , {primes[n]/Bool, i/ Int, k/ Int} ∈ Storet

where primes[n]/Bool is a shorthand for primes[0]/Bool, . . . , primes[99]/Bool. Then the
first traced 2-hot path on the type abstraction Storet is hp1 , 〈ρt, C4, ρ

t, C5, ρ
t, C6〉. As

a consequence, the typed trace extraction of hp1 yields:

P1 , Ots
full(P, hp1)

= P r {C4, C
c
4} ∪ {L4 : k < 100→ L5, L4 : ¬(k < 100)→ L7} ∪Ots(stitchP (hp1))

where:

Ots(stitchP (hp1)) =
{
H0 ≡ L4 : guard (primes[n] : Bool, i : Int, k : Int)→ `0,

Hc
0 ≡ L4 : ¬guard (primes[n] : Bool, i : Int, k : Int)→ L4,

H1 ≡ `0 : k < 100→ l1, H
c
1 ≡ `0 : ¬(k < 100)→ L7,

H2 ≡ l1 : guard (primes[n] : Bool, i : Int, k : Int)→ `1,

Hc
2 ≡ l1 : ¬guard (primes[n] : Bool, i : Int, k : Int)→ L5,

H3 ≡ `1 : primes[k] := ff → l2,

H4 ≡ l2 : guard (primes[n] : Bool, i : Int, k : Int)→ `2,

Hc
4 ≡ l2 : ¬guard (primes[n] : Bool, i : Int, k : Int)→ L6,

H5 ≡ `2 : k := k +Int i→ L4

}
.
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8. CONSTANT VARIABLE FOLDING
Constant variable folding, a.k.a. constant propagation [Wegman and Zadeck 1991], is
a standard and well-known program optimization, whose goal is to detect which pro-
gram variables at some program point are constant on all possible executions and
then to propagate these constant values as far forward through the program as possi-
ble. Guo and Palsberg [2011] show how to define this optimization along hot paths and
then prove its correctness. As a significant example, we show here how to specify and
prove the correctness w.r.t. the store changes abstraction αsc of this simple hot path
optimization according to the approach defined in Section 6.2.

The constant propagation store abstraction CPst and its corresponding GI
(αCP, ℘(Store),CPst , γCP) have been defined in Example 3.1. Following Section 5, any
abstract store [xi/ai | xi ∈ Var] ∈ CPst , where, as usual, the bindings xi/undef are
omitted, defines a corresponding guard x0 : a0, . . . , xn : an ∈ BExp whose semantics is
induced by the GI (αCP, ℘(Store),CPst , γCP), as defined in Section 5: for any ρ ∈ Store,

AJguard x0 : a0, ..., xn : anKρ ,

{
ρ if ρ ∈ γCP([xi/ai | xi ∈ Var])

⊥ otherwise

=

{
ρ if ∀i. ρ(xi) ∈ γcp(ai)
⊥ ∃i. ρ(xi) 6∈ γcp(ai)

Therefore, we have that:

AJguard x : 2, y : fooK[x/2, y/3] = ⊥,
AJguard x : 2, y : fooK[x/2, y/foo, z/4] = ⊥,
AJguard x : 2, y : fooK[x/2] = ⊥,
AJguard x : 2, y : fooK[x/2, y/foo] = [x/2, y/foo],

AJguard x : 2, y : >K[x/2, y/foo] = [x/2, y/foo],

AJguard x : 2, y : >K[x/2] = [x/2].

Let us consider some hot path hp = 〈ρc0, C0, . . . , ρ
c
n, Cn〉 ∈ αNhot(TraceP ) on the con-

stant propagation abstraction CPst , where each ρci is therefore an abstract store in
CPst , whose corresponding guard in stitchP (hp) will be denoted by guard ρci . The con-
stant value information encoded in these guards is used to define the variable fold-
ing in the stitched hot path. Following Guo and Palsberg [2011, Section 2.4], let
FV : ℘(C) → ℘(Var) denote the function that returns the “free” variables occurring
in some set of commands (in particular, a well-defined program), i.e., FV(P ) is the set
of variables occurring in P which are never-assigned-to in some command of P . As in
Guo and Palsberg [2011], constant variable folding is restricted to expressions E of
some assignment x := E and is defined as a program transform which exploits the
constant information recorded by abstract guards in stitchP (hp). The constant folding
function cfhp : stitchP (hp)→ C is defined as follows:

cfhp(`i : x := E→L′) ,
`i : x := E[y1/vy1 , ..., yk/vyk ]→L′ if {y1, ..., yk} = {y ∈ vars(E) ∩ FV(stitchP (hp)) |

ρci (y) = vy ∈ Value} 6= ∅
`i : x := E → L′ otherwise

cfhp(C) , C if C 6≡ `i : x := E→L′

where E[y1/vy1 , ..., yk/vyk ] denotes the standard synctatic substitution of variables
yj ∈ vars(E) with constant values ρci (yj) = vyj ∈ Value. Hence, when the abstract
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guard guard ρci which precedes an assignment `i : x := E→L′ tells us that a free vari-
able y occuring in the expression E is definitely a constant value vy ∈ Value then cfhp
performs the corresponding variable folding in E. Thus, the hot path constant folding
optimization is defined by

Ocf(stitchP (hp)) , {cfhp(C) | C ∈ stitchP (hp)}

and, in turn, this induces the full constant folding optimization Ocf
full(P, hp). The cor-

rectness of this constant folding optimization can be proved for the store changes ob-
servational abstraction

THEOREM 8.1 (CORRECTNESS OF CONSTANT FOLDING OPTIMIZATION). For
any hot path hp ∈ αNhot(TraceP ) w.r.t. the constant propagation store abstraction CPst ,
αsc(TJOcf

full(P, hp)K) = αsc(TJP K).

This proof is omitted, since it follows the same pattern of Theorem 7.2 for the correct-
ness of typed trace extraction, in particular it relies on Lemma 6.8.

Example 8.2. Let us consider the following program written in a while-language:
x := 0; a := 2;
while (x ≤ 15) do

if (x ≤ 5) then x := x+ a;
else {a := a+ 1; x := x+ a; }

whose translation as P ∈ Program goes as follows:

P =
{
C0 ≡ L0 : x := 0→ L1, C1 ≡ L1 : a := 2→ L2

C2 ≡ L2 : x ≤ 15→ L3, C
c
2 ≡ L2 : ¬(x ≤ 15)→ L7,

C3 ≡ L3 : x ≤ 5→ L4, C
c
3 ≡ L3 : ¬(x ≤ 5)→ L5,

C4 ≡ L4 : x := x+ a→ L2, C5 ≡ L5 : a := a+ 1→ L6

C6 ≡ L6 : x := x+ a→ L2, C7 ≡ L7 : skip→ Ł
}

The first traced 2-hot path for the abstraction CPst is:
hp = 〈[x/>, a/2], C2, [x/>, a/2], C3, [x/>, a/2], C4〉.

In fact, the initial prefix of the complete trace of P which corresponds to the terminat-
ing run of P is as follows:

〈[ ], C0〉〈[x/0], C1〉〈[x/0, a/2], C2〉〈[x/0, a/2], C3〉〈[x/0, a/2], C4〉〈[x/2, a/2], C2〉
〈[x/2, a/2], C3〉〈[x/2, a/2], C4〉〈[x/4, a/2], C2〉〈[x/4, a/2], C3〉〈[x/4, a/2], C4〉

so that hp ∈ α2
hot(TraceP ). Hence, the constant folding optimization Ocf along hp pro-

vides:
Ocf

full(P, hp) = Pr{C2, C
c
2} ∪ {L2 : x ≤ 15→ L3, L2 : ¬(x ≤ 15)→ L7} ∪Ocf(stitchP (hp))

where:
Ocf(stitchP (hp)) =

{
H0 ≡ L2 : guard [x :>, a :2]→ `0, H

c
0 ≡ L2 : ¬guard [x :>, a :2]→ L2,

H1 ≡ `0 : x ≤ 15→ l1, H
c
1 ≡ `0 : ¬(x ≤ 15)→ L7,

H2 ≡ l1 : guard [x :>, a :2]→ `1, H
c
2 ≡ l1 : ¬guard [x :>, a :2]→ L3,

H3 ≡ `1 : x ≤ 5→ l2, H
c
3 ≡ `1 : ¬(x ≤ 5)→ L5,

H4 ≡ l2 : guard [x :>, a :2]→ `2, H
c
4 ≡ l2 : ¬guard [x :>, a :2]→ L4,

H5 ≡ `2 : x := x+ 2→ L2

}
.
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Therefore, this hot path optimization allows us to fold the constant value 2 for the
variable a, in the hot path command H5 ≡ `2 : x := x+ 2→ L2.

9. NESTED HOT PATHS
Once a first hot path hp1 has been extracted by transforming P to P1 , extrhp1(P ),
it may well happen that a new hot path hp2 in P1 contains hp1 as a nested sub-path.
Following TraceMonkey’s trace recording strategy [Gal et al. 2009], we attempt to nest
an inner hot path inside the current trace: during trace recording, an inner hot path
is called as a kind of “subroutine”, this executes a loop to a successful completion and
then returns to the trace recorder that may therefore register the inner hot path as
part of a new hot path.

