
Original Citation:

Integrated likelihoods in parametric survival models for highly clustered censored data

Kluwer Academic Publishers
Publisher:

Published version:
DOI:

Terms of use:
Open Access

(Article begins on next page)

This article is made available under terms and conditions applicable to Open Access Guidelines, as described at
http://www.unipd.it/download/file/fid/55401 (Italian only)

Availability:
This version is available at: 11577/3172975 since: 2020-12-07T13:27:41Z

10.1007/s10985-015-9337-9

Università degli Studi di Padova

Padua Research Archive - Institutional Repository



Noname manuscript No.
(will be inserted by the editor)

Integrated likelihoods in parametric survival models
for highly-stratified censored data

Giuliana Cortese · Nicola Sartori

the date of receipt and acceptance should be inserted later

Abstract In studies that involve censored time-to-event-data, stratification is fre-
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justment due to violation of model assumptions. Often, the main interest is not
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nuisance. When inference is about a parameter of interest in presence of many
nuisance parameters, standard likelihood methods often perform very poorly and
may lead to severe bias. For stratified data, this problem is particularly evident
in models with stratum nuisance parameters when the number of strata is rel-
atively high with respect to the within-stratum size. However, it is still unclear
how the presence of censoring would a↵ect this issue. We consider stratified fail-
ure time data in a parametric framework, and propose frequentist inference based
on an integrated likelihood. Moreover, we then apply the proposed approach to a
stratified Weibull model. Simulation studies show that appropriately defined in-
tegrated likelihoods provide very accurate inferential results in all circumstances,
like for highly stratified data or heavy censoring, even in extreme settings where
standard likelihoods lead to strongly misleading results. An application, which
concerns treatments for a frequent disease in late-stage HIV-infected people, illus-
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1 Introduction

Stratified settings are frequently encountered in studies that involve time-to-event
data subject to censoring. Stratified censored data appears often in di↵erent ap-
plied contexts, ranging from biomedicine and health science, to economics, en-
gineering and reliability. Examples of stratification variables may be treatment
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regimens, geographical regions, study centers, or operating conditions, materials
and measuring methods. The needs for resorting to a stratified analysis can be of
di↵erent nature, such as presence of a stratified sampling, confounding factors, or,
alternatively, model adjustments due to violations of model assumptions. Typi-
cally, stratified models account for inter-stratum variability but the main interest
is not in studying the stratum-related parameters.

The current paper deals with parametric models for stratified censored data.
In particular, we assume a fixed e↵ects approach, as often done for instance in
the econometric literature, where the fixed e↵ects are stratum-specific parame-
ters, while the remaining parameters, common to all strata, are considered here
as parameters of interest. A commonly used alternative formulation is given by
frailty models, where the stratum-specific e↵ects are assumed as random e↵ects,
independent of the measured covariates, and sampled from a given family of dis-
tributions. This approach has the advantage of parsimony, since the number of
parameters does not grow with the number of cluster, as in fixed e↵ects models.
On the other hand, the fixed e↵ects formulation relaxes the assumptions on the
random e↵ects and is also an attractive approach when the cluster e↵ects might
be of intrinsic interest at some stage in the analysis, and for model checking.

Of course, it is well known that standard likelihood inference for a parameter of
interest could be seriously misleading in the presence of many stratum-specific nui-
sance parameters, relatively to the sample size. The main reason is that inference
is in fact based on the profile likelihood, which is simply the likelihood in which
the nuisance parameters are maximized out, for every fixed value of the parameter
of interest. The profile likelihood is not a proper likelihood. Indeed, for instance,
the corresponding score function is biased (Severini 2000, Chap. 4). While this is
not a problem in standard settings, in a stratified setting this bias may grow with
the dimension of the nuisance parameter and invalidate usual asymptotic results
(Sartori 2003).

Many alternative pseudo likelihoods have been proposed to solve this problem,
such as marginal and conditional likelihoods (see, for instance, Severini 2000, Chap.
8). The issue with these pseudo likelihoods is that their existence depends on the
model structure and, even when they exists, they may be di�cult to compute.

A widely studied alternative is to consider modified profile likelihoods, which
correct for the presence of nuisance parameters (Cox and Reid 1987; Barndor↵-
Nielsen and Cox 1994, Chap. 8). These likelihoods perform much better than pro-
file likelihoods in models with many nuisance parameters, in particular in stratified
models where nuisance parameters are associated to the strata (Sartori 2003; Bel-
lio and Sartori 2006; Bartolucci et al. 2014). However, in the presence of censored
data it is unclear how to compute the modified profile likelihood, especially under
general censoring and in regression settings; an example based on Monte Carlo
simulations is given in Pierce and Bellio (2006).

A recent alternative approach to the elimination of nuisance parameters, which
is the standard practice in Bayesian settings, is to summarize the proper likelihood
by averaging with respect to some weight function for the nuisance parameters. In
a frequentist setting, this method leads to a particular type of pseudo likelihood for
the parameter of interest, called the integrated likelihood function (Severini 2007,
2010, 2011). It has been shown that integrated likelihood functions may provide
an accurate approximation to modified profile likelihoods and, in some cases, may
have better properties, e.g., in presence of small sample sizes (Examples 2 and 4 in
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Severini (2007), Bellio and Guolo (2014)). Furthermore, integrated likelihoods have
the advantage to be always computable and available. It is therefore of interest to
investigate the properties of inference based on integrated likelihoods in stratified
models for censored data, especially under general censoring mechanisms. Some
theoretical results and empirical evidence are given in De Bin (2012) and De Bin
et al. (2014) for integrated likelihoods in models with many stratum nuisance
parameters, but with no reference to survival models, nor to censored data.

The scope of the paper is then to investigate the performance of integrated like-
lihood functions for inference in parametric survival models for stratified censored
data. We are particularly interested in settings with many strata, also in presence
of heavy censoring, in order to understand their combined e↵ect on inferential
results. The inferential procedure based on integrated likelihoods is presented in
the general setting of parametric survival models, under the assumption of non-
informative independent censoring. Furthermore, in order to show the practical
use of integrated likelihood functions, we consider an application to the stratified
Weibull model, under both the assumptions of type I and random censoring. The
extension to the regression setting is illustrated by means of a real data example
about HIV-infected people.

Section 2 introduces the notation and describes the profile likelihood for strat-
ified survival data. In Section 3 the integrated likelihood approach is presented for
stratified survival models in a general setting under the assumption of noninfor-
mative independent censoring. Then, in Section 4 we illustrate the specific results
of integrated likelihood functions for a stratified Weibull model. Monte Carlo sim-
ulations studies for both complete data and right-censored data are described in
Section 5. Section 6 shows the real-data application. Finally, general remarks and
possible extensions are discussed in Section 7.

2 Notation and profile likelihood

Let us assume a setting where data are stratified with i = 1, . . . , n strata and
j = 1, . . . , ki observations within stratum i. The total sample size is m =

Pn
i=1 ki.

Suppose also that the observations are times to a certain event, denoted by T̃ij .
Consider then a parametric model with stratified lifetimes of the form

T̃ij ⇠ pij(tij ; ,�i), (1)

for i = 1, . . . , n and j = 1, . . . , ki. In the following, for ease of notation, we assume
k1 = . . . = kn = k so that all strata have the same size. Let the model depend
on ✓ = ( ,�) where  is a parameter of interest taking values in  , and � =
(�1, . . . ,�n) is a n-dimensional nuisance parameter. For simplicity, each stratum
nuisance parameter �i is assumed to be scalar, without compromising the validity
of the results in the paper. Moreover, each �i is assumed to have the same meaning
and the same parameter space.

Let us define with T̃i = (T̃i1, . . . , T̃ik) the vector of independent within-
stratum random variables. Suppose that T̃1, . . . , T̃n are independent but not
identically distributed because of the stratified structure and the possible pres-
ence of covariates. Denote with Sij(tij ; ,�i) = Pr(T̃ij > tij) and hij(tij ; ,�i) =
pij(tij ; ,�i)/Sij(tij ; ,�i) the survival function and the hazard function of T̃ij ,
respectively.
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Regression models that consider explanatory variables xij may also be con-
sidered without additional di�culties to the theoretical aspects presented in the
paper. The application in Section 6 is an example of such regression models for
randomly-censored data.

