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Abstract. In this paper we discuss the meaning of the Schnakenberg formula for

entropy production in non-equilibrium systems. To this end we consider a non-

equilibrium system as part of a larger isolated system which includes the environment.

We prove that the Schnakenberg formula provides only a lower bound to the actual

entropy production in the environment. This is also demonstrated in the simplest

example of a three-state clock model.

1. Introduction

With the development of stochastic thermodynamics [1–4] on the basis of nonequilibrium

statistical physics [5–7] the study of the thermodynamic implications of coarse-graining

attracted increasing attention [8–18]. In this field Markov jump processes are used

to model a large variety of physical systems. Such models possess a discrete set of

possible configurations (microstates) s ∈ Ωsys and evolve dynamically by spontaneous

uncorrelated jumps between the configurations according to certain transition rates

ws→s′ . Whenever such a jump occurs the system is said to produce an entropy of the

amount

∆Senv = ln
ws→s′

ws′→s
(1)

in the environment [2]. This formula for entropy production, which goes back to a work

by Schnakenberg [19] in 1976, is nowadays used throughout the whole literature (see e.g.

Refs. [20–24]). But where does this formula come from? Does it describe the actually

generated entropy outside of the system or does it just have the meaning of a lower

bound? The aim of this paper is to shed some light on these fundamental questions.
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The original approach taken by Schnakenberg is quite remarkable. He first points

out that the master equation

d

dt
Ps(t) =

∑
s′

Ps′(t)ws′→s −
∑
s′

Ps(t)ws→s′ (2)

for the configurational probabilities Ps(t) is formally equivalent to a chemical rate

equation

d

dt
[Xi] =

∑
j

Sijfj

(
[X1], [X2], . . .

)
(3)

for particle concentrations [Xi] with an appropriately chosen stoichiometric matrix Sij
and a linear rate function f . Thus, by identifying the probabilities Ps of individual

microscopic configurations s with the concentrations [Xi] of different chemical species

Xi he created a fictitious chemical reaction which evolves formally in the same way

as the original master equation. Building such a chemical system is of course only

a thought experiment because in practice a complex system like a gas could easily

have more than 1010200
different microscopic configurations, each of them corresponding

to a different chemical species. Nevertheless, such a chemical reaction, if realized,

would generate a certain entropy which can be quantified by using standard methods

of equilibrium thermodynamics. Schnakenberg suggested that this chemical entropy

production, when properly normalized, coincides with the actual entropy production of

the non-equilibrium system in its environment.

Some time ago we suggested that the Schnakenberg entropy production is not

an equality but only a lower bound for the actual entropy production in the

environment [25]. This claim was first proven by Esposito [26] in a thermodynamic

setting and then developed further in the context of hidden entropy production [27,28].

In this approach the subsystems are always in contact with heat baths which allows one

to quantify the corresponding energy, work, heat transfer, and entropy flow.

Here we present an alternative proof which is to a large extent independent of

thermodynamic notions. As in previous works we embed the laboratory system into

a larger isolated (closed) system which can also be modeled as a Markov process.

This environment may be out of equilibrium as well, and neither the system nor the

environment are coupled to other external heat baths. Using this setup we argue that

that any nonequilibrium system may be thought of as being part of a larger equilibrium

system on its way into the stationary state. Although we use the same concept of coarse-

graining as in Ref. [26], our approach is solely based on microscopic configurations and

transitions without assuming energy conservation. Thus the proof does not invoke the

notions of energy, heat, work and temperature, showing that the suggested Schnakenberg

inequality is to a large extent independent of the first law of thermodynamics. We also

prove that the inequality becomes sharp in the limit of instantaneous equilibration of

the environment after each jump in the laboratory system.
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The derivation is based on the assumption that the ’total system’, consisting of

laboratory system and environment, is isolated and can still be described by a Markov

jump process. As such, it is expected to relax into a Gibbs state of maximal entropy, and

this requires the transition rates between microscopic configurations to be symmetric.

This assumption could of course be questioned. As an isolated system, quantum

mechanics tells us that the ’total system’ evolves unitarily, preserving entropy without

spontaneous jumps. This contradiction, which touches the very foundations of statistical

mechanics [29] will not be addressed in this paper, we rather assume that a description

in terms of Markov processes still holds and study the resulting consequences.