In order to handle nested hot paths, we need a more general definition of hot path
which takes into account previously extracted hot paths and a corresponding program
transform for extracting nested hot paths. Let P be the original program and let P ′ be
a hot path transform of P so that P ′ r P contains all the commands (guards included)
in the hot path. We define a function hotcut : TraceP ′ → (StateP ′)

∗ that cuts from an
execution trace σ of P ′ all the states whose commands appear in some previous hot
path hp except for the entry and exit states of hp:

hotcut(σ) ,


ε if σ = ε

hotcut(〈ρ1, C1〉〈ρ3, C3〉σ′) if σ = 〈ρ1, C1〉〈ρ2, C2〉〈ρ3, C3〉σ′&C1, C2, C3 6∈ P
σ0 hotcut(σ1� ) otherwise

In turn, we define outerhotN : TraceP ′ → ℘((State]P ′)
∗) as follows:

outerhotN (σ) , {〈ai, Ci〉 · · · 〈aj , Cj〉 ∈ (State]P ′)
∗ | ∃〈ρi, Ci〉 · · · 〈ρj , Cj〉 ∈ loop(hotcut(σ))

such that i ≤ j, αstore(〈ρi, Ci〉 · · · 〈ρj , Cj〉) = 〈ai, Ci〉 · · · 〈aj , Cj〉,
count(αstore(hotcut(σ)), 〈ai, Ci〉 · · · 〈aj , Cj〉) ≥ N}.

Clearly, when P ′ = P it turns out that hotcut = λσ.σ so that outerhotN = hotN . We
define the usual collecting version of outerhotN on ℘(TraceP ′) as the abstraction map
αNouterhot , λT.∪σ∈T outerhotN (σ). Then, αNouterhot(TJP ′K) provides the set ofN -hot paths
in P ′.

Example 9.1. Let us consider again Example 5.3, where Store] is the triv-
ial one-point store abstraction {>}. In Example 5.3, we first extracted hp1 =

〈>, C1,>, C2,>, Cc3〉 by transforming P to P1 , extrhp(P ). We then consider the fol-
lowing trace in TJP1K:

σ =〈[ ], C0〉〈[x/0], H0〉〈[x/0], H1〉〈[x/0], H2〉〈[x/0], H3〉〈[x/1], H4〉〈[x/1], H5〉 · · · 〈[x/2], H3〉
〈[x/3], H4〉〈[x/3], Hc

5〉〈[x/3], C4〉〈[x/6], H0〉 · · · 〈[x/9], Hc
5〉〈[x/9], C4〉〈[x/12], H0〉 · · ·

Thus, here we have that

hotcut(σ) = 〈[ ], C0〉〈[x/0], H0〉〈[x/3], Hc
5〉〈[x/3], C4〉〈[x/6], H0〉〈[x/9], Hc

5〉〈[x/9], C4〉 · · ·
so that hp2 = 〈>, H0,>, Hc

5 ,>, C4〉 ∈ α2
outerhot(TJP1K). Hence, hp2 contains a nested hot

path, which is called at the beginning of hp2 and whose entry and exit commands are,
respectively, H0 and Hc

5 .

Let hp = 〈a0, C0, . . . , an, Cn〉 ∈ αNouterhot(TJP ′K) be a N -hot path in P ′, where, for all
i ∈ [0, n], we assume that Ci ≡ Li : Ai → Lnext(i). Let us note that:

– If for all i ∈ [0, n], Ci ∈ P then hp actually is a hot path in P , i.e., hp ∈ αNhot(TJP K).
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– Otherwise, there exists some Ck 6∈ P . If Ci ∈ P and Ci+1 6∈ P then Ci+1 is the entry
command of some inner hot path; on the other hand, if Ci 6∈ P and Ci+1 ∈ P then Ci
is the exit command of some inner hot path.

The transform of P ′ for extracting hp is then given as the following generalization of
Definition 5.1.

Definition 9.2 (Nested trace extraction transform). The nested trace extraction
transform of P ′ for the hot path hp = 〈a0, C0, . . . , an, Cn〉 is:

extrhp(P
′) , P

(1) r ({C0 | C0 ∈ P} ∪ {cmpl(C0) | cmpl(C0) ∈ P})
(2) ∪ {H0 : act(C0)→ L1 | C0 ∈ P} ∪ {H0 : ¬act(C0)→ Lc1 | cmpl(C0) ∈ P}
(3) ∪ {L0 : guard Ea0 → ~0, L0 : ¬guard Ea → H0 | C0 ∈ P}
(4) ∪ {~i : act(Ci)→ hi+1 | i ∈ [0, n− 1], Ci, Ci+1 ∈ P} ∪ {~n : act(Cn)→ L0 | Cn ∈ P}
(5) ∪ {~i : ¬act(Ci)→ Lcnext(i) | i ∈ [0, n], Ci, cmpl(Ci) ∈ P}
(6) ∪ {hi : guard Eai → ~i,hi : ¬guard Eai → Li | i ∈ [1, n], Ci ∈ P}
(7) ∪ {~i : act(Ci)→ Li+1 | i ∈ [0, n− 1], Ci ∈ P,Ci+1 6∈ P}
(8) r {Ci | i ∈ [0, n− 1], Ci 6∈ P,Ci+1 ∈ P}
(9) ∪ {Li : act(Ci)→ hi+1 | i ∈ [0, n− 1], Ci 6∈ P,Ci+1 ∈ P}

where we define stitchP ′(hp) , (3) ∪ (4) ∪ (5) ∪ (6) ∪ (7) ∪ (9).

Let us observe that:

– Clauses (1)–(6) are the same clauses of the trace extraction transform of Defini-
tion 5.1, with the additional constraint that all the commands Ci of hp are required
to belong to the original program P . This is equivalent to ask that any Ci is not the
entry or exit command of a nested hot path inside hp, i.e., Ci 6∈ P ′ r P . In Defini-
tion 5.1, where no previous hot path extraction is assumed, any command Ci of hp
belongs to P , so that this constraint is trivially satisfied.

– Clause (7) where Ci ∈ P and Ci+1 6∈ P , namely next(Ci) is the call program point of
a nested hot path nhp and Ci+1 is the entry command of nhp, performs a relabeling
that allows to neatly nest nhp in hp.

– Clauses (8)–(9) where Ci 6∈ P and Ci+1 ∈ P , i.e., Ci is the exit command of a nested
hot path nhp that returns to the program point lbl(Ci+1), performs the relabeling of
suc(Ci) in Ci in order to return from nhp to hp;

–H0, ~i and hi are meant to be fresh labels, i.e., they have not been already used in
P ′.

Example 9.3. Let us go on with Example 9.1. The second traced hot path in
α2
outerhot(TJP1K) is:

hp2 = 〈>, H0 ≡ L1 : guard E> → `0,

>, Hc
5 ≡ `2 : (x%3 = 0)→ L4,>, C4 ≡ L4 : x := x+ 3→ L1〉.
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According to Definition 9.2, trace extraction of hp2 in P1 yields the following transform:

extrhp2(P1) ,

[by clause (8)] P1 r {Hc
5}

[by clause (9)] ∪ {`2 : (x%3 = 0)→ h2}
[by clause (6)] ∪ {h2 : guard E> → ~2,h2 : ¬guard E> → L4}
[by clause (4)] ∪ {~2 : x := x+ 3→ L1}

where we used the additional fresh labels h2 and ~2.

Example 9.4. Let us consider again Example 7.3. After the trace extraction of hp1
that transforms P to P1, a second traced 2-hot path is the following:

hp2 , 〈ρt, C1, ρ
t, C2, ρ

t, C3, ρ
t, H0, ρ

t, Hc
1 , ρ

t, C7〉

where ρt = {primes[n]/Bool, i/ Int, k/ Int} ∈ Storet. Thus, hp2 contains a nested hot
path which is called at suc(C3) = L4 and whose entry and exit commands are, respec-
tively, H0 and Hc

1 . Here, typed trace extraction according to Definition 9.2 provides the
following transform of P1:

P2 , Ots
full(P1, hp2) = P1 r {C1, C

c
1} ∪

{
H0 : i < 100→ L2, H0 : ¬(i < 100)→ L8,

H6 ≡ L1 : guard (primes[n] : Bool, i : Int, k : Int)→ ~0,
Hc

6 ≡ L1 : ¬guard (primes[n] : Bool, i : Int, k : Int)→ H0,

H7 ≡ ~0 : i < 100→ h1, H
c
7 ≡ ~0 : ¬(i < 100)→ L8,

H8 ≡ h1 : guard (primes[n] : Bool, i : Int, k : Int)→ ~1,
Hc

8 ≡ h1 : ¬guard (primes[n] : Bool, i : Int, k : Int)→ L2,

H9 ≡ ~1 : primes[i] = tt→ h1, H
c
9 ≡ ~1 : ¬(primes[i] = tt)→ L7,

H10 ≡ h2 : guard (primes[n] : Bool, i : Int, k : Int)→ ~2,
Hc

10 ≡ h2 : ¬guard (primes[n] : Bool, i : Int, k : Int)→ L3,

H11 ≡ ~2 : k := i+Int i→ L4

}
r {Hc

1} ∪
{
(Hc

1)
′ ≡ `0 : ¬(k < 100)→ h3,

H12 ≡ h3 : guard (primes[n] : Bool, i : Int, k : Int)→ ~3,
Hc

12 ≡ h3 : ¬guard (primes[n] : Bool, i : Int, k : Int)→ L7,

H13 ≡ ~3 : i := i+Int 1→ L1

}
.

Finally, a third traced 2-hot path in P2 is hp3 , 〈ρt, H6, ρ
t, Hc

9 , ρ
t, C7〉 which contains

a nested hot path which is called at the beginning of hp3 and whose entry and exit
commands are, respectively, H6 and Hc

9 . Here, typed trace extraction of hp3 yields:

P3 , Ots
full(P2, hp3) = P2 r {Hc

9} ∪
{
(Hc

9)
′ ≡ ~1 : ¬(primes[i] = tt)→ j2,

j2 : guard (primes[n] : Bool, i : Int, k : Int)→ 2,

j2 : ¬guard (primes[n] : Bool, i : Int, k : Int)→ L7,

2 : i := i+Int 1→ L1

}
.