Typically, time-to-event data are incomplete, i.e., observations are subject to
right censoring. Let Cij be the censoring times with unknown density and survival
functions gij(·) and Gij(·), respectively. For each unit (i, j) the observed data is
represented by the couple (Tij ,�ij), where Tij = min(T̃ij , Cij) and �ij = I(T̃ij 
Cij).

Let us assume independent and noninformative censoring, i.e., the censoring
mechanism does not depend on the times to event nor on their distribution. Con-
sequently, the distribution of the Cij does not depend on the parameters ( ,�).
Moreover, for easy of explanation of the proposed approach, let us consider the two
alternative censoring schemes, separately: Type I censoring and random censoring.
In the former, the censoring times cij are fixed in advance, and in addition values
c1, . . . , cn may also be assumed constant across the n strata, so that Cij = ci for
j = 1, . . . , k.

Suppose that the censoring times have the same structure as the failure times
and (Ci1, . . . , Cik), for i = 1, . . . , n, are independent vectors of within-stratum
random variables. In presence of random censoring, the joint density of (Tij ,�ij)
depends on the distribution of Cij and has the form

fij(tij , �ij ; ✓, ⌫) = pij(tij ; ✓)
�ij Sij(tij ; ✓)

1��ij Gij(tij)
�ij gij(tij)

1��ij .

For fixed censoring, the censoring probability mass function is equal to one, leading
to the simpler form fij(tij , �ij ; ✓, ⌫) = pij(tij ; ✓)

�ij Sij(tij ; ✓)
1��ij , for tij 2 (0, cij ].

Here and in the following, we assume that the Cij have either a nonparametric
distribution Gij(·), or a parametric distribution that depends on a parameter ⌫,
with survival and density functions denoted by Gij(·; ⌫) and gij(·; ⌫) respectively.
In the latter case, the observed censoring time cij is both a partially su�cient
statistic for ⌫ (su�cient statistic when ✓ is fixed) and a constant statistic for
all ✓ (it does not depend on ✓ because of noninformative censoring). Thus, the
(i, j) contribution to the likelihood function for ✓ may be based on the conditional
density

fTij ,�ij |Cij=cij (tij , �ij ; cij , ✓) = pij(tij ; ✓)
�ij Sij(tij ; ✓)

1��ij , (2)

which does not depend on the parameter ⌫ of the censoring distribution.
Therefore, if we assume also that Ci1, . . . , Cik are independent, the full like-

lihood L(✓, ⌫) is separable with respect to the parameters ✓ and ⌫, and can be
factorized as L(✓, ⌫) = L(✓) L(⌫). The factor L(✓) can then be used as a proper
likelihood for ✓.

Under both fixed and random censoring assumptions, the log likelihood logL(✓) =
`(✓) = `( ,�) can be written as

`( ,�) =
nX

i=1

`i( ,�i), (3)

where the log likelihood contribution of the ith stratum is

`i( ,�i) =
kX

j=1

[�ij log hij(tij ; ,�i) + log Sij(tij ; ,�i)]. (4)
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Note that the log likelihood is separable with respect to the nuisance parameters,
for fixed  , since each contribution of stratum i depends only on the corresponding
stratum nuisance parameter �i.

Let ✓̂ = ( ̂, �̂) be the maximum likelihood estimator of ✓ = ( ,�). Standard
likelihood inference for the parameter of interest  is based, either explicitly or
implicitly, on the profile log likelihood function, which for stratified data can be
given as the sum of n strata terms

`P ( ) =
nX

i=1

`i( , �̂i ) =
nX

i=1

`iP ( ). (5)

The elements of �̂ = (�̂1 , . . . , �̂n ), the maximum likelihood estimate of � for
fixed  , are the solutions to the independent likelihood estimating equations for
the strata `�i( ,�i) ⌘ @

@�i
`i( ,�i) = 0. The function `P ( ) is then used for

construction of point estimates and test statistics such as the likelihood ratio
statistic W = 2[`P ( ̂) � `P ( )] for inference on  , or the signed square root
R = sgn( ̂ �  )

p
W when  is scalar. For stratified data, the usual asymptotic

properties of `P ( ) are valid only when n = o(k), which is not very common in
such settings (Sartori 2003).

3 Integrated likelihood for stratified censored data

The integrated likelihood function for  (Severini 2007), has the form

L̄( ) =

Z

⇤
L( ,�)⇡(� |  )d�,

where ⇡(� |  ) is a nonnegative weight function for the nuisance parameter � 2 ⇤.
It is not required for ⇡(� |  ) to be a proper density, but its integral on the
space ⇤ should have the same finite value given each  . Severini (2007) provides
suggestions for the proper choice of ⇡(� |  ), so that the corresponding integrated
likelihood has good frequentist properties.

To illustrate the idea behind the frequentist theory of integrated likelihood,
let us consider the ideal situation where L(✓) = L( )L(�), i.e., the likelihood fac-
torises and is then separable with respect to ✓. In this case, integrated likelihoods
can be completely independent of the selection of weight function, provided the
latter does not depend on  . This is because any choice of the weight function
such that ⇡(� |  ) = ⇡(�) leads the same integrated likelihood. Approximately,
a similar situation can be obtained when parameters are orthogonal, i.e., the el-
ement i �(✓) of the Fisher information is null. Of course if separable likelihoods
are encountered in practice, inference is based only on L( ) and we do not need
to resort to pseudo likelihoods such as the integrated likelihood. In general, this
case is not frequent and often the model parameters are not orthogonal. Moreover,
the existence of an orthogonal parameterization is not guaranteed when  is not
scalar.

Integrated likelihoods are based on a new nuisance parameter that is “unre-
lated” to  , in the meaning proposed by Severini (2007) and explained below, so
that the usual frequentist inferential properties of the resulting integrated like-
lihood are guaranteed. This new nuisance parameter, defined as � ⌘ �( ,�;  ̂),
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depends on the data only through  ̂ and is obtained as an interest-respecting
reparameterization of ✓ = ( ,�). Assuming the two basic properties:
(a) � is strongly unrelated to  , i.e., its constrained estimator �̂ is approximately

constant as a function of  , i.e., �̂ = �̂+O(n�1/2)O(| �  ̂|) for small deviation

of  from  ̂,
(b) the weight function for � does not depend on  ,
the integrated likelihood with respect to ⇡(�), � 2 �, is then given by

L̄( ) =

Z

�
L̃( ,�)⇡(�)d�, (6)

where L̃( ,�) is the likelihood reparameterized in ( ,�). This integrated likelihood
is then approximately score-unbiased to order O(n�1), as opposed to the profile
likelihood which has bias of order O(1).

The two major steps to compute the integrated likelihood in (6) consist of
finding the parameter � and an opportune weight function ⇡(�) so that properties
(a) and (b) are fulfilled. It has been proved by Severini (2007) that property (a)
is verified when � ⌘ �( ,�;  ̂) is the solution to the equation

E{`�( ,�);  ̂,�} ⌘ E{`�( ,�); 0,�0} |( 0,�0)=( ̂,�)= 0, (7)

where ( ,�,  ̂) are considered as fixed values, `�(·) denotes the partial deriva-
tive of the log likelihood function with respect to �, and E{·; 0,�0} denotes
the expected value with respect to the distribution of the model random vari-
ables, with parameters equal to ( 0,�0). The solution � has been defined as the
Zero-Score-Expectation (ZSE) parameter, since it recalls the likelihood property
of score-unbiasedness.

When dealing with stratified data, under the assumptions previously made, it
is su�cient to solve n independent equations

E{`�i( ,�i);  ̂,�i} ⌘ E{`�i( ,�i); 0,�i0} |( 0,�i0)=( ̂,�i)
= 0, (8)

where `�i( ,�i) are the n independent score functions for the nuisance parameters
and the solutions �i are the elements of the ZSE parameter � = (�1, . . . ,�n).
Note that each equation and the corresponding solution �i depend only on the
parameter �i.

It has been shown that for any arbitrary weight function fulfilling property (b),
inferential results from integrated likelihoods are approximately unchanged. Thus,
any choice of ⇡(�) would be appropriate, and in practice it has been suggested to
use the uniform function ⇡(�) / 1. For a more general discussion about on the
choice of the weight function see, e.g., Severini (2010).