The paper is organized as follows. In the next section we introduce notations

and outline the strategy of embedding a nonequilibrium system in a larger isolated

system. Then in Sect. 3 we compare the Schnakenberg formula and the actual entropy

production numerically and demonstrate the embedding in the example of a simple clock

model. Finally, in Sect. 4 we prove that Schnakenbergs entropy production provides

a lower bound to the actual entropy production which becomes sharp in the limit of

instant equilibration in the environment.

2. Embedding a nonequilibrium system in the environment

Let us consider a physical system, from now on called laboratory system, which is

modeled as a classical stochastic Markov process. It is defined by a certain space of

classical configurations s ∈ Ωsys, where we use the symbol ’s’ to remind the reader

that this configuration refers to the laboratory system. As before, let us denote by

Ps(t) the probability to find the system at time t in the configuration s, normalized by∑
s∈Ωsys Ps(t) = 1. In a Markov process this probability distribution evolves according

to the master equation (2), which can also be written as

d

dt
Ps(t) =

∑
s′∈Ωsys

(
Js′→s(t)− Js→s′(t)

)
, (4)

where Js→s′(t) = Ps(t)ws→s′ is the probability current flowing from s to s′. For simplicity

we shall assume that the system is ergodic.

According to Kolmogorovs criterion [30], which implies detailed balance in the

stationary state, the rates of an equilibrium system are known to obey the condition∏
γ

wsi→si+1

wsi+1→si
= 1 (5)

for all closed paths γ : s1 → s2 → . . . → sN → s1 in the configuration space. The

path independence allows each configuration s to be associated with a dimensionless
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potential

Vs = Vs0 −
∑
γs0→s

ln
wsi→si+1

wsi+1→ws

, (6)

where s0 is a reference configuration and Vs0 its reference potential. As can be verified

easily, the stationary probability distribution, normalized by the partition sum, is then

given by

P stat
s = lim

t→∞
Ps(t) =

1

Z
e−Vs . (7)

This stationary state is known to obey detailed balance, meaning that the probability

currents cancel pairwise:

⇒ Jstats→s′ = Jstats′→s (8)

The form of the potential depends on the way in which the system interacts with the

environment. For example, in the canonical ensemble we just have Vs = βEs.

A special situation emerges if the system is isolated, meaning that it does not

interact with other systems or the environment. As discussed in the introduction, we

start with the premise that it still makes sense to model such a closed system by a

Markov process. Starting from this premise we are forced to assume that all rates of

an isolated system have to be symmetric (ws→s′ = ws′→s) since otherwise the Gibbs

postulate would be violated. Although this reasoning is made on a classical basis, it

resembles the well-known Stinespring theorem [31] in the quantum case, stating that any

non-unitary open system can be thought of as being part of a larger unitarily evolving

system.

Open system embedded in the environment

The rates of a genuine non-equilibrium system do not obey the Kolmogorov criterion (5),

meaning that it relaxes into a non-equilibrium steady state (NESS) that violates detailed

balance. In the following we argue that we can always think of such a system as being

embedded into a larger isolated system, called total system. This provides a clear setting

for the study of entropy production.

Let us assume that this total system (consisting of laboratory system and

environment) can be described in the same way as the laboratory system itself, namely,

as a Markov process in terms of certain configurations c ∈ Ωtot, probabilities Pc(t), and

time-independent transition rates wc→c′ . The configuration space of the total system

may be incredibly large and generally inaccessible, but if the total system is assumed

to be isolated, hence the corresponding transition rates have to be symmetric:

wc→c′ = wc′→c . (9)
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Figure 1. Schematic representation of the configuration space of a system embedded

in the environment.

The laboratory system is part of the total system. As such, any configuration c ∈ Ωtot of

the total system will correspond to a particular configuration s ∈ Ωsys in the laboratory

system. This mapping

π : c 7→ s = π(c) (10)

is of course not injective, i.e., for a given system configuration s there are usually many

possible configurations c of the total system, as sketched in Fig. 1.