We have thus obtained the same three trace extraction steps described by Gal et al.
[2009, Section 2]. In particular, in P1 we specialized the typed addition operation
k +Int i, in P2 we specialized i +Int i and i +Int 1, while in P3 we specialized once again
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i +Int 1 in a different hot path. Thus, in P3 all the addition operations occurring in
assignments have been type specialized.

10. COMPARISON WITH GUO AND PALSBERG’S FRAMEWORK
A formal model for tracing JIT compilation has been put forward at POPL 2011 sym-
posium by Guo and Palsberg [2011]. Its main distinctive feature is the use of a bisimu-
lation relation [Milner 1995] to model the operational equivalence between source and
optimized programs. In this section, we show how this model can be expressed within
our framework.

10.1. Language and Semantics
Guo and Palsberg [2011] rely on a simple imperative language (without jumps and)
with while loops and a so-called bail construct. Its syntax is as follows:

E ::= v | x | E1 + E2

B ::= tt | ff | E1 ≤ E2 | ¬B | B1 ∧B2

Cmd 3 c ::= skip; | x := E; | if B then S | while B do S | bail B to S

Stm 3 S ::= ε | cS
where ε stands for the empty string. Thus, any statement S ∈ Stm is a (possibly empty)
sequence of commands cn, with n ≥ 0. We follow Guo and Palsberg [2011] in making an
abuse in program syntax by assuming that if S1, S2 ∈ Stm then S1S2 ∈ Stm, where S1S2

denotes a simple string concatenation of S1 and S2. We denote by StateGP , Store×Stm
the set of states for this language. The baseline small-step operational semantics →B

⊆ StateGP ×StateGP is standard and is given in continuation-style (where K ∈ Stm):

〈ρ, ε〉 6→B

〈ρ, skip;K〉 →B 〈ρ,K〉
〈ρ, x := E;K〉 →B 〈ρ[x/EJEKρ],K〉

〈ρ, (if B then S)K〉 →B

{
〈ρ,K〉 if BJBKρ = false
〈ρ, SK〉 if BJBKρ = true

〈ρ, (while B do S)K〉 →B 〈ρ, (if B then (Swhile B do S))K〉

〈ρ, (bail B to S)K〉 →B

{
〈ρ,K〉 if BJBKρ = false
〈ρ, S〉 if BJBKρ = true

The relation→B is clearly deterministic and we denote by

TraceGP , {σ ∈ State+GP | ∀i ∈ [0, |σ| − 1). σi →B σi+1}
the set of generic program traces for Guo and Palsberg’s language. Then, given a pro-
gram S ∈ Stm, so that StoreS , vars(S) → Valueu denotes the set of stores for S, its
partial trace semantics is

TGPJSK = TraceGP
S , {σ ∈ TraceGP | σ0 = 〈ρ, S〉, ρ ∈ StoreS}.

Notice that, differently from our trace semantics, a partial trace of the program S
always starts from an initial state, i.e., 〈ρ, S〉.

10.2. Language Compilation
Programs in Stm can be compiled into Program by resorting to an injective labeling
function l : Stm→ L that assigns different labels to different statements.
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Definition 10.1 (Language compilation). The “first command” compilation func-
tion C : Stm→ ℘(C) is defined as follows:

C(ε) , {l(ε) : skip→ Ł}
C
(
S′ ≡ (skip;K)

)
, {l(S′) : skip→ l(K)}

C
(
S′ ≡ (x := E;K)

)
, {l(S′) : x := E → l(K)}

C
(
S′ ≡ ((if B then S)K)

)
, {l(S′) : B → l(SK), l(S′) : ¬B → l(K)}

C
(
S′ ≡ ((while B do S)K)

)
, {l(S′) : skip→ l((if B then (Swhile B do S))K)}

C
(
S′ ≡ ((bail B to S)K)

)
, {l(S′) : B → l(S), l(S′) : ¬B → l(K)}

Then, the full compilation function C : Stm→ ℘(C) is recursively defined by the follow-
ing clauses:

C(ε) , C(ε)

C(skip;K) , C(skip;K) ∪ C(K)

C(x := E;K) , C(x := E;K) ∪ C(K)

C((if B then S)K) , C((if B then S)K) ∪ C(SK) ∪ C(K)

C((while B do S)K) , C((while B do S)K) ∪ C((if B then (Swhile B do S))K)

C((bail B to S)K) , C((bail B to S)K) ∪ C(S) ∪ C(K)

Given S ∈ Stm, l(S) is the initial label of C(S), while Ł is, as usual, the undefined label
where the execution becomes stuck.

It turns out that the recursive function C is well-defined—the easy proof is standard
and is omitted, let us just observe that C((while B do S)K) is a base case—so that, for
any S ∈ Stm, C(S) is a finite set of commands. Let us observe that, by Definition 10.1,
if 〈ρ, S〉 →B 〈ρ′, S′〉 then C(S′) ⊆ C(S) (this can be proved through an easy structural
induction on S). Consequently, if 〈ρ, S〉 →∗B 〈ρ′, S′〉 then C(S′) ⊆ C(S).

Example 10.2. Consider the following program S ∈ Stm in Guo and Palsberg’s
syntax:

x := 0;
while B1 do x := 1;
x := 2;
bail B2 to x := 3;
x := 4;

S is then compiled in our language by C in Definition 10.1 as follows:

C(S) =
{

l(S) : x := 0→ lwhile, lwhile : skip→ lifwhile,

lifwhile : B1 → l1, lifwhile : ¬B1 → l2, l1 : x := 1→ lwhile,

l2 : x := 2→ lbail, lbail : B2 → l3, lbail : ¬B2 → l4,
l3 : x := 3→ lε, l4 : x := 4→ lε, lε : skip→ Ł

}
.

Notice that in the command lbail : B2 → l3, the label l3 stands for l(x := 3; ) so that
C(x := 3; ) ≡ l3 : x := 3 → lε, i.e., after the execution of x := 3 the program termi-
nates.

Correctness for the above compilation function C means that for any S ∈ Stm:
(i) C(S) ∈ Program and (ii) program traces of S and C(S) have the same store sequences.
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Cs(〈ρ, ε〉) , 〈ρ, l(ε) : skip→ Ł〉
Cs(〈ρ, S ≡ (skip;K)〉) , 〈ρ, l(S) : skip→ l(K)〉
Cs(〈ρ, S ≡ (x := E;K)〉) , 〈ρ, l(S) : x := E → l(K)〉

Cs(〈ρ, S ≡ ((if B then S′)K)〉) ,
{
〈ρ, l(S) : B → l(S′K)〉 if BJBKρ = true
〈ρ, l(S) : ¬B → l(K)〉 if BJBKρ = false

Cs(〈ρ, S ≡ ((while B do S′)K)〉) , 〈ρ, l(S) : skip→ l((if B then (S′while B do S′))K)〉

Cs(〈ρ, S ≡ ((bail B to S′)K)〉) ,
{
〈ρ, l(S) : B → l(S′)〉 if BJBKρ = true
〈ρ, l(S) : ¬B → l(K)〉 if BJBKρ = false

Fig. 6. Definition of the state compile function Cs : StateGP → State.

In the proof we will make use of a “state compile” function Cs : StateGP → State
as defined in Figure 6. In turn, Cs allows us to define a “trace compile” function
Ct : TGPJSK → TιJC(S)K which applies state-by-state the function Cs to traces as fol-
lows:

Ct(ε) , ε; Ct(sτ) , Cs(s)Ct(τ).

LEMMA 10.3.

(1) 〈ρ, S〉 →B 〈ρ′, S′〉 ⇔ Cs(〈ρ′, S′〉) ∈ S(Cs(〈ρ, S〉))
(2) Ct is well-defined.

PROOF. We show the equivalence (1) by structural induction on S ∈ Stm.

[S ≡ ε]: Trivially true, since 〈ρ, S〉 6→B and S〈ρ, l(ε) : skip→ Ł〉 = ∅.

[S ≡ x := E;K] (⇒): If 〈ρ, x := E;K〉 →B 〈ρ[x/EJEKρ],K〉, Cs(〈ρ, x := E;K〉) =
〈ρ, l(S) : x := E → l(K)〉 and Cs(〈ρ[x/EJEKρ],K〉) = 〈ρ[x/EJEKρ], l(K) : A → l(S′)〉
for some action A and statement S′, then, by definition of the transition semantics S,
〈ρ[x/EJEKρ], l(K) : A→ l(S′)〉 ∈ S〈ρ, l(S) : x := E → l(K)〉.
(⇐): If 〈ρ′′, C〉 = Cs(〈ρ′, S′〉) ∈ S〈ρ, l(S) : x := E → l(K)〉 then: (1) EJEKρ 6= undef ,
(2) ρ′′ = ρ[x/EJEKρ], and therefore ρ′ = ρ[x/EJEKρ]; (3) lbl(C) = l(K), and therefore
S′ = K. Hence, 〈ρ, x := E;K〉 →B 〈ρ[x/EJEKρ],K〉 = 〈ρ′, S′〉.

[S ≡ skip;K] Analogous to S ≡ x := E;K.