Finally, inference based on the integrated log likelihood ¯̀( ) = log L̄( ) can
be performed by means of, e.g., the likelihood ratio statistics W̄ = 2[¯̀( ̄)� ¯̀( )],

or, when  is scalar, its signed square root R̄ = sgn( ̄ �  )
p
W̄ (Severini 2010),

where  ̄ is the maximum integrated likelihood estimate.
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3.1 Integrated likelihood for stratified censored data

Under model (1), recall from Section 2 that the likelihood function for ( ,�) is

L( ,�) =
nY

i=1

Li( ,�i) =
nY

i=1

2

4
kY

j=1

hij(tij ; ,�i)
�ij Sij(tij ; ,�i)

3

5 ,

with Li( ,�i) = exp{`i( ,�i)}.
In order to obtain the integrated likelihood given in (6), we need the ZSE pa-

rameter �, which is found as a solution to equations (8), and the weight function
⇡(�). In our setting, it is reasonable to choose a weight function with indepen-
dent components of the form ⇡(�) = ⇡(�1) · · ·⇡(�n), with �i 2 �. The resulting
integrated likelihood is then the product of n independent integrals

L̄( ) =
nY

i=1

Z

�
L̃i( ,�i)⇡(�i)d�i,

where L̃( ,�) =
Q

i L̃
i( ,�i) and L̃i( ,�i) is the likelihood contribution of the

ith stratum reparameterized in ( ,�i).
In the following, the procedure to find the ZSE parameter � = (�1, . . . ,�n) is

presented for right-censored data, first, under type I censoring, and then assuming
random censoring. Complete data are presented as a special case when all �ij = 1.

Let us define the vector of independent variables �i = (�i1, . . . ,�ik). Assume
without loss of generality that the random censoring times are equally distributed
within each stratum, i.e., Ci1 = . . . = Cik = Ci.

(i) Type I censoring. The Ci can be considered as random variables with prob-
ability mass function Pr(Ci = ci) = 1. The fixed censoring times are known in
advance for all subjects, and are equal for all observations within stratum i, i.e.,
ci1 = . . . = cik = ci for i = 1, . . . , n. Consequently, the ZSE parameter is found as
a solution to the equations

ETi,�i|Ci=ci [`�i( ,�i);  0,�i0] |( 0,�i0)=( ̂,�i)
= 0, i = 1, . . . , n,

with the expected values taken with respect to the conditional distribution of
(Ti,�i)|Ci = ci.

Computations shown in the Appendix lead to the explicit equations

kX

j=1

Z ci

0
⌘ij(t; ,�i) pij(t; 0,�i0)dt �Hij(ci; ,�i) Sij(ci; 0,�i0)

�
= 0, (9)

with ⌘ij(t; ,�i) = @
@�i

log pij(t; ,�i), and Hij(t; ,�i) = @
@�i

logSij(t; ,�i), for
i = 1, . . . , n and j = 1, . . . , k. The parameters �i are the solutions to these equa-
tions after setting ( 0,�i0) = ( ̂,�i).

If data are complete, �ij = 1 for all subjects and the equations reduce to

kX

j=1

Z 1

0
[⌘ij,�i(t; ,�i)�Hij,�i(t; ,�i)] pij(t; 0,�i0) dt = 0. (10)
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(ii) Random censoring. The expectations involved are taken with respect to
the marginal variable (Ti,�i). Since noninformative censoring has been assumed
and the cij are su�cient statistics for the parameter of the censoring distribution,
it is convenient to write the expected value as ET,�(·) = EC [ET,�(·|C)]. We then
obtain the ZSE equations as

ETi,�i [`�i( ,�i);  0,�i0] |( 0,�i0)=( ̂,�i)

=

Z 1

0
ETi,�i|Ci=c [`�i( ,�i);  0,�i0] |( 0,�i0)=( ̂,�i)

gi(c) dc, i = 1, . . . , n,

(11)

where the conditional expectations given Ci = ci are obtained from (9). The
expected values in (11) are then set equal to zero to find �i for i = 1, . . . , n.

4 Weibull model for stratified survival data

We illustrate the inferential procedure based on integrated likelihood for right-
censored time-to-event data from a Weibull model. This model is of particular
interest also because its logarithmic transformation leads to a parametric acceler-
ated failure time model, frequently used in many areas of application.

Let T̃ij , i = 1, . . . , n and j = 1, . . . , k, be independent failure times from
Weibull distributions with probability density functions of the form

pi(tij) = �i (�i tij)
 �1 exp{�(�i tij)

 },

for tij � 0, with shape parameter  > 0 as the parameter of interest and nui-
sance scale parameters �i > 0 for i = 1, . . . , n. Assume T̃i1, . . . , T̃ik are i.i.d. with
common scale parameter �i.

Let us define the quantities �i· =
Pk

j=1 �ij , that is the number of observed
events in the ith stratum, �·· =

Pn
i=1 �i·, which gives the total number of observed

events, and ti·, =
Pk

j=1 t
 
ij . Then, the ith contribution to the likelihood function

has the form

Li( ,�i) =  �·· � �i.i (
Y

j

t
�ij( �1)
ij ) exp{�� i ti·, }. (12)

If all the failure times are observed, we have �ij = 1 for all i = 1, . . . , n and
j = 1, . . . , k, and thus it is su�cient to replace �i· = k for all i and �·· = nk in
equation (12). The maximum likelihood estimate  ̂ is obtained as the maximum
of the profile log likelihood function

`P ( ) = �··(log � 1) + ( � 1)
X

i

X

j

�ij log tij +
X

i

�i·[log �i· � log ti·, ]. (13)
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4.1 The integrated likelihood

The integrated likelihood is constructed as

L̄( ) =
Y

i

Z

�
L̃i( ,�i)⇡(�i)d�i,

where the ith stratum contribution, i = 1, . . . , n, is

L̃i( ,�i) =  �i. [�i(�i)]
 �i. exp

n
�ti., [�i(�i)]

 
o Y

j

t
�ij( �1)
ij . (14)

Each contribution L̃i( ,�i) is obtained by reparameterizing equation (12) in ( ,�i),
i.e., writing �i as a function of the ZSE parameter �i. A natural choice for the
weight function is ⇡(�i) = 1 for i = 1, . . . , n.

In order to compute the integrated likelihood, it is necessary to find the ZSE
parameter � = (�1, . . . ,�n) so that the optimal inferential properties are guar-
anteed. For the Weibull model, this is equivalent to find the parameters �i as
solutions of the n independent equations

E{`�i( ,�i);  ̂,�i} = k
 
�i

E{�ij ;  ̂,�i}� k  � �1
i E{T ij ;  ̂,�i} = 0, (15)

where here we have defined E{·;  ̂,�i} ⌘ E{·; 0,�i0)} |( 0,�i0)=( ̂,�i)
. These

equations are obtained considering that Ti1, . . . , Tik are i.i.d., and the score func-
tions for the nuisance parameter are `�i( ,�i) = (�i· /�i) �  � �1

i ti·, , for

i = 1, . . . , n, and depend on the data only through the statistic ti·, =
Pk

j=1 t
 
ij .

Solving equations (15) for �i, for i = 1, . . . , n, does not always yield solutions in
closed form. However, in order to compute the integrated likelihood, it is su�cient
to find the explicit relation between the original nuisance parameter �i and �i.
Therefore, from equation (15), simple algebra provides the nuisance parameter �i

as a function of �i, i.e.,

�i = �i(�i) =

"
E{�ij ;  ̂,�i}
E{T ij ;  ̂,�i}

# 1
 

, (16)

which allows us to specify completely the integrand (14). The main integral is a
product of n one-dimensional integrals, and each of them can be solved indepen-
dently by standard numerical methods.

The expected values in (16) are computed in di↵erent ways depending on the
censoring mechanism. In the following the results for both type I and random
censoring are reported, with details given in the Appendix.

4.2 Weibull model under type I censoring

Under fixed censoring, the expected values in (16) are taken with respect to the
conditional variables �ij |Ci = ci and Tij |Ci = ci, i.e., they are computed as
E�ij |Ci=ci{�ij ;  ̂,�i} and ETij |Ci=ci{T

 
ij ;  ̂,�i}.
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As shown in the Appendix, the final equations of the ZSE parameters are

k 
�i

⇢
1� e�(�i ci)

 ̂

[1 + (�ici)
 ]� (

�i

�i
) a(�i, ,  ̂)

�
= 0

for i = 1, . . . , n, where a(�i, ,  ̂) = �I

⇣
 / ̂ + 1, (�i ci)

 ̂
⌘

and �I(·, ·) is the

incomplete gamma function. From the above equations, the nuisance parameter
�i can be written as a function of �i as follows

�i(�i) =

"
E�ij |Ci=ci{�ij ;  ̂,�i}
ETij |Ci=ci{T

 
ij ;  ̂,�i}

# 1
 

= �i

"
1� e(�ici)

 ̂

a(�i, ,  ̂) + (�ici) e(�ici) ̂

# 1
 

.