Coarse-grained master equation

For a given projection s = π(c) it is clear that the probabilities of the laboratory system

can be obtained by coarse-graining

Ps(t) =
∑
c∈s

Pc(t) , (11)

where the sum is understood to run over all c with π(c) = s. Similarly, it is clear that

the corresponding probability currents sum up as well:

Js→s′(t) =
∑
c∈s

∑
c′∈s′

Jc→c′(t) . (12)

Thus, if the total system is assumed to evolve according to the master equation

d

dt
Pc(t) =

∑
c′∈Ωtot

(
Jc′→c(t)− Jc→c′(t)

)
, (13)

it is easy to show that these coarse-grained quantities defined in (11)-(12) obey the

master equation (4). In other words, a master equation in the total system gives rise to

a projected master equation in the embedded laboratory system.
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The coarse-grained currents and probabilities allow us to define effective rates in

the laboratory system:

ws→s′ (t) =
Js→s′ (t)

Ps (t)
. (14)

Unlike the rates wc→c′ of the total system, which are time-independent and symmetric,

these rates are generally non-symmetric. Moreover, they do not necessarily obey the

Kolmogorov criterion, and they may also depend on time [25,26].

Physical interpretation

As already mentioned, we assume the total system to be isolated, implying that the

transition rates wc→c′ are symmetric. Thus, if the total system is finite and ergodic,

it will nevertheless end up in a uniformly distributed state where Jc→c′ = Jc′→c. This

implies that the laboratory system will eventually reach a stationary state obeying

detailed balance.

However, before reaching this stationary state (meaning that the environment is still

relaxing towards equilibrium) the laboratory system considered by itself may be found

to violate the Kolmogorov criterion, meaning that it is genuinely out of equilbrium. The

apparent contradiction that it will end up in a detailed-balanced equilibrium state can

be reconciled by observing that the effective transition rates (14) are generally time-

dependent: When the total system finally equilibrates the rates change in such a way

that detailed balance is restored.

Thus, if the total system is finite, a possible nonequilibrium dynamics in the

laboratory system can only be established for a transient period. However, if the

environment is infinite, then it may be possible to keep the laboratory system out

of equilibrium for infinite time, allowing the possibility of nonequilibrium steady states.

As we will argue below it is also possible to look at the problem in opposite direction,

meaning that for a given nonequilibrium system we can always find a total system

with symmetric rates which generates this dynamics. In other words, for a given set

of effective rates in the laboratory system we can always ’engineer’ an artificial total

system which produces them. In the following section we will give an explicit example

of such a construction.

Entropy

As usual, the entropy of the laboratory and the total system are defined by

Ssys(t) = −
∑
s∈Ωsys

Ps(t) lnPs(t), Stot(t) = −
∑
c∈Ωtot

Pc(t) lnPc(t) . (15)
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Using the master equation (13) it is straight forward to calculate the entropy production

of the laboratory and the total system:

Ṡsys(t) =
∑
s

∑
s′

(
Ps(t)ws→s′(t)− Ps′(t)ws′→s(t)

)
lnPs(t) , (16)

Ṡtot(t) =
∑
c

∑
c′

(
Pc(t)wc→c′ − Pc′(t)wc′→c

)
lnPc(t) . (17)

The actual entropy production of the total system (17) involves the probabilities Pc(t)

and rates wc→c′ of the total system which are generally not accessible. However,

according to Schnakenberg [19] we can nevertheless quantify the total entropy

production solely on the basis of the probabilities Ps(t) and the rates ws→s′(t) of the

laboratory system by means of the formula

Ṡtot0 (t) =
∑
s,s′

Js→s′(t) ln
Js→s′(t)

Js′→s(t)
. (18)

Note that the entropy production according to Schnakenberg (here denoted by the

subscript ’0’) does not necessarily coincide with the real entropy production in (17).

This can be seen in the extreme example where the laboratory system consists only of

a single configuration. Here Ṡtot0 vanishes, whereas Ṡtot in Eq. (17) may be nonzero. As

we will argue below, we expect them to be related by the inequality Ṡtot ≥ Ṡtot0 which

reduces to an equality in the limit of instant equilibration in the environment.

3. Numerical results

3.1. Simulation of a total system with random properties

To test the proposed inequality we modeled the total system by an artificial Markov

process, where Ntot configurations are fully connected by randomly chosen rates.

Moreover, we introduced a subsystem by defining an random projection π to a smaller

set of system Nsys configurations. Solving the master equation of the system numerically

we compute the corresponding entropies and study the entropy production.

The numerical analysis was implemented as follows. A vector of size Ntot was set

up containing the probabilities Pc(t) of the total system. This array was then filled

with random numbers and normalized, defining the initial probability distribution of

the total system. Then every entry was randomly assigned to a configuration s of the

laboratory system. By summing over all probabilities Pc(t) mapped to the same s the

probability Ps(t) =
∑

c∈s Pc(t) can be determined. Finally the setup was completed by

generating random symmetric rates wc→c′ = wc′→c between all array entries.