[S ≡ (if B then T )K] (⇒): Assume that BJBKρ = false, so that
〈ρ, (if B then T )K〉 →B 〈ρ,K〉, Cs(〈ρ, (if B then T )K〉) = 〈ρ, l(S) : ¬B → l(K)〉 and
Cs(〈ρ,K〉) = 〈ρ, l(K) : A → l(T ′)〉 for some A and T ′ ∈ Stm. Hence, by definition of S,
〈ρ, l(K) : A→ l(T ′)〉 ∈ S〈ρ, l(S) : ¬B → l(K)〉. On the other hand, if BJBKρ = true then
〈ρ, (if B then T )K〉 →B 〈ρ, TK〉, Cs(〈ρ, (if B then T )K〉) = 〈ρ, l(S) : B → l(TK)〉 and
Cs(〈ρ, TK〉) = 〈ρ, l(TK) : A→ l(T ′)〉 for some A and T ′. Hence, 〈ρ, l(TK) : A→ l(T ′)〉 ∈
S〈ρ, l(S) : B → l(TK)〉.
(⇐): Assume that BJBKρ = false, so that Cs(〈ρ, (if B then T )K〉) = 〈ρ, l(S) : ¬B →
l(K)〉, and 〈ρ′′, C〉 = Cs(〈ρ′, S′〉) ∈ S〈ρ, l(S) : ¬B → l(K)〉. Hence: (1) ρ′′ = ρ and there-
fore ρ′ = ρ; (2) lbl(C) = l(K), and therefore S′ = K. Hence, 〈ρ, (if B then T )K〉 →B

〈ρ,K〉 = 〈ρ′, S′〉. On the other hand, if BJBKρ = true then Cs(〈ρ, (if B then T )K〉) =
〈ρ, l(S) : B → l(TK)〉 and 〈ρ′′, C〉 = Cs(〈ρ′, S′〉) ∈ S〈ρ, l(S) : B → l(TK)〉. We thus have
that: (1) ρ′′ = ρ and therefore ρ′ = ρ; (2) lbl(C) = l(TK), and therefore S′ = TK. Hence,
〈ρ, (if B then T )K〉 →B 〈ρ, TK〉 = 〈ρ′, S′〉.
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[S ≡ (while B do T )K] (⇒): We have that 〈ρ, (while B do T )K〉 →B

〈ρ, (if B then (T while B do T ))K〉 and Cs(〈ρ, (while B do T )K〉) = 〈ρ, l(S) :
skip → l((if B then (T while B do T ))K)〉. If BJBKρ = true then
Cs(〈ρ, (if B then (T while B do T ))K〉) = 〈ρ, l((if B then (T while B do T ))K) :
B → l(T (while B do T )K)〉; on the other hand, if BJBKρ = false then
Cs(〈ρ, (if B then (T while B do T ))K〉) = 〈ρ, l((if B then (T while B do T ))K) :
¬B → l(K)〉. In both cases, we have that:

〈ρ, l((if B then (T while B do T ))K) : B → l(T (while B do T )K)〉,
〈ρ, l((if B then (T while B do T ))K) : B → l(K)〉

∈ S〈ρ, l(S) : skip→ l((if B then (T while B do T ))K)〉.

(⇐): If 〈ρ′′, C〉 = Cs(〈ρ′, S′〉) ∈ S〈ρ, l(S) : skip → l((if B then (T while B do T ))K)〉
then: (1) ρ′′ = ρ, and therefore ρ′ = ρ; (2) lbl(C) = l((if B then (T while B do T ))K),
and therefore S′ = (if B then (T while B do T ))K. Hence, 〈ρ, (while B do T )K〉 →B

〈ρ, (if B then (T while B do T ))K〉 = 〈ρ′, S′〉.

[S ≡ (bail B to T )K] Analogous to S ≡ (if B then T )K.

Let us now turn to point (2). By the ⇒ implication of the equivalence (1), we have
that if τ ∈ TGPJSK then Ct(τ) ∈ TJC(S)K: this can be shown by an easy induction on
the length of τ and by using the fact that if Ct(τ) = 〈ρ0, C0〉〈ρ1, C1〉 · · · 〈ρn, Cn〉 then, for
any i, Ci ∈ C(S). Moreover, since l(S) is the initial label of the compiled program C(S)
and lbl(C0) = l(S), we also notice that Ct(τ) ∈ TιJC(S)K. Therefore, Ct is a well-defined
function.

Let st : TraceGP ∪Trace → Store∗ be the function that returns the store sequence of
any trace, that is:

st(ε) , ε and st(〈ρ, S〉σ) , ρ · st(σ).

Also, given a set X of traces, let αst(X) , {st(σ) | σ ∈ X}. Then, correctness of the
compilation function C goes as follows:

THEOREM 10.4 (CORRECTNESS OF LANGUAGE COMPILATION). If S ∈ Stm then
C(S) ∈ Program and αst(TGPJSK) = αst(T

ιJC(S)K).

PROOF. We define a “trace de-compile” function Dt : TιJC(S)K→ TGPJSK as follows.
Consider a trace σ = 〈ρ0, C0〉 · · · 〈ρn, Cn〉 ∈ TιJC(S)K, so that lbl(C0) = l(S), for any
i ∈ [0, n], Ci ∈ C(S) and for any i ∈ [0, n), 〈ρi+1, Ci+1〉 ∈ SJC(S)K〈ρi, Ci〉. Since lbl(C0) =
l(S), by definition of Cs, we have that 〈ρ0, C0〉 = Cs(〈ρ0, S〉). Then, since 〈ρ1, C1〉 ∈
SJC(S)K(Cs(〈ρ0, S〉)), there exists S1 ∈ Stm such that lbl(C1) = l(S1), so that, 〈ρ1, C1〉 =
Cs(〈ρ1, S1〉). Hence, from Cs(〈ρ1, S1〉) ∈ SJC(S)K(Cs(〈ρ0, S〉)), by the implication ⇐ of
Lemma 10.3 (1), we obtain that 〈ρ0, S〉 →B 〈ρ1, S1〉. Thus, an easy induction allows us
to show that for any i ∈ [1, n] there exists Si ∈ Stm such that

〈ρ0, S〉 →B 〈ρ1, S1〉 →B · · · →B 〈ρn, Sn〉

and Cs(〈ρi, Si〉) = 〈ρi, Ci〉. We therefore define Dt(σ) , 〈ρ0, S〉〈ρ1, S1〉 · · · 〈ρn, Sn〉 ∈
TGPJSK. Moreover, we notice that st(Dt(σ)) = st(σ). Let us also observe that st◦Ct = st,
since Ct does not affect stores.
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Summing up, we obtain:

αst(TGPJSK) = [since st ◦ Ct = st]
αst(Ct(TGPJSK)) ⊆ [by Lemma 10.3 (2), Ct is well-defined]

αst(T
ιJC(S)K) = [since st ◦ Dt = st]

αst(Dt(TιJC(S)K)) ⊆ [since Dt is well-defined]
αst(TGPJSK)

and this closes the proof.

10.3. Bisimulation
Correctness of trace extraction in [Guo and Palsberg 2011] relies on a notion of bisim-
ulation relation, parameterized by program stores. Let us recall this definition. If
〈ρ, S〉 →B 〈ρ, S′〉 then this “silent” transition that does not change the store is also de-
noted by 〈ρ, S〉 τ→B 〈ρ, S′〉. Moreover, for the assignment transition 〈ρ, x := E;K〉 →B

〈ρ[x/EJEKρ],K〉, if δ = [x/EJEKρ] denotes the corresponding store update of ρ then this
transition is also denoted by 〈ρ, x := E;K〉 δ→B 〈ρ[x/EJEKρ],K〉. Let Act , {δ | δ is a
store update} ∪ {τ}. Then, for a nonempty sequence of actions s = a1 · · · an ∈ Act+, we
define:

〈ρ, S〉 s⇒B 〈ρ′, S′〉 iff 〈ρ, S〉 τ→∗B ◦
a1→B ◦

τ→∗B · · ·
τ→∗B ◦

an→B ◦
τ→∗B 〈ρ′, S′〉,

namely, there may be any number of silent transitions either in front of or following
any ai-transition ai→B . Moreover, if s ∈ Act+ is a nonempty sequence of actions then
ŝ ∈ Act∗ denotes the possibly empty sequence of actions where all the occurrences of τ
are removed.

Definition 10.5 ([Guo and Palsberg 2011]). A relation R ⊆ Store×Stm×Stm is a
bisimulation when R(ρ, S1, S2) implies:

(1) if 〈ρ, S1〉
a→B 〈ρ′, S′1〉 then 〈ρ, S2〉

â⇒B 〈ρ′, S′2〉, for some 〈ρ′, S′2〉 such that R(ρ′, S′1, S′2);
(2) if 〈ρ, S2〉

a→B 〈ρ′, S′2〉 then 〈ρ, S1〉
â⇒B 〈ρ′, S′1〉, for some 〈ρ′, S′1〉 such that R(ρ′, S′1, S′2).

S1 is bisimilar to S2 for a given ρ ∈ Store, denoted by S1 ≈ρ S2, if R(ρ, S1, S2) for some
bisimulation R.

Let us remark that if 〈ρ, S1〉
τ→ 〈ρ′, S′1〉 then τ̂ = ε, so that

(
〈ρ, S2〉

τ̂⇒ 〈ρ, S2〉
)
≡ 〈ρ, S2〉 is

allowed to be the matching (empty) transition sequence.
It turns out that bisimilarity can be characterized through an abstraction of traces

that observes store changes. By a negligible abuse of notation, the store changes
function sc : Trace → Store∗ defined in Section 6 is applied to GP traces, so that
sc : Trace∪TraceGP → Store∗. In turn, given ρ ∈ Store, the function αρsc : ℘(TraceGP )→
℘(Store∗) is then defined as follows:

αρsc(X) , {sc(τ) ∈ Store∗ | τ ∈ X, ∃S, τ ′. τ = 〈ρ, S〉τ ′}.

It is worth remarking that αρsc is a weaker abstraction than αsc defined in Section 6,
that is, for any X,Y ∈ ℘(TraceGP ), αsc(X) = αsc(Y ) ⇒ αρsc(X) = αρsc(Y ) (while the
converse does not hold in general).