(17)

4.3 Weibull model under random censoring

For simplicity, let us assume that Cij for i = 1, . . . , n and j = 1, . . . , k, are i.i.d
and exponentially distributed, i.e., Cij ⇠ Exp(⌫) with density g(c) = ⌫e�⌫c and
survival G(c) = e�⌫c. However, less restrictive assumptions are also possible, e.g.,
Cij ⇠ Exp(⌫i) for j = 1, . . . , k, with di↵erent parameters ⌫i across strata.

Under random censoring, the expected values in (16) are taken with respect
to the unconditional variable �ij and Tij . However, they can be computed by
integrating the conditional expectations given Cij = c with respect to c. Namely,
it can be shown that

E{�ij ;  ̂,�i, ⌫} = ECij

�
E�ij |Cij=c(�ij ; ⌫)

 
= 1�

Z 1

0
⌫ e�(�ic)

 ̂�⌫cdc,

and

E{T ij ;  ̂,�i, ⌫} = ECij

n
ETij |Cij=c(T

 
ij ; ⌫)

o
=

Z 1

0
t 

⇣
 ̂ t ̂�1� ̂i + ⌫

⌘
e�(�it)

 ̂�⌫t dt,

where the integrals involved are not an issue and can be solved by standard nu-
merical approximations. More details are given in the Appendix.

In order to compute the integrated likelihood for  , the original nuisance pa-
rameter �i can be easily written as a function of the ZSE parameter �i as follows

�i(�i) =

"
E{�ij ;  ̂,�i, ⌫̂}
E{T ij ;  ̂,�i, ⌫̂}

#1/ 

, (18)

where the maximum likelihood estimate ⌫̂ is employed as a plug-in estimate for ⌫.

5 Simulation studies

Monte Carlo simulation studies with 5000 trials were conducted to investigate the
performance of integrated likelihood methods for inference on the parameter of
interest  . Results were also compared with those obtained from the profile like-
lihood. We simulated stratified data from the Weibull model presented in Section
4 under no censoring (complete data), type I censoring and random censoring.
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Table 1 Complete data: Empirical percentage coverage probabilities of two-sided 95% con-
fidence intervals, and empricial bias of estimates of the parameter of interest  , based on
the profile (R and  ̂) and integrated (R̄ and  ̄) likelihoods. Lower and upper empirical non-
coverage probabilities on the left and right tails are given in brackets.

n k R R̄ Bias( ̂) (s.e.) Bias( ̄) (s.e.)

10 89.8 (0.5, 9.7) 94.9 (2.4, 2.7) 0.130 (0.196) 0.024 (0.184)
5 30 93.8 (1.1, 5.1) 94.8 (2.4, 2.8) 0.039 (0.101) 0.007 (0.099)

60 94.8 (1.2, 4.0) 95.6 (2.0, 2.4) 0.020 (0.068) 0.004 (0.068)

10 77.7 (0.1, 22.2) 95.3 (2.3, 2.4) 0.110 (0.095) 0.006 (0.089)
20 30 90.2 (0.4, 9.4) 95.4 (2.3, 2.2) 0.034 (0.049) 0.002 (0.048)

60 92.4 (0.6, 7.0) 95.0 (2.3, 2.6) 0.017 (0.034) 0.001 (0.034)

10 25.7 (0.0, 74.3) 95.1 (2.3, 2.6) 0.105 (0.042) 0.001 (0.040)
100 30 68.9 (0.0, 31.1) 94.8 (2.3, 2.9) 0.032 (0.022) 0.001 (0.022)

60 82.9 (0.1, 17.0) 95.5 (1.9, 2.6) 0.016 (0.015) 0.000 (0.015)

10 1.5 (0.0, 98.5) 95.3 (2.2, 2.4) 0.105 (0.027) 0.000 (0.025)
250 30 37.1 (0.0, 62.9) 95.7 (2.1, 2.1) 0.032 (0.014) 0.000 (0.014)

60 63.1 (0.02, 36.8) 94.8 (2.5, 2.7) 0.016 (0.010) 0.000 (0.010)

To achieve good inferential properties of integrated likelihoods, proper weight
functions of the ZSE nuisance parameter should not depend on the parameter
of interest. To investigate also this issue in simulation studies, we studied an in-
tegrated likelihood with constant weights ⇡(�1) = . . . ,⇡(�n) = 1, denoted as
¯̀( ), and an integrated likelihood with improper  -dependent weights, denoted
as ¯̀

D( ). For simplicity, the latter weights are chosen so that the integrated like-
lihood has a closed form. This is possible when, in order to solve the integral, we
set z = ti., �i(�i)

 and dz/d�i = @
@�i

(ti., �i(�i)
 ) = ⇡(�i; ).

The simulation studies investigated the coverage probabilities of confidence in-
tervals of level 0.95 based on the signed likelihood ratio statistic. This statistic was
computed for the profile log likelihood (R), for the integrated log likelihood with
constant weights for the ZSE parameters (R̄), and for the integrated log likelihood
with  -dependent weights (R̄D). The integrated signed likelihood ratio statistic,
and the standard signed likelihood ratio statistic, are considered asymptotically
standard normal, and the approximation to its distribution is often more accurate
for the former.

We considered n = 5, 20, 100, 250 for the number of strata (equal to the di-
mension of the nuisance parameter), and di↵erent within-stratum sample sizes,
k = 10, 30, 60. For censored data, we also assumed di↵erent censoring probabilities
Pc = 0.2, 0.4, 0.6. Table 1 shows the results from stratified complete data sampled
from Weibull distributions with common shape parameter  = 1.5 and di↵erent
scale parameter �i = 0.2 i for i = 1, . . . , n. The empirical bias of  ̄ is close to
zero for almost all scenarios, while the maximum likelihood estimates for  can
be severily biased, in particular when the number of observations within strata is
low (k = 10), and the maximum likelihood estimate bias remains constant when
n increases, as known in the literature (Sartori 2003).

Simulated data under type I censoring were sampled from Weibull distributions
with the same parameters as for the complete data. The fixed censoring times ci
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were assumed to be equal within each stratum, and were obtained as solutions
when setting the survival Gi(ci) equal to the desired censoring probability. Re-
sults from Tables 2 and 3 show a very good performance of integrated likelihood
for all di↵erent k and n and for all censoring probabilities. The empirical coverage
probabilities for R̄ are very close to the nominal values, in contrast to the em-
pirical coverages for R, which perform very poorly. In particular, the latter get
worse when n increases, for decreasing k, and for lower censoring probabilities,
producing in some cases critical inferential results which are substantially wrong
(e.g., for Pc = 0.2, 0.4, n = 250 and k = 10). For the profile likelihood, empirical
errors on the tails of the distribution are very asymmetric and the asymmetry
worsens when n increases and k decreases. In contrast, the integrated likelihood
provides very symmetric empirical errors in all scenarios. The empirical bias for
 ̄ is systematically lower than the bias for  ̂ and reaches very low values when
k and n increase (e.g., the bias < 0.001 for n = 100, 250 and k = 30, 60). We
note a substantial reduction of the bias for  ̄ with respect to  ̂ for small sam-
ples, independently of the value of n. Empirical standard errors are approximately
equal. Tables 2 and 3 report also numerical results from the integrated likelihood
with improper  -dependent weights, as defined above. This counter-example shows
very poor performance of the integrated likelihood if the weight function on the
nuisance parameter depends on  , since the property of orthogonality is violated.

Stratified data under random censoring were simulated again from Weibull dis-
tributions with shape parameter  = 1.5. The scale parameters �i for i = 1, . . . , n
were sampled from a Normal distribution with mean 3 and variance 0.52. Then,
it was assumed that Cij ⇠ Exp(⌫); given (�1, . . . ,�n) and a certain probability of
censoring Pc, the parameter ⌫ was found as a solution to the equation

1
n

nX

i=1

Pr(T̃ij > Cij) =
1
n

nX

i=1

E{�ij ; ,�i, ⌫} = Pc.