Solving the master equation with a vectorized Runge-Kutta algorithm we computed

the Shannon entropy of the total system before and after each time step. The change

of this entropy is considered as the actual total entropy produced in the time interval.
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Figure 2. Left: Temporal evolution of the actual entropy production (red) and the

prediction by Schnakenberg (black) in a random Markov process with Ntot = 1000

configurations mapped to Nsys = 200 system configurations. Right: If one adds an

artificial instant equilibration of the environment after each update, the two curves

coincide.

As the Schnakenberg formula generates a value for the time derivative of the entropy,

the corresponding entropy production was calculated via the trapezoidal rule.

As can be seen in Fig. 2, the produced entropy for this random system is

obviously at all times larger than the Schnakenberg entropy production. In the

completely random initial state there is a difference which decreases as the system

relaxes towards equilibrium. We repeated this calculation under various conditions,

obtaining qualitatively similar results. This suggests that the inequality

Ṡtot(t) ≥ Ṡtot0 (t) (19)

holds in any system, i.e., the Schnakenberg formula provides a lower bound of the actual

entropy production.

In a second numerical study we equilibrated all subsectors of the total system

instantly after each update, meaning that the Pc(t) for all c belonging to the same

system configuration s were forced to coincide. As shown in the right panel of Fig. 2

one obtains a perfect coincidence. This suggests that the inequality becomes sharp in

the limit of instant equilibration. We will come back to this point in Section 4.

3.2. Construction of the environment of a clock model

In order to demonstrate that for a given nonequilibrium system we can ’engineer’ an

appropriate embedding into a larger environment, we consider a class of cyclic models,

where the configurations are connected with asymmetric rates. The simplest case is a

three-state clock model, as shown in Fig. 3.

Since the clock model does not obey detailed balance, it is obviously out of
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Figure 3. Cyclic clock model with three configurations and asymmetric rates. The

process jumps preferably in clockwise direction, leading to a non-vanishing probability

current even in the stationary state.

equilibrium. In the following we show that this dynamics can be generated by embedding

it into a larger equilibrium system, i.e., we create a suitable model of the environment in

such a way that the total system is isolated, having only symmetric rates. To this end

we first unravel the cycle into a linear chain of repeating configurations [25], as sketched

in Fig. 4. As can be seen, each configuration on the chain corresponds to a number of

configurations c in the total system, which means there are new three levels to view this

model, namely,

• the level of the clock model having only three configurations,

• the corresponding linear chain of repeating configurations (unraveled states), and

• the total system which allows for a large number of configurations for each unraveled

state.

On the linear chain the model performs a random walk that is biased to the right.

In order to generate this dynamics, only neighboring sets of configurations in the

environment are connected, as sketched in the Fig. 4 (the configurations within each

column may be connected as well, which is not shown). Note that the configurations of

the total system are all connected by symmetric rates. Thus, in order to create a bias

on the linear chain, the number of configurations in the total system has to increase as

we go to the right. In this way an entropic force will be introduced, dragging the system

to the right.

Enumerating the states on the linear chain by an index i, the ratio of the rates

r =
w→
w←

(20)

determines how quickly the number ni of configurations in each columns grows. For

example, for r = 2 this number doubles from column to column, increasing exponentially

as ni = 2i−1. Moreover, the symmetric rates in the total system have to be chosen in such

a way that the probability current along the chain remains constant. This also means

that on the chain the symmetric rates of the total system have to be proportional to

1/ni.

If the linear chain was infinite with an ever-increasing ni, then the projected clock

model would indeed rotate forever. However, on a finite chain the system will eventually
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Figure 4. Interpretation of the cyclic process as a biased random walk on a linear

chain. The upper box shows the corresponding configurations of the total system (see

text).

reach the right edge. When the edge is reached the effective rates of the laboratory

system will change, leaving the non-equilibrium steady state and establishing detailed

balance.

3.3. Solving the master equation of a clock model numerically

In order to avoid the exponentially increasing number of configurations in the total

system in a numerical analysis, we use the symmetry property that all configurations in

a given column are equally probable. Therefore, it suffices to keep track of only one of

them. In the end this probability has to be reweighted by n.

We solved this problem numerically on a chain with N = 500 columns, starting

with an initial probability distribution focused in the center. The numerical solution

is then used to determine the actual