THEOREM 10.6. For any S1, S2 ∈ Stm, ρ ∈ Store, we have that S1 ≈ρ S2 iff
αρsc(TGPJS1K) = αρsc(TGPJS2K).
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PROOF. (⇒): We prove that if R(ρ, S1, S2) holds for some bisimulation R then
αρsc(TGPJS1K) ⊆ αρsc(TGPJS2K) (the reverse containment is symmetric), that is, if
sc(τ) ∈ Store∗ for some τ ∈ TGPJS1K such that τ = 〈ρ, S1〉τ ′ then there exists
some ψ ∈ TGPJS2K such that ψ = 〈ρ, S2〉ψ′ and sc(τ) = sc(ψ). Let us then consider
τ ∈ TGPJS1K such that τ = 〈ρ, S1〉τ ′. If τ ′ = ε then we pick 〈ρ, S2〉 ∈ TGPJS2K so that
sc(〈ρ, S1〉) = ρ = sc(〈ρ, S2〉). Otherwise, τ = 〈ρ, S1〉τ ′ ∈ TGPJS1K, with ε 6= τ ′ = τ ′′〈µ, S〉.
We prove by induction on |τ ′| ≥ 1 that there exists ψ = 〈ρ, S2〉ψ′′〈µ, T 〉 ∈ TGPJS2K such
that sc(τ) = sc(ψ) and R(µ, S, T ).
(|τ ′| = 1): In this case, τ = 〈ρ, S1〉〈µ, S〉 ∈ TGPJS1K, so that 〈ρ, S1〉

a→B 〈µ, S〉. Since,
by hypothesis, R(ρ, S1, S2) holds, we have that 〈ρ, S2〉

â⇒B 〈µ, T 〉, for some T , and
R(µ, S, T ). Let ψ ∈ TGPJS2K be the trace corresponding to the sequence of transitions
〈ρ, S2〉

â⇒B 〈µ, T 〉. Then, by definition of â⇒B , we have that sc(τ) = sc(ψ), and, by defi-
nition of bisimulation, R(µ, S, T ) holds.
(|τ ′| > 1): Here, τ ′ = τ ′′〈µ, S〉 and τ = 〈ρ, S1〉τ ′ ∈ TGPJS1K, with |τ ′′| = |τ ′| − 1 ≥ 1.
Hence, τ ′′ = τ ′′′〈η, U〉. By inductive hypothesis, there exists ψ = 〈ρ, S2〉ψ′′〈η, V 〉 ∈
TGPJS2K such that sc(〈ρ, S1〉τ ′′′〈η, U〉) = sc(〈ρ, S2〉ψ′′〈η, V 〉) and R(η, U, V ). Since
〈η, U〉 a→B 〈µ, S〉 and R(η, U, V ) holds, we obtain that 〈η, V 〉 â⇒B 〈µ, T 〉, for some T ,
and R(µ, S, T ) holds. Let 〈η, V 〉 · · · 〈µ, T 〉 be the sequence of states corresponding to
the sequence of transitions 〈η, V 〉 â⇒B 〈µ, T 〉 so that we pick 〈ρ, S2〉ψ′′〈η, V 〉 · · · 〈µ, T 〉 ∈
TGPJS2K. The condition R(µ, S, T ) already holds. Moreover, by definition of â⇒B , we
have that sc(〈η, U〉〈µ, S〉) = sc(〈η, V 〉 · · · 〈µ, T 〉), and therefore we obtain sc(τ) =
sc(〈ρ, S1〉τ ′′′〈η, U〉〈µ, S〉) = sc(〈µ, S2〉ψ′′〈η, V 〉 · · · 〈µ, T 〉).

(⇐): We first observe the following property (∗), which is a straight consequence of
the fact that →B is a deterministic relation: If S ∈ Stm and σ, τ ∈ TJSK are such that
σ0 = 〈µ, S〉 = τ0 and |τ | ≤ |σ| then there exists some ψ such that σ = τψ.
Given ρ ∈ Store, we assume that αρsc(TGPJS1K) = αρsc(TGPJS2K) and we then define the
following relation R:

R , {(ρ, S1, S2)} ∪ {(µ, T1, T2) | 〈ρ, S1〉 · · · 〈µ, T1〉 ∈ TJS1K, 〈ρ, S2〉 · · · 〈µ, T1〉 ∈ TJS2K,
sc(〈ρ, S1〉 · · · 〈µ, T1〉) = sc(〈ρ, S2〉 · · · 〈µ, T1〉)}.

We show that R is a bisimulation, so that R(ρ, S1, S2) follows.
(case A) Assume that 〈ρ, S1〉

a→B 〈ρ′, S′1〉. Then, since 〈ρ, S1〉〈ρ′, S′1〉 ∈ TJS1K and
αρsc(TGPJS1K) = αρsc(TGPJS2K), we have that there exists τ = 〈ρ, S2〉 · · · ∈ TJS2K such
that sc(〈ρ, S1〉〈ρ′, S′1〉) = sc(τ). Hence, τ necessarily has the following shape:

τ = 〈ρ, S2〉〈ρ, U1〉 · · · 〈ρ, Un〉〈ρ′, V1〉 · · · 〈ρ′, Vm〉

where n ≥ 0 (n = 0 means that 〈ρ, U1〉 · · · 〈ρ, Un〉 is indeed the empty sequence) and m ≥
1. This therefore means that 〈ρ, S2〉

â⇒B 〈ρ′, Vm〉, so that, by definition ofR,R(ρ′, S′1, Vm)
holds.
(case B) Assume now that R(µ, T1, T2) holds because δ = 〈ρ, S1〉 · · · 〈µ, T1〉 ∈ TJS1K,
σ = 〈ρ, S2〉 · · · 〈µ, T2〉 ∈ TJS2K and sc(δ) = sc(σ). Hence, let us suppose that 〈µ, T1〉

a→B

〈µ′, T ′1〉. Then, since δ〈µ′, T ′1〉 ∈ TJS1K and αρsc(TGPJS1K) = αρsc(TGPJS2K), we have that
there exists τ = 〈ρ, S2〉 · · · ∈ TJS2K such that sc(δ〈µ′, T ′1〉) = sc(τ).

(case B1). If |τ | ≤ |σ| then, by the property (∗) above, σ = τψ, for some ψ. Hence,
sc(τ) = sc(δ〈µ′, T ′1〉) is a prefix of sc(σ) = sc(δ). Consequently, sc(δ〈µ′, T ′1〉) can
be a prefix of sc(δ) only if sc(δ〈µ′, T ′1〉) = sc(δ), so that the action a is τ and
µ′ = µ, that is, 〈µ, T1〉

τ→B 〈µ, T ′1〉. We thus consider the empty transition sequence
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(T1) 〈ρ, (if B then (Swhile B do S))K〉 →T 〈ρ, (while B do S)K, ε, S(while B do S)K〉
if BJBKρ = true

(T2) 〈ρ,Kw, t, skip;K〉 →T 〈ρ,Kw, t(skip;),K〉
(T3) 〈ρ,Kw, t, x := E;K〉 →T 〈ρ[x/EJEKρ],Kw, t(x := E;),K〉

(T4) 〈ρ,Kw, t, (if B then S)K〉 →T

{
〈ρ,Kw, t(bail B to (SK)),K〉 if BJBKρ = false
〈ρ,Kw, t(bail ¬B to K), SK〉 if BJBKρ = true

(T5) 〈ρ,Kw, t, (while B do S)K〉 →T


〈ρ,Kw, t(skip; ), (if B then (Swhile B do S))K〉

if Kw 6≡ (while B do S)K
〈ρ,O(while B do t, ρ)K〉 if Kw ≡ (while B do S)K

(T6) 〈ρ,Kw, t, S〉 →T 〈ρ′, S′〉 if Kw 6≡ S and 〈ρ, S〉 →B 〈ρ′, S′〉

Fig. 7. Definition of the tracing relation→T .

〈µ, T2〉
τ̂⇒ 〈µ, T2〉, so that from sc(δ〈µ, T ′1〉) = sc(σ), by definition of R we obtain that

R(µ, T ′1, T2) holds.
(case B2). If |τ | > |σ| then, by (∗) above, τ = σψ, for some ψ, i.e., τ =
σ · · · 〈µ′′, T ′2〉, for some µ′′ and T ′2. Since sc(〈ρ, S2〉 · · · 〈µ, T2〉) = sc(〈ρ, S1〉 · · · 〈µ, T1〉)
and sc(〈ρ, S2〉 · · · 〈µ, T2〉 · · · 〈µ′′, T ′2〉) = sc(〈ρ, S1〉 · · · 〈µ, T1〉〈µ′, T ′1〉), we derive that
µ′′ = µ′ and 〈µ, T2〉

a⇒ 〈µ′′ = µ′, T ′2〉. By definition of R, R(µ′, T ′1, T ′2) holds.

This closes the proof.

10.4. Hot Paths
Let us recall the set of rules that define the tracing transitions in Guo and Pals-
berg [2011] model. Let tStateGP , Store×Stm×Stm×Stm denote the set of states
in trace recording mode, whose components are, respectively, the current store, the en-
try point of the recorded trace (this is always a while statement), the current trace (i.e.,
a sequence of commands) and the current program to be evaluated. In turn, StateeGP ,
StateGP ∪ tStateGP denotes the corresponding extended notion of state, which encom-
passes the trace recording mode. Then, the relation →T ⊆ StateeGP ×StateeGP is de-
fined by the clauses in Figure 7, where O : Stm× Store → Stm is a “sound” opti-
mization function that depends on a given store. Correspondingly, the trace seman-
tics TGPJSK ⊆ (StateeGP )

+ of a program S ∈ Stm is naturally extended to the relation
→B,T ,→B ∪ →T ⊆ StateeGP ×StateeGP .

Let us notice that in Guo and Palsberg’s model of hot paths:

(i) By clause (T1), trace recording is always triggered by an unfolded while loop, and
the loop itself is not included in the hot path.