Under random censoring, simulated results based on the integrated likelihood are
even better than under type I censoring, as shown in Tables 4 and 5. Empirical
coverages for R̄ are very near to the nominal levels, whereas empirical coverages for
R are substantially wrong for most cases. They perform worse when n increases,
k decreases and for lower censoring probabilities, and they fail completely for
n = 100, 250 and k = 10, 30. Numerical results about the estimates for  are very
similar to those under type I censoring.

Finally, we compare the estimated standard errors for  ̂ and  ̄ given in Tables 3
and 5, respectively. Standard errors obtained for the maximum likelihood estimator
are systematically biased downward, especially for lower k, and high censoring
probability (0.6), independently of n. This may be the reason why we have the
counterintuitive fact that empirical coverages based on profile likelihood improves
when the censoring probability increases. Standard errors obtained from integrated
likelihood estimation are instead always very accurate.

The robustness of the proposed inferential approach to misspecification of the
censoring distribution was investigated with additional simulation studies. Cen-
soring times were generated under a uniform distribution, whereas an incorrect
exponential model was assumed. We found that in general the results based on
integrated likelihoods are very robust to the assumed misspecification of the cen-
soring distribution (see Tables 1 and 2 in Supplementary material).
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Table 2 Type I-censored data: Empirical percentage coverage probabilities of two-sided 95%
confidence intervals based on the profile (R) and integrated log likelihoods (R̄: uniform weights;
R̄D:  -dependent weights), for di↵erent censoring probabilities. Lower and upper empirical
non-coverage probabilities are given in brackets.

Pc n k R R̄ R̄D

10 92.6 (1.2, 6.2) 95.0 (2.4, 2.6) 93.2 (5.9, 0.9)
5 30 93.9 (2.4, 3.7) 94.6 (3.4, 2.0) 92.9 (6.0, 1.1)

60 94.2 (1.8, 4.0) 94.5 (2.5, 3.0) 94.7 (3.4, 2.0)
10 90.1 (0.3, 9.6) 95.1 (2.9, 2.0) 87.6 (11.9, 0.5)

20 30 93.2 (1.1, 5.8) 95.3 (2.2, 2.4) 93.0 (6.2, 0.7)
0.2 60 94.6 (1.6, 3.8) 94.5 (2.9, 2.6) 93.5 (5.2, 1.2)

10 69.2 (0.0, 30.8) 93.9 (3.9, 2.2) 57.6 (42.4, 0.0)
100 30 87.6 (0.2, 12.3) 95.0 (2.5, 2.5) 82.0 (17.9, 0.1)

60 91.6 (0.7, 7.7) 94.8 (2.8, 2.5) 88.5 (11.1, 0.4)
10 37.3 (0.0, 62.6) 94.5 (3.9, 1.6) 20.9 (79.1, 0.0)

250 30 76.3 (0.0, 23.6) 94.8 (2.9, 2.4) 61.3 (38.7, 0.0)
60 86.8 (0.2, 13.0) 94.9 (2.5, 2.6) 77.7 (22.1, 0.1)

10 93.7 (1.4, 5.0) 95.3 (2.4, 2.3) 93.8 (5.5, 0.7)
5 30 94.5 (1.7, 3.8) 94.8 (2.4, 2.7) 94.5 (4.3, 1.2)

60 95.4 (1.9, 2.8) 95.5 (2.3, 2.2) 95.3 (3.3, 1.4)
10 91.7 (0.9, 7.4) 94.8 (2.6, 2.6) 87.0 (12.7, 0.3)

20 30 93.6 (1.4, 5.0) 94.6 (2.5, 2.9) 92.1 (7.1, 0.8)
0.4 60 94.6 (1.6, 3.7) 94.5 (2.7, 2.8) 93.3 (5.4, 1.2)

10 83.1 (0.2, 16.8) 94.5 (3.8, 1.6) 51.4 (48.6, 0.0)
100 30 91.0 (0.7, 8.3) 94.3 (2.8, 2.9) 79.8 (20.1, 0.1)

60 92.8 (1, 6.2) 94.3 (2.8, 2.9) 87.5 (12.2, 0.3)
10 64.9 (0.1, 35.0) 94.2 (4.4, 1.3) 14.9 (85.1, 0.0)

250 30 86.3 (0.3, 13.4) 95.1 (2.6, 2.3) 56.0 (44.0, 0.0)
60 91.0 (0.4, 8.6) 95.0 (2.4, 2.6) 76.3 (23.7, 0.0)

10 94.2 (1.5, 4.3) 94.8 (2.3, 2.9) 95.6 (3.4, 1.1)
5 30 94.5 (2.1, 3.4) 94.7 (2.7, 2.6) 94.7 (3.7, 1.6)

60 95.0 (2.0, 3.0) 94.9 (2.3, 2.7) 95.1 (3.2, 1.7)
10 93.3 (0.9, 5.8) 95.1 (2.3, 2.6) 92.7 (7, 0.3)

20 30 94.6 (1.6, 3.8) 94.5 (2.7, 2.8) 93.8 (5.2, 1.0)
0.6 60 95.0 (1.8, 3.2) 95.2 (2.3, 2.5) 94.6 (4.3, 1.1)

10 89.8 (0.4, 9.8) 94.5 (3.8, 1.7) 74.1 (25.9, 0.0)
100 30 93.1 (0.8, 6.1) 95.2 (2.5, 2.4) 86.8 (13.1, 0.2)

60 93.9 (1.4, 4.7) 94.8 (2.7, 2.5) 90.8 (8.9, 0.3)
10 79.6 (0.2, 20.3) 94.3 (4.4, 1.3) 43.7 (56.3, 0.0)

250 30 90.8 (0.7, 8.5) 94.7 (3.1, 2.1) 74.1 (25.9, 0.0)
60 92.7 (1.0, 6.3) 94.8 (2.9, 2.3) 83.9 (15.9, 0.1)

6 The accelerated failure time regression model for real data from

HIV-infected patients

In this section we provide an example of how the integrated likelihood method
can be applied to regression models for stratified survival data. Let us consider
data from a clinical trial comparing two treatments (group 2 vs group 1) for
Mycobacterium avium complex, which is a frequent disease in late-stage HIV-
infected people. The data were illustrated in Carlin (1999) for fitting a stratified
parametric Weibull model, and part of the trial was reported in Cohn et al. (1999).
A total of 69 patients coming from 11 di↵erent clinical centers were enrolled in
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Table 3 Type I-censored data: Estimates of the parameter of interest  obtained from profile
and integrated likelihoods, for di↵erent censoring probabilities. Bias, simulation-based empiri-
cal standard errors (s.e.), and ratios between the average of estimated standard errors (e.s.e.)
and s.e. are provided.

 ̂  ̄  ̄D
Pc n k Bias s.e. e.s.e./s.e. Bias s.e. e.s.e./s.e. Bias s.e. e.s.e./s.e.

10 0.095 0.226 0.938 0.020 0.216 0.992 -0.057 0.208 0.990
5 30 0.016 0.125 0.947 -0.005 0.123 0.969 -0.032 0.121 0.966

60 0.016 0.085 0.986 0.005 0.084 0.987 -0.008 0.084 0.996
10 0.074 0.109 0.957 0.001 0.105 1.008 -0.076 0.101 1.010

20 30 0.023 0.060 0.984 0.002 0.059 0.988 -0.026 0.059 1.003
0.2 60 0.011 0.042 0.997 -0.000 0.042 1.002 -0.014 0.041 1.007

10 0.069 0.050 0.929 -0.005 0.048 0.980 -0.081 0.046 0.980
100 30 0.021 0.027 0.984 0.000 0.027 1.007 -0.027 0.026 1.003

60 0.010 0.019 0.994 -0.000 0.019 0.997 -0.014 0.019 1.004
10 0.068 0.031 0.943 -0.005 0.030 0.991 -0.081 0.029 0.996

250 30 0.021 0.017 0.989 -0.001 0.017 1.014 -0.028 0.017 1.007
60 0.010 0.012 0.994 -0.000 0.012 1.001 -0.014 0.012 1.004

10 0.092 0.273 0.897 0.026 0.263 0.983 -0.071 0.240 1.020
5 30 0.028 0.147 0.941 0.010 0.146 0.984 -0.025 0.141 1.011

60 0.014 0.101 0.963 0.004 0.100 1.005 -0.013 0.099 1.020
10 0.068 0.134 0.900 0.003 0.129 0.984 -0.092 0.118 1.019

20 30 0.020 0.074 0.931 0.002 0.073 0.978 -0.033 0.071 0.999
0.4 60 0.011 0.052 0.940 0.002 0.052 0.982 -0.016 0.051 0.995

10 0.055 0.059 0.912 -0.009 0.057 0.995 -0.104 0.052 1.030
100 30 0.018 0.033 0.933 0.000 0.033 0.989 -0.035 0.032 1.000

60 0.009 0.023 0.949 -0.000 0.023 0.991 -0.018 0.022 1.004
10 0.056 0.037 0.911 -0.009 0.036 0.990 -0.103 0.033 1.029

250 30 0.017 0.021 0.942 -0.001 0.020 0.998 -0.036 0.020 1.010
60 0.009 0.014 0.975 0.000 0.014 1.026 -0.018 0.014 1.032

10 0.116 0.370 0.723 0.052 0.360 0.929 -0.035 0.301 1.012
5 30 0.038 0.194 0.765 0.021 0.192 0.968 -0.013 0.180 1.001

60 0.018 0.131 0.796 0.010 0.130 0.995 -0.008 0.126 1.020
10 0.066 0.167 0.779 0.004 0.162 0.993 -0.076 0.137 1.074

20 30 0.019 0.093 0.786 0.002 0.092 0.990 -0.031 0.087 1.023
0.6 60 0.009 0.064 0.805 0.001 0.064 1.013 -0.017 0.062 1.029

10 0.051 0.073 0.791 -0.011 0.071 1.006 -0.088 0.060 1.088
100 30 0.016 0.041 0.789 -0.001 0.041 0.996 -0.034 0.039 1.028

60 0.008 0.029 0.791 -0.000 0.029 0.995 -0.018 0.028 1.012
10 0.051 0.047 0.779 -0.010 0.045 0.989 -0.088 0.038 1.070

250 30 0.016 0.026 0.800 -0.001 0.026 1.009 -0.034 0.024 1.041
60 0.008 0.018 0.795 -0.000 0.018 1.001 -0.018 0.018 1.016

the trial, and between them, 5 patients died in the treatment group 1 and 13 in
the group 2. The endpoint of interest was time to death. The interesting aspect of
these data is that many centers have enrolled a relatively small number of patients.
Moreover, a high proportion of randomly censored patients was observed (74%),
no events were observed in 3 centers and few deaths (1 to 4) were observed in each
of the remaining centers.

For such data, the censoring mechanism is assumed to be random, the di↵erent
clinical centers represent the strata and the type of treatment is the covariate
of interest, xij . Consider a regression model with hazard function hi(t;xij) =
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Table 4 Randomly-censored data: Empirical percentage coverage probabilities of two-sided
95% confidence intervals based on the profile (R) and integrated (R̄) likelihoods, for di↵erent
censoring probabilities. Lower and upper empirical non-coverage probabilities are given in
brackets.

Pc n k R R̄

10 90.1 (0.7, 9.2) 94.6 (2.5, 2.9)
5 30 93.9 (0.8, 5.3) 95.5 (2.0, 2.5)

60 93.7 (1.6, 4.7) 94.5 (2.7, 2.8)
10 78.1 (0.1, 21.7) 94.9 (2.6, 2.5)

20 30 90.0 (0.6, 9.4) 95.1 (2.6, 2.3)
0.2 60 92.2 (0.9, 6.9) 95.1 (2.4, 2.5)

10 27.5 (0.0, 72.5) 95.3 (2.4, 2.4)
100 30 71.1 (0.0, 28.9) 95.0 (2.7, 2.3)

60 83.6 (0.1, 16.3) 94.7 (2.6, 2.7)
10 2.4 (0.0, 97.6) 95.0 (2.8, 2.2)

250 30 40.1 (0.0, 59.9) 94.8 (3.0, 2.3)
60 65.5 (0.0, 34.5) 95.2 (2.6, 2.2)

10 89.7 (0.5, 9.7) 94.9 (2.0, 3.0)
5 30 93.1 (1.2, 5.7) 95.1 (2.3, 2.6)

60 95.1 (1.2, 3.7) 95.6 (2.1, 2.2)
10 79.9 (0.1, 20.0) 94.9 (2.4, 2.7)

20 30 89.4 (0.5, 10.0) 95.1 (2.4, 2.6)
0.4 60 92.9 (0.9, 6.3) 94.8 (2.7, 2.5)

10 32.6 (0.0, 67.4) 95.6 (2.2, 2.3)
100 30 72.4 (0.0, 27.6) 94.9 (2.5, 2.6)

60 83.9 (0.1, 16.0) 94.9 (2.6, 2.4)
10 3.6 (0.0, 96.4) 95.1 (2.7, 2.2)

250 30 42.5 (0.0, 57.5) 95.2 (2.4, 2.4)
60 67.6 (0.0, 32.4) 95.0 (2.3, 2.6)

10 89.7 (0.9, 9.5) 94.9 (2.2, 2.9)
5 30 93.3 (1.1, 5.6) 95.0 (2.0, 3.0)

60 94.2 (1.4, 4.4) 94.9 (2.4, 2.8)
10 81.3 (0.3, 18.5) 94.5 (2.4, 3.1)

20 30 91.1 (0.8, 8.1) 95.0 (2.7, 2.3)
0.6 60 93.2 (1.0, 5.8) 95.2 (2.6, 2.2)

10 40.2 (0.0, 59.8) 94.6 (2.9, 2.5)
100 30 75.6 (0.0, 24.4) 95.1 (2.4, 2.5)

60 86.0 (0.2, 13.8) 95.6 (1.9, 2.5)
10 7.7 (0.0, 92.3) 94.9 (3.0, 2.1)

250 30 48.5 (0.0, 51.5) 94.5 (2.4, 3.0)
60 71.7 (0.0, 28.3) 95.0 (2.2, 2.8)

h0(t) ⇠i e�xij , where h0(t) is the common baseline hazard, ⇠i for i = 1, . . . , n
are the stratum-specific e↵ects and xij is the covariate of the jth individual in
stratum i. This is a proportional hazards model with stratum-specific baseline
hazards h0i(t) = h0(t)⇠i. Let the survival times to death be independent variables
such that T̃ij ⇠ Weibull(⌘ij , 1). Then, in order to have a Weibull regression
model, the ith stratum’s scale parameter is set to be ⌘ij = e�(↵i+ 2xij). If we use
the parameterization ⇠i = e� 1↵i and � = � 1 2, the hazard for center i can be
written as

hi(t;xij) = h0(t) ⇠i e
�xij =  1t

 1�1 e� 1(↵i+ 2xij),
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Table 5 Randomly-censored data: Estimates of the parameter of interest  obtained from
profile and integrated likelihoods, for di↵erent censoring probabilities. Bias, simulation-based
empirical standard errors (s.e.), and ratios between the average of estimated standard errors
(e.s.e.) and the s.e. are provided.

 ̂  ̄

Pc n k Bias s.e. e.s.e./s.e. Bias s.e. e.s.e./s.e.

10 0.145 0.223 0.896 0.029 0.205 0.980
5 30 0.044 0.111 0.959 0.009 0.108 1.000

60 0.022 0.078 0.955 0.005 0.077 0.984
10 0.118 0.108 0.907 0.004 0.099 0.992

20 30 0.035 0.055 0.961 0.001 0.054 1.002
0.2 60 0.018 0.039 0.959 0.001 0.038 0.988

10 0.114 0.047 0.919 0.001 0.044 1.005
100 30 0.034 0.025 0.965 -0.000 0.024 1.006

60 0.017 0.017 0.974 0.000 0.017 1.004
10 0.112 0.030 0.905 -0.001 0.028 0.990

250 30 0.034 0.016 0.954 -0.000 0.015 0.995
60 0.016 0.011 0.975 -0.000 0.011 1.005

10 0.164 0.269 0.864 0.035 0.241 0.956
5 30 0.052 0.130 0.950 0.014 0.126 0.981

60 0.024 0.085 1.004 0.005 0.084 1.021
10 0.132 0.126 0.901 0.007 0.113 0.993

20 30 0.042 0.064 0.958 0.004 0.062 0.991
0.4 60 0.019 0.044 0.971 0.001 0.043 0.988

10 0.124 0.055 0.915 0.001 0.050 1.011
100 30 0.038 0.028 0.963 0.000 0.027 0.996