(ii) By clause (T4), when we bail out of a hot path t through a bail command, we cannot
anymore re-enter into t.

(iii) By clause (T5)—the second condition of this clause is called stitch rule in [Guo and
Palsberg 2011]—the store used to optimize a hot path t is recorded at the end of
the first loop iteration. This is a concrete store which is used by O to optimize the
stitched hot path while B do t.

(iv) Hot paths actually are 1-hot paths according to our definition, since, by clause (T1),
once the first iteration of the traced while loop is terminated, trace recording nec-
essarily discontinues.

(v) There are no clauses for trace recording bail commands. Hence, when trying to
trace a loop that already contains a nested hot path, by clause (T6), trace recording

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.



An Abstract Interpretation-based Model of Tracing Just-In-Time Compilation A:41

is aborted when a bail command is encountered. In other terms, in contrast to our
approach described in Section 9, nested hot paths are not allowed.

(vi) Observe that when tracing a loop while B do S whose body S does not contain
branching commands, i.e. if or while statements, it turns out that the hot path t
coincides with the body S, so that while B do t ≡ while B do S, namely, in this
case the hot path transform does not change the subject while loop.

In the following, we show how this hot path extraction model can be formalized
within our trace-based approach. To this aim, we do not consider optimizations of hot
paths, which is an orthogonal issue here, so that we assume that O performs no opti-
mization, that is, O(while B do t, ρ) = while B do t.

A sequence of commands t ∈ Stm is defined to be a GP hot path for a program
Q ∈ Stm when we have the following transition sequence:

〈ρ,Q〉 →∗B,T 〈ρ′, (while B do S)K〉 →∗B,T 〈ρ′′, (while B do S)K, t, (while B do S)K〉.

Since the operational semantics →B,T is given in continuation-style, without loss of
generality, we assume that the program Q begins with a while statement, that is Q ≡
(while B do S)K. Guo and Palsberg’s hot loops can be modeled in our framework by
exploiting a revised loop selection map loopGP : Trace→ ℘(C+) defined as follows:

loopGP (〈ρ0, C0〉 · · · 〈ρn, Cn〉) ,
{
CiCi+1 · · ·Cj | 0 ≤ i ≤ j < n, Ci l Cj ,

suc(Cj) = lbl(Ci), ∀k ∈ (i, j]. Ck 6∈ {Ci, cmpl(Ci)}
}
.

Thus, loopGP (τ) contains sequences of commands without store. The map αGP
hot :

℘(Trace)→ ℘(C+) then lifts loopGP to sets of traces as usual: αGP
hot (T ) , ∪τ∈T loopGP (τ).

Then, let us consider a GP hot path t as recorded by a transition sequence τ :

τ , 〈ρ, S0 ≡ (while B do S)K〉 →B

〈ρ, S1 ≡ (if B then (Swhile B do S))K〉 →T

〈ρ, (while B do S)K, ε, S2 ≡ S(while B do S)K〉 →T

· · · →T

〈ρ′, (while B do S)K, t′, Sn〉 →T

〈ρ′′, (while B do S)K, t, Sn+1 ≡ (while B do S)K〉

(‡)

where BJBKρ = true. Hence, the Si’s occurring in τ are the current state-
ments to be evaluated. With a negligible abuse of notation, we assume that τ ∈
TGPJ(while B do S)KK, that is, the arrow symbols→B and→T are taken out of the se-
quence τ . By Lemma 10.3 (2), we therefore consider the corresponding execution trace
Ct(τ) of the compiled program C((while B do S)K), where the state compile function
Cs in Figure 6, when applied to states in trace recording mode, is assumed to act on the
current store and the program to be evaluated, that is, Cs(〈ρ,Kw, t, S〉) = Cs(〈ρ, S〉). We
thus obtain:

Ct(τ) , 〈ρ, C0 ≡ l((while B do S)K) : skip→ l((if B then (Swhile B do S))K)〉
〈ρ, C1 ≡ l((if B then (Swhile B do S))K) : B → l(S (while B do S)K)〉
〈ρ, C2 ≡ l(S(while B do S)K) : A2 → l(T )〉
· · ·
〈ρ′, Cn ≡ l(Sn) : An → l((while B do S)K)〉
〈ρ′′, Cn+1 ≡ l((while B do S)K) : skip→ l((if B then (Swhile B do S))K)〉.

We therefore obtain a hot path hpt = C0C1 · · ·Cn ∈ loopGP (Ct(τ)), i.e. hpt ∈
αGP
hot (T

ιJC((while B do S)K)K), where lbl(C0) = l((while B do S)K) = suc(Cn). This
is a consequence of the fact that for all k ∈ (0, n], Ck cannot be the entry command C0
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or its complement command, because, by the stitch rule of clause (T5), Sn+1 is neces-
sarily the first occurrence of (while B do S))K as current program to be evaluated
in the trace τ , so that, for any k ∈ (0, n], lbl(Ck) 6= l((while B do S)K). We have thus
shown that any GP hot path arising from a trace τ generates a corresponding hot path
extracted by our selection map loopGP on the compiled trace Ct(τ):

LEMMA 10.7. Let Qw ≡ (while B do S)K. If t is a GP hot path for Qw where
τ ≡ 〈ρ,Qw〉 →∗B,T 〈ρ′, Qw, t, Qw〉 is the transition sequence (‡) that records t, then there
exists a hot path hpt = C0C1 · · ·Cn ∈ αGP

hot (T
ιJC(Qw)K) such that, for any i ∈ [0, n],

lbl(Ci) = l(Si), and, in particular, lbl(C0) = l(Qw) = suc(Cn).

Example 10.8. Let us consider the while statement Qw of the program in Exam-
ple 2.1:

Qw ≡ while (x ≤ 20) do (x := x+ 1; (if (x%3 = 0) then x := x+ 3; ))

This program is already written in Guo and Palsberg language, so that Qw is a well
formed statement in Stm. The tracing rules in Figure 7 yield the following trace t for
Qw:

t ≡ x := x+ 1; bail (x%3 = 0) to (x := x+ 3; Qw).

On the other hand, the compiled program C(Qw) ∈ ℘(C) is as follows:

C(Qw) =
{
D0 ≡ lwhile : skip→ lifwhile,

D1 ≡ lifwhile : (x ≤ 20)→ l1, Dc
1 ≡ lifwhile : ¬(x ≤ 20)→ lε,

D2 ≡ l1 : x := x+ 1→ lif,

D3 ≡ lif : (x%3 = 0)→ l2, Dc
3 ≡ lif : ¬(x%3 = 0)→ lwhile,

D4 ≡ l2 : x := x+ 3→ lwhile, D5 ≡ lε : skip→ Ł
}
,

where labels have the following meaning:

lwhile , l(Qw)
lifwhile , l(if (x ≤ 20) then (x := x+ 1; (if (x%3 = 0) then x := x+ 3; )Qw))

l1 , l(x := x+ 1; (if (x%3 = 0) then x := x+ 3; )Qw))

lif , l((if (x%3 = 0) then x := x+ 3; )Qw))

l2 , l(x := x+ 3;Qw).

Hence, in correspondence with the trace t, we obtain the hot path hpt = D0D1D2D
c
3 ∈

αGP
hot (T

ιJC(Qw)K). In turn, this hot path hpt corresponds to the 2-hot path hp1 consisting
of the analogous sequence of commands, which has been selected in Example 4.1.

10.5. GP Trace Extraction
In the following, we conform to the notation used in Section 5 for our trace extraction
transform. Let us consider a while program Qw ≡ (while B do S)K ∈ Stm and its
compilation Pw , C(Qw) ∈ ℘(C). Observe that, by Definition 10.1 of compilation C, a
hot path C0 · · ·Cn ∈ αGP

hot (TJPwK) for the compiled program Pw always arises in cor-
respondence with some while loop while B′ do S′ occurring in Qw and therefore has
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necessarily the following shape:

C0 ≡ l((while B′ do S′)J) : skip→ l((if B′ then (S′while B′ do S′)) J)

C1 ≡ l((if B′ then (S′ (while B′ do S′))) J) : B′ → l(S′ (while B′ do S′) J)

C2 ≡ l(S′ (while B′ do S′) J) : A2 → l(T3)
· · ·

Cn ≡ l(Tn) : An → l((while B′ do S′)J)

The GP hot path extraction scheme for Qw described by the rules in Figure 7 can be
defined in our language by the following simple transform of Pw.

Definition 10.9 (GP trace extraction transform). The GP trace extraction trans-
form extrGP

hp (Pw) of Pw for the hot path hp = C0C1 · · ·Cn ∈ αGP
hot (TJPwK) is defined as

follows:

(1) If for any i ∈ [2, n], cmpl(Ci) 6∈ Pw then extrGP
hp (Pw) , Pw;

(2) Otherwise:
extrGP

hp (Pw) , Pw ∪ {`i : act(Ci)→ `next(i) | i ∈ [0, n]}
∪ {`i : ¬act(Ci)→ Lcnext(i) | i ∈ [0, n], cmpl(Ci) ∈ Pw}.

Clearly, extrGP
hp (P ) remains a well-formed program. Also observe that the case (1) of

Definition 10.9 means that the traced hot path hp does not contain conditional com-
mands (except from the entry conditional C1) and therefore corresponds to point (vi) in
Section 10.4.