60 0.018 0.019 0.987 0.000 0.019 1.004
10 0.123 0.035 0.913 -0.001 0.031 1.007

250 30 0.038 0.018 0.971 0.000 0.017 1.004
60 0.018 0.012 0.991 0.000 0.012 1.009

10 0.203 0.339 0.816 0.053 0.294 0.963
5 30 0.059 0.159 0.910 0.016 0.152 0.978

60 0.030 0.106 0.942 0.010 0.104 0.992
10 0.151 0.159 0.838 0.011 0.139 0.982

20 30 0.044 0.077 0.931 0.003 0.073 1.001
0.6 60 0.021 0.052 0.955 0.001 0.051 1.006

10 0.139 0.069 0.853 0.001 0.061 0.998
100 30 0.042 0.034 0.942 0.000 0.032 1.012

60 0.021 0.023 0.967 0.001 0.023 1.017
10 0.135 0.043 0.864 -0.002 0.038 1.010

250 30 0.042 0.022 0.916 0.001 0.021 0.985
60 0.020 0.015 0.948 0.000 0.014 0.997

with baseline hazard h0(t) =  1t
 1�1. Our aim is to make inference for the pa-

rameter of interest  = ( 1, 2), i.e. for the treatment e↵ect �, while treating the
vector of stratum-specific e↵ects (↵1, . . . ,↵n) as nuisance parameter.

For ease of interpretation, the Weibull regression model can also be transformed
to an accelerated failure time model, by considering the log-transformation Uij =
log T̃ij . In this case we have the linear model Uij = ↵i +  2xij + � ✏ij , where ✏ij
has an extreme value distribution and � = 1/ 1. This model leads to proportional
cumulative hazards on the time scale, i.e., H1(t) = H2(t/c) for any constant c.
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Standard profile likelihood methods lead to the maximum likelihood estimates
 ̂1 = 1.149 (s.e. 0.219) and  ̂2 = �1.012 (s.e. 0.484). For the invariance property,

we obtain that the relative risk is estimated to be e�̂ = 3.198, indicating a higher
mortality rate for patients under treatment 2. The likelihood ratio statistic was
used for testing the null hypothesis  2 = 0 and the treatment e↵ect was found to be
significant at the 0.05 level (W ( 2 = 0) = 4.896, p = 0.027). The likelihood ratio
test for  1 = 1 provided a nonsignificant result and this suggests that a simpler
exponential regression model could be assumed for fitting our HIV data. When
we assumed  1 = 1, testing for the null e↵ect of  2 gave very similar conclusions.
The likelihood ratio-based confidence intervals for  1 and  2 are respectively,
(0.742, 1.669), and (�2.310,�0.111).

If inference is based on integrated likelihood, the ZSE for the Weibull regression
model can be computed directly from Section 4 , under the assumption of random
censoring, by using the parameterization

⌘ij = e�(↵i+ 2xij) . (19)

The scale parameters, as well the ZSE, depend also on the index j because of the
presence of covariates. Then ⌘ij and �ij play here the same role as, respectively,
the parameters �i and �i in Section 4. Using the invariance property of integrated
likelihoods with respect to reparameterizations of the ZSE parameter, the new

ZSE parameter, !i, is obtained from the relation �ij = e�(!i+ ̂2xij). Details are
given in the Appendix.

The integrated likelihood is then

L̄( 1, 2) =
nY

i=1

Z +1

�1
L̃i( 1, 2,!i)⇡(!i)d!i,

where the integrand has the form

L̃i( 1, 2,!i) =  �i·1 Ai exp{� 1 �i· ↵i(!i)�  1  2 Xi �Bi e
� 1 ↵i(!i)}

with

Ai =
Y

j

t( 1�1)�i·
ij , Bi =

X

j

t 1
ij e

� 1 2xij , Xi =
X

j

xij�ij ,

and with ↵i(!i) given in (29) in the Appendix.
The integrated likelihood, obtained using ⇡(!i) = 1, leads to the estimates

 ̄1 = 1.037 (s.e. 0.207) and  ̄2 = �1.017 (s.e. 0.536). Using the property of pa-
rameterization invariance of integrated likelihoods, the relative risk was estimated
to be e�̄ = 2.869. The hazard ratio and the estimated  1 from the integrated
likelihood are lower than those from the profile likelihood. Tests and confidence
intervals can be computed using a �2

1 approximation for the distribution of the in-
tegrated likelihood ratio statistics, e.g. for  1, W ( 1) = 2[¯̀( ̄1,  ̄2)� ¯̀( 1,  ̄2, 1)],
where  ̄2, 1 is the constrained estimate of  2 for fixed  1 obtained from ¯̀( 1, 2).
The test for the null hypothesis  2 = 0 showed that the significance of the treat-
ment e↵ect is borderline at the 0.05 level (W ( 2 = 0) = 3.983, p = 0.046). Thus,
unlike the test based on profile likelihood, we conclude here that there is weaker
evidence against the null additional e↵ect of treatment 2 with respect to treatment
1. The result of testing the null hypothesis  1 = 1 was the same as for the profile
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Fig. 1 Relative log likelihood for  1 and  2 and corresponding confidence intervals (dotted
lines), computed from the profile likelihood (solid lines) and the integrated likelihood (dashed
lines).

likelihood. Confidence intervals based on the integrated likelihood ratio were equal
to (0.649, 1.503) for  1, and to (�2.450,�0.018) for  2.

The di↵erent results obtained under the two inferential methods are illustrated
in Figure 1, where the relative log likelihoods, i.e. �1

2W ( k) and �1
2W ( k), k =

1, 2, are plotted. Point and interval estimates for the shape parameter  1 under
the integrated likelihood have lower values than those under the profile likelihood,
however confidence intervals have very similar length. The estimate for  2 is almost
the same under the two inferential methods, whereas the confidence interval for
 2 computed with the integrated likelihood is slightly wider, as also shown in
the right panel of Figure 1. Note that the contribution to the profile likelihood is
null for the strata containing only censored observations (�i· = 0) with possible
consequences on the inferential results, while this is not necessarily true for the
integrated likelihood. These conflicting data results were also widely discussed in
the literature (Cohn et al. 1999). It is reasonable to think that this problem may be
due to lack of accuracy of the inferential approach in presence of stratified data,
rather than the results of choosing between unstratified and stratified analysis
(Carlin and Hodges 1999).

7 Discussion

Standard likelihood inference may be seriously biased when dealing with stratified
data (McCullagh and Tibshirani 1990; Sartori 2003), especially if the number of
strata is large. This problem happens because the profile score function does not
provide an unbiased estimating equation, with bias generally increasing with the
number of strata n, i.e. number of nuisance parameters. For inferential purposes
integrated likelihoods are an appealing alternative since they have a score function
with reduced bias and the same asymptotic properties as the modified profile
likelihood (De Bin 2012; De Bin et al. 2014). The latter pseudo likelihood has been
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studied for censored survival data only to a limited extent (Pierce and Bellio 2006),
and it is not straightforward to compute in practice due to the complexity of the
quantities involved. In contrast, integrated likelihoods have not been investigated
for censored survival data. The results here show their benefits, especially for
highly stratified survival data.

The simulation studies confirm the superiority of the integrated likelihood over
the profile likelihood for stratified right-censored data when a Weibull model and
noninformative independent censoring are assumed. The numerical results show
that, as expected, inference based on profile likelihood is very inaccurate and
provides serious under-coverages of confidence intervals, which lead to extremely
high empirical type I errors. These problems are particularly emphasized when the
number of strata (n) increases with respect to the within-stratum size (k). On the
contrary, the integrated likelihood shows very good performance both in terms of
accuracy of the corresponding estimates, and coverage probabilities of confidence
intervals in all scenarios, and the results do not seem to be a↵ected by increasing
proportions of censoring in the data.

In this work we used the likelihood ratio statistic for constructing confidence
intervals. This was motivated by their invariance properties. However, in the lit-
erature it has been shown that score, Wald and likelihood ratio statistics are still
asymptotically equivalent, even in the extreme scenario provided by stratified data.
Moreover, this equivalence is valid independently of the chosen likelihood method
(profile, modified profile or integrated likelihood) (Sartori 2003; De Bin 2012; De
Bin et al. 2014). This fact suggests that also for stratified survival data, the Wald
and score statistics are expected to give improved accuracy in inference when they
are based on a suitable integrated likelihood.

The integrated likelihood is, as the profile likelihood, invariant with respect to
interest-preserving reparameterizations. Its computation relies often on numerical
integration and therefore careful implementation is needed in order to obtain ef-
ficient code. Our implementation in the R framework (R Core Team 2013) made
use of C subroutines to speed up computation in case of many strata. The code is
available from the first author upon request.

Finally, it should be noted that with random censoring the integrated likeli-
hood relies on the censoring distribution, which is needed for computing the ZSE
parameter, while the profile likelihood is independent of such distribution. Even
though we found that the integrated likelihood is fairly robust to misspecification
of the censoring distribution, the use of a completely nonparametric censoring dis-
tribution in the construction of the integrated likelihood is certainly of interest
and will be the subject of future research. Also applications of the integrated like-
lihood approach to more general settings, such as left-truncated data, informative
censoring, and semiparametric models, could be worth considering.
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A Appendix

A.1 Integrated likelihood in parametric stratified models: Type I censoring

In the following, it is explained how to find the ZSE parameter � = (�1, . . . ,�n) as a solution
to the n independent equations

ETi,�i|Ci=ci

⇥
`�i

( ,�i);  0,�i0
⇤
|( 0,�i0)=( ̂,�i)

= 0, i = 1, . . . , n,

where the expected values are taken with respect to the conditional variables (Ti,�i)|Ci = ci.
Let us consider the partial derivatives

`�i
( ,�i) =

X

j

`
ij
�i

( ,�i) =
X

j

[�ij ⌘ij(tij ; ,�i)� (1� �ij) Hij(t; ,�i)] .

where `ij is the jth likelihood contribution of the ith stratum, ⌘ij(t; ,�i) =
@
@�i

log pij(t; ,�i),

and Hij(t; ,�i) = @
@�i

logSij(t; ,�i), for i = 1, . . . , n and j = 1, . . . , k. Since the pairs

(Ti1,�i1), . . . , (Tik,�ik) are assumed to be independent, the equations can be evaluated as
follows:

ETi,�i|Ci=ci

h
`
i
�i

( ,�i);  0,�i0

i
=

kX

j=1

ETi,�i|Ci=ci

h
`
ij
�i

( ,�i);  0,�i0

i
=

kX

j=1

1X

�ij=0

Z 1

0
`
ij
�i

( ,�i) fTij ,�ij |Ci=ci (t, �ij ; 0,�i0) dt

�
,

(20)

where the conditional densities fTij ,�ij |Ci=ci (t) given in (2) are employed. For �ij = 1, they

are equal to pij(t) in the interval t 2 [0, cij) and 0 elsewhere, while for �ij = 0 they reduce to
Sij(t) in the point t = cij and 0 elsewhere. Therefore, computing the equation (20) leads to
the final explicit equations

kX

j=1

Z ci

0
⌘ij(t; ,�i) pij(t; 0,�i0)dt �Hij(ci; ,�i) Sij(ci; 0,�i0)

�
= 0. (21)

The parameters �i are the solutions to these equations after setting ( 0,�i0) = ( ̂,�i).

A.2 Integrated likelihood in the Weibull model: Type I censoring

For the Weibull model, the ZSE is obtained from equation (15), and the expected values therein
are computed as conditional expectations given Ci = ci, with respect to the density function

fTij |Ci=ci (tij ; ,�i) = pi(tij ; ,�i) I[0,ci)(tij) + Si(ci; ,�i) I{ci}(tij). (22)

This function is equivalent to the density of the observed time Tij = min(T̃ij , ci). Therefore,

E�ij |Ci=ci{�ij ;  ̂,�i} = Pr(T̃ij < ci; 0,�i0) |( 0,�i0)=( ̂,�i)

= 1� Si(ci;  ̂,�i) = 1� e
(�ici)

 ̂
,

(23)
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(24)
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where �I(s, x) =
R x
0 t

s�1
e
�t

dt is the incomplete gamma function.
The final equations of the ZSE are given as

k 

�i

⇢
1� e

�(�i ci)
 ̂
[1 + (�ici)

 ]� (
�i

�i
) a(�i, ,  ̂)

�
= 0

for i = 1, . . . , n, where a(�i, ,  ̂) = �I

⇣
 / ̂ + 1, (�i ci) ̂

⌘
. If we allow censoring times to be

di↵erent within each stratum, the ZSE equation become

 

�i

X

j

⇢
1� e

�(�icij)
 ̂
[1 + (�i cij)

 ]� (
�i

�i
) a(�i, ,  ̂)

�
= 0.

Solving these equations for �i, for i = 1, . . . , n, does not yield solutions in closed form. However,
in order to compute the integrated likelihood, it is su�cient to find the nuisance parameter �i
as a function of �i from the above equations, as follows

�i(�i) =

2

4
E�ij |Ci=ci{�ij ;  ̂,�i}

ETij |Ci=ci{T
 
ij ;  ̂,�i}

3
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1
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4 1� e
(�ici)
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a(�i, ,  ̂) + (�ici) e(�ici) ̂

3

5

1
 

. (25)

Formulae for complete data may be obtained as a special case when cij ! 1; then we

have E{�ij ;  ̂,�i} = 1 and E{T ij ;  ̂,�i} = (1/� i ) � ( / ̂ + 1). The equations used to find
the ZSE parameter simplify to

k 

�i


1� (

�i

�i
) � (

 

 ̂

+ 1)

�
= 0,

which lead to the solutions �i = �i � ( / ̂ + 1), i = 1, . . . , n.

A.3 Integrated likelihood in the Weibull model: Random censoring

First, using the conditional expectation in (23) it can be shown that

E{�ij ;  ̂,�i, ⌫} = ECij

n
E�ij |Cij

(�ij); ⌫
o

= 1�
Z 1

0
Si(c;  ̂,�i) g(c; ⌫)dc

= 1�
Z 1

0
⌫ e

�(�ic)
 ̂�⌫c

dc,

and using the conditional expectation in (24) it can be shown that

E{T ij ;  ̂,�i, ⌫} = ECij

n
ETij |Cij

(T ij ); ⌫
o
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Z 1

0
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fTij (t;  ̂,�i, ⌫) dt

=

Z 1

0
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 ̂ t

 ̂�1
�
 ̂
i + ⌫

⌘
e
�(�it)

 ̂�⌫t
dt,

where fTij (t; ,�i, ⌫) = pi(t; ,�i) Gi(t; ⌫) + gi(t; ⌫) Si(t; ,�i). Therefore, it is su�cient to
substitute these expected values within equation (15) by considering the maximum likelihood
estimate ⌫̂ as a plug-in estimate for ⌫. It leads to the final form of the zero-score equations

k
 

�i
E{�ij ;  ̂,�i, ⌫̂}� k  �

 �1
i E{T ij ;  ̂,�i, ⌫̂} = 0. (26)

Solutions for � are not in closed form. However, in order to compute the integrated likelihood
function for  , the original nuisance parameter �i can be easily written as a function of the
zero-score �i as follows

�i(�i) =

"
E{�ij ;  ̂,�i, ⌫̂}
E{T ij ;  ̂,�i, ⌫̂}

#1/ 

. (27)
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A.4 Zero-score expectation parameter for the accelerated failure time regression
model

In this setting, the strata have di↵erent sizes and the parameterization depends also on co-
variates. Therefore from equations (15) and (26), the ZSE equations for finding the �ij reduce
to

E{`⌘ij ( , ⌘ij);  ̂,�ij , ⌫̂} =
 1

⌘ij
E{�ij ;  ̂,�ij , ⌫̂}�  1⌘

 1�1
ij E{T ij ;  ̂,�ij , ⌫̂}. (28)

The following relation holds

E{`↵i ( ,↵i);  ̂,!i, ⌫̂} =
X

j

(
@⌘ij

@↵i
)E{`i⌘ij ( , ⌘ij);  ̂,�ij , ⌫̂} = �

X

j

⌘ij E{`i⌘ij ( , ⌘ij);  ̂,�ij , ⌫̂},

where E{`i⌘ij ( , ⌘ij);  ̂,�ij , ⌫̂} is given in (28).

Consequently, substituting the new parameterization for ⌘ij and �ij (equation (19)) in the
latter expression and setting it equal to zero, yields

↵i(!i) = �
1

 1
log

"P
j E{�ij ;xij ,  ̂,!i, ⌫̂}

P
j E{T ij ;xij ,  ̂,!i, ⌫̂}

#
. (29)