Example 10.10. Let us consider the programs Qw and C(Qw) of Example 10.8 and
the hot path hpt = D0D1D2D

c
3 ∈ αGP

hot (TJC(Qw)K) which corresponds to the trace t ≡
x := x + 1; bail (x%3 = 0) to (x := x + 3; Qw) of Qw. Here, the GP trace extraction of
hpt, according to Definition 10.9, provides the following program transform:

extrGP
hpt (C(Qw)) ,

{
D0 ≡ lwhile : skip→ lifwhile, D1 ≡ lifwhile : (x ≤ 20)→ l1,
Dc

1 ≡ lifwhile : ¬(x ≤ 20)→ lε, D2 ≡ l1 : x := x+ 1→ lif,

D3 ≡ lif : (x%3 = 0)→ l2, Dc
3 ≡ lif : ¬(x%3 = 0)→ lwhile,

D4 ≡ l2 : x := x+ 3→ lwhile, D5 ≡ lε : skip→ Ł
}
∪{

`0 : skip→ `1, `1 : x ≤ 20→ `2, `1 : ¬(x ≤ 20)→ lε,
`2 : x := x+ 1→ `3, `3 : ¬(x%3 = 0)→ `0, `3 : (x%3 = 0)→ l2

}
.

On the other hand, the stitch rule (T5) transforms Qw into the following program Qt:

while (x ≤ 20) do
x := x+ 1;
bail (x%3 = 0) to (x := x+ 3; Qw)

whose compilation yields the following program:

C(Qt) =
{

lwhilet
: skip→ lifwhilet

, lifwhilet
: (x ≤ 20)→ l1t, lifwhilet

: ¬(x ≤ 20)→ lε,
l1t : x := x+ 1→ lbail, lbail : (x%3 = 0)→ lbailtrue , lbail : ¬(x%3 = 0)→ lwhilet

,

lwhile : skip→ lifwhile, lifwhile : (x ≤ 20)→ l1, lifwhile : ¬(x ≤ 20)→ lε,
l1 : x := x+ 1→ lif, lif : (x%3 = 0)→ l2, lif : ¬(x%3 = 0)→ lwhile,

lbailtrue : x := x+ 3→ lwhile, lε : skip→ Ł
}
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with the following new labels:

lwhilet
, l(while (x ≤ 20) t)

lifwhilet
, l(if (x ≤ 20) then (t (while (x ≤ 20) t)))

l1t , l(t (while (x ≤ 20) t))

lbail , l((bail (x%3 = 0) to (x := x+ 3;Qw))(while (x ≤ 20) t))

while observe that lbailtrue , l(x := x + 3;Qw) = l2. It is then immediate to check that
the programs C(Qt) and extrGP

hpt
(C(Qw)) are equal up to the following label renaming of

extrGP
hpt

(C(Qw)):

{`0 7→ lwhilet
, `1 7→ lifwhilet

, `2 7→ l1t, `3 7→ lbail}.

The equivalence of this GP trace extraction with the stitch of hot paths by Guo and
Palsberg [2011] goes as follows.

THEOREM 10.11 (EQUIVALENCE WITH GP TRACE EXTRACTION). Let t be a GP
trace such that 〈ρ, (while B do S)K〉 →∗B,T 〈ρ′, (while B do S)K, t, (while B do S)K〉
and let hpt ∈ αGP

hot (T
ιJC((while B do S)K)K) be the corresponding GP hot path as de-

termined by Lemma 10.7. Then, C((while B do t)K) ∼= extrGP
hpt

(C((while B do S)K)).

PROOF. Let the GP hot path t be recorded by the following transition sequence for
〈ρ, (while B do S)K〉:

〈ρ, S−2 ≡ (while B do S)K〉 →B

〈ρ, S−1 ≡ (if B then (Swhile B do S))K〉 →T [with BJBKρ = true]
〈ρ0 , ρ, (while B do S)K, t0 ≡ ε, S0 ≡ S(while B do S)K〉 →T

〈ρ1, (while B do S)K, t1 ≡ c1, S1〉 →T

· · · →T

〈ρn, (while B do S)K, tn ≡ tn−1cn, Sn〉 →T

〈ρn+1 , ρ′, (while B do S)K, t ≡ tncn+1, Sn+1 ≡ (while B do S)K〉

where n ≥ 0, so that the body S is assumed to be nonempty, i.e., S 6= ε (there is no
loss of generality since for S = ε the result trivially holds). Hence, t = c1...cncn+1, for
some commands ci ∈ Cmd, and the corresponding hot path hpt ≡ H−2H−1H0...Hn as
determined by Lemma 10.7 is as follows:

H−2 , l(S−2) : skip→ l(S−1)
H−1 , l(S−1) : B → l(S0) [because BJBKρ = true]

H0 , l(S0) : A0 → l(S1)

H1 , l(S1) : A1 → l(S2)

· · ·
Hn , l(Sn) : An → l(S−2)

where the action Ai, with i ∈ [0, n], and the command ci+1 depend on the first command
of the statement Si as follows (this range of cases will be later referred to as (∗)):

(1) Si ≡ skip; J ⇒ Ai ≡ skip & ci+1 ≡ skip; & Si+1 ≡ J
(2) Si ≡ x := E; J ⇒ Ai ≡ x := E & ci+1 ≡ x := E; & Si+1 ≡ J
(3) Si ≡ (if B′ then S′)J & BJB′Kρi = true ⇒

Ai ≡ B′ & ci+1 ≡ bail ¬B′ to J & Si+1 ≡ S′J
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(4) Si ≡ (if B′ then S′)J & BJB′Kρi = false ⇒
Ai ≡ ¬B′ & ci+1 ≡ bailB′ to (S′J) & Si+1 ≡ J

(5) Si ≡ (while B′ do S′)J & (while B′ do S′)J 6= (while B do S)K ⇒
Ai ≡ skip & ci+1 ≡ skip; & Si+1 ≡ (if B′ then (S′(while B′ do S′)))J

If, for any i ∈ [0, n], Hi is not a conditional command then, by case (1) of Definition 10.9,
we have that extrGP

hpt
(C((while B do S)K)) = C((while B do S)K). Also, for any i ∈

[0, n], Ai is either a skip or an assignment, so that ci+1 = Ai, and, in turn, t = S. Hence,
(while B do t)K ≡ (while B do S)K, so that the thesis follows trivially.
Thus, we assume that Hk, with k ∈ [0, n], is the first conditional command occuring in
the sequence H0...Hn. Case (2) of Definition 10.9 applies, so that:

extrGP
hpt (C((while B do S)K)) = C((while B do S)K)∪

{`−2 : skip→ `−1, `−1 : B → `0, `−1 : ¬B → l(K),

`0 : A0 → `1, ..., `n : An → `−2}∪
{`i : ¬Ai → l(Snext(i))

c | i ∈ [0, n], Ai ∈ BExp}.

Moreover, we have that:

C((while B do S)K) ={
l((while B do S)K) : skip→ l((if B then (S (while B do S)))K),

l((if B then (S (while B do S)))K) : B → l(S(while B do S)K),

l((if B then (S (while B do S)))K) : ¬B → l(K)
}

∪ C(S(while B do S)K) ∪ C(K)

C((while B do t)K) ={
l((while B do t)K) : skip→ l((if B then (t (while B do t)))K),

l((if B then (t (while B do t)))K) : B → l(t(while B do t)K),

l((if B then (t (while B do t)))K) : ¬B → l(K)
}

∪ C(t(while B do t)K) ∪ C(K)

We first show that C((while B do t)K) ⊆
/∼= extrGP

hpt
(C((while B do S)K)). We consider

the following label renaming:

l((while B do t)K) 7→ `−2

l((if B then (t (while B do t)))K) 7→ `−1

l(t(while B do t)K) 7→ `0

so that it remains to show that C(t(while B do t)K) ⊆
/∼= extrGP

hpt
(C((while B do S)K)).

Since t = c1t
′, with t′ = c2...cn+1, let us analyze the five different cases for the first

command c1 of t.

(i) c1 ≡ x := E;. Thus, S0 ≡ x := E;T (while B do S)K, S1 ≡ T (while B do S)K,
A0 ≡ x := E. In this case,

C(t(while B do t)K) = {l(t(while B do t)K) : x := E → l(t′(while B do t)K)}
∪ C(t′(while B do t)K).

Hence, it is enough to consider the relabeling l(t′(while B do t)K) 7→ `1 and to show
that C(t′(while B do t)K) ⊆

/∼= extrGP
hpt

(C((while B do S)K)).
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(ii) c1 ≡ skip; and S0 ≡ skip;T (while B do S)K. Thus, S1 ≡ T (while B do S)K, so
that A0 ≡ skip. This case is analogous to the previous case (i).

(iii) c1 ≡ skip; and S0 ≡ (while B′ do S′)T (while B do S)K. Thus, S1 ≡
(if B′ then (S′(while B′ do S′)))T (while B do S)K and A0 ≡ skip. Here, we have
that

C(t(while B do t)K) = {l(t(while B do t)K) : skip→ l(t′(while B do t)K)}
∪ C(t′(while B do t)K).

Again, it is enough to consider the relabeling l(t′(while B do t)K) 7→ `1 and to show
that C(t′(while B do t)K) ⊆

/∼= extrGP
hpt

(C((while B do S)K)).
(iv) c1 ≡ bail ¬B′ to (T (while B do S)K), with S0 ≡ (if B′ then S′)T (while B do S)K

and BJB′Kρ0 = true, so that S1 ≡ S′T (while B do S)K and A0 ≡ B′. In this case:

C(t(while B do t)K) = {l(t(while B do t)K) : ¬B′ → l(T (while B do S)K),

l(t(while B do t)K) : B′ → l(t′(while B do t)K)}
∪ C(T (while B do S)K) ∪ C(t′(while B do t)K),

C(S(while B do S)K) = {l(S(while B do S)K) : B′ → l(S′T (while B do S)K),

l(S(while B do S)K) : ¬B′ → l(T (while B do S)K)}
∪ C(S′T (while B do S)K) ∪ C(T (while B do S)K).

Hence, since l(t(while B do t)K) 7→ `0 and A0 ≡ B′, it is enough to consider the
relabeling l(t′(while B do t)K) 7→ `1 and to show that C(t′(while B do t)K) ⊆

/∼=

extrGP
hpt

(C((while B do S)K)).
(v) c1 ≡ bail B′ to (S′T (while B do S)K), with S0 ≡ (if B′ then S′)T (while B do S)K

and BJB′Kρ0 = false, so that S1 ≡ T (while B do S)K and A0 ≡ ¬B′. In this case:

C(t(while B do t)K) = {l(t(while B do t)K) : B′ → l(S′T (while B do S)K),

l(t(while B do t)K) : ¬B′ → l(t′(while B do t)K)}
∪ C(S′T (while B do S)K) ∪ C(t′(while B do t)K),

while C(S(while B do S)K) is the same as in the previous point (iv). Hence,
since l(t(while B do t)K) 7→ `0 and A0 ≡ ¬B′, it is enough to consider the re-
labeling l(t′(while B do t)K) 7→ `1 and to show that C(t′(while B do t)K) ⊆

/∼=

extrGP
hpt

(C((while B do S)K)).

Thus, in order to prove this containment, it remains to show that
C(t′(while B do t)K) ⊆

/∼= extrGP
hpt

(C((while B do S)K)). If t′ = ε then the con-
tainment boils down to C((while B do t)K) ⊆

/∼= extrGP
hpt

(C((while B do S)K)) which
is therefore proved. Otherwise, t′ = c2t

′′, so that the containment can be inductively
proved by using the same five cases (i)-(v) above.

Let us now show the reverse containment, that is, extrGP
hpt

(C((while B do S)K)) ⊆
/∼=

C((while B do t)K). For the trace t = c1c2...cn+1, we know by (∗) that each command ci
either is in {skip; , x := E; } or is one of the two following bail commands (cf. cases (3)
and (4) in (∗)):

bail ¬B′ to (T (while B do S)K), bail B′ to (S′T (while B do S)K).

Furthermore, at least a bail command occurs in t because there exists at least a condi-
tional command Hk in hpt. Let ck, with k ∈ [1, n + 1], be the first bail command occur-
ring in t. Thus, since the sequence c1...ck−1 consists of skip and assignment commands
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only, we have that C(t(while B do t)K) ⊇ C(ck...cn+1(while B do t)K). Hence, either
C(ck...cn+1(while B do t)K) ⊇ C(T (while B do S)K) or C(ck...cn+1(while B do t)K) ⊇
C(T (while B do S)K). In both cases, we obtain that C(ck...cn+1(while B do t)K) ⊇
C((while B do S)K), so that C((while B do S)K) ⊆ C(t(while B do t)K) ⊆
C((while B do t)K). Thus, it remains to show that

{`−2 : skip→ `−1, `−1 : B → `0, `−1 : ¬B → l(K)} ∪
{`i : Ai → `next(i) | i ∈ [0, n]} ∪ {`i : ¬Ai → l(Snext(i))

c | i ∈ [0, n], Ai ∈ BExp}

is contained in C(t(while B do t)K). We consider the following label renaming:

`−2 7→ l((while B do t)K)

`−1 7→ l((if B then (t (while B do t)))K)

`0 7→ l(t(while B do t)K)

so that it remains to check that for any i ∈ [0, n], the commands `i : Ai → `next(i) and
`i : ¬Ai → l(Snext(i))

c, when Ai ∈ BExp, are in C(t(while B do t)K). We analyze the
possible five cases listed in (∗) for the action A0:

(i)A0 ≡ skip because S0 ≡ skip;T (while B do S)K. Here, t = skip; t′. Hence,
l(t(while B do t)K) : skip → l(t′(while B do t)K) ∈ C(t(while B do t)K) and
it is enough to use the relabeling `1 7→ l(t′(while B do t)K).

(ii)A0 ≡ x := e because S0 ≡ x := E; T (while B do S)K, so that t ≡ x := E; t′.
Analogous to case (i).

(iii)A0 ≡ skip because S0 ≡ (while B′ do S′)T (while B do S)K. Here, t =
skip; t′. Here, again, l(t(while B do t)K) : skip → l(t′(while B do t)K) ∈
C(t(while B do t)K), so that it is enough to use the relabeling `1 7→
l(t′(while B do t)K).

(iv)A0 ≡ B′ because S0 ≡ (if B′ then S′)T (while B do S)K and BJB′Kρ0 = true. Thus,
t = (bail ¬B′ to (T (while B do S)K))t′ and S1 ≡ T (while B do S)K. Note that
l(S1)

c = l(T (while B do S)K). Hence,

l(t(while B do t)K) : ¬B′ → l(T (while B do S)K) ∈ C(t(while B do t)K),

l(t(while B do t)K) : B′ → l(t′(while B do t)K) ∈ C(t(while B do t)K).

Once again, the relabeling `1 7→ l(t′(while B do t)K) allows us to obtain that `0 :
B′ → `1 and `0 : ¬B′ → l(T (while B do S)K) are in C(t(while B do t)K).

(v)A0 ≡ ¬B′ because S0 ≡ (if B′ then S′)T (while B do S)K and BJB′Kρ0 = false.
Here, t = (bail B′ to (S′T (while B do S)K))t′ and S1 ≡ T (while B do S)K. Note
that l(S1)

c = l(S′T (while B do S)K). Hence,

l(t(while B do t)K) : B′ → l(S′T (while B do S)K) ∈ C(t(while B do t)K),

l(t(while B do t)K) : ¬B′ → l(t′(while B do t)K) ∈ C(t(while B do t)K).

Thus, through the relabeling `1 7→ l(t′(while B do t)K) we obtain that `0 : ¬B′ → `1
and `0 : B′ → l(S′T (while B do S)K) are in C(t(while B do t)K).

This case analysis (i)-(v) for the action A0 can be iterated for all the other actions Ai,
with i ∈ [1, n], and this allows us to close the proof.

Finally, we can also state the correctness of the GP trace extraction transform for
the store changes abstraction as follows.

THEOREM 10.12 (CORRECTNESS OF GP TRACE EXTRACTION). For any P ∈
Program, hp = C0 · · ·Cn ∈ αGP

hot (TJP K), we have that αsc(TJextrGP
hp (P )K) = αsc(TJP K).
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The proof of Theorem 10.12 is omitted, since it is a conceptually straightforward
adaptation of the proof technique for the analogous Theorem 6.2 on the correctness of
trace extraction. Let us observe that since αsc is a stronger abstraction than αρsc and,
by Theorem 10.6, we know that αρsc characterizes bisimilarity, we obtain the so-called
Stitch lemma in [Guo and Palsberg 2011, Lemma 3.6] as a straight consequence of
Theorem 10.12: αρsc(TJextrGP

hp (P )K) = αρsc(TJP K).

11. CONCLUSION AND FURTHER WORK
This article put forward a formal model of tracing JIT compilation which allows:
(1) an easy definition of program hot paths—that is, most frequently executed program
traces; (2) to prove the correctness of a hot path extraction transform of programs; (3) to
prove the correctness of dynamic optimizations confined to hot paths, such as dynamic
type specialization along a hot path. Our approach is based on two main ideas: the use
of a standard trace semantics for modeling the behavior of programs and the use of ab-
stract interpretation for defining the notion of hot path as an abstraction of the trace
semantics and for proving the correctness of hot path extraction and optimization. We
have shown that this framework is more flexible than Guo and Palsberg [2011] model
of tracing JIT compilation, which relies on a notion of correctness based on operational
program bisimulations, and allows to overcome some limitations of [Guo and Palsberg
2011] on selection and annotation of hot paths and on the correctness of optimizations
such as dead store elimination. We expect that most optimizations employed by trac-
ing JIT compilers can be formalized and proved correct using the proof methodology of
our framework.

We see a number of interesting avenues for further work on this topic. As a signifi-
cant example of optimization implemented by a practical tracing compiler, it would be
worth to cast in our model the allocation removal optimization for Python described
by Bolz et al. [2011] in order to formally prove its correctness. Then, we think that
our framework could be adapted in order to provide a model of whole-method just-in-
time compilation, as used, e.g., by IonMonkey [Mozilla Foundation 2013], the current
JIT compilation scheme in the Firefox JavaScript engine. Finally, the main ideas of
our model could be useful to study and relate the foundational differences between
traditional static vs dynamic tracing compilation.
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C. Häubl and H. Mössenböck. 2011. Trace-based compilation for the Java HotSpot virtual machine. In Pro-
ceedings of the 9th International Conference on Principles and Practice of Programming in Java (PPPJ
2011). ACM, New York, NY, USA, 129–138. DOI:http://dx.doi.org/10.1145/2093157.2093176

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

http://dx.doi.org/10.1145/1869459.1869517
http://dx.doi.org/10.1145/1993498.1993508
http://dx.doi.org/10.1145/1929501.1929508
http://dx.doi.org/10.1145/1565824.1565827
http://dx.doi.org/10.1145/237721.237776
http://dx.doi.org/10.1016/S1571-0661(05)80168-9
http://dx.doi.org/10.1145/512950.512973
http://dx.doi.org/10.1145/567752.567778
http://dx.doi.org/10.1145/503272.503290
http://dx.doi.org/10.1145/2535838.2535866
http://www.ecma-international.org/ecma-262/6.0
https://www.facebook.com/hhvm
http://dx.doi.org/10.1145/1542476.1542528
http://blog.chromium.org/2010/12/new-crankshaft-for-v8.html
http://dx.doi.org/10.1145/1926385.1926450
http://dx.doi.org/10.1007/3-540-49727-7_12
http://dx.doi.org/10.1145/2093157.2093176


A:50 S. Dissegna et al.
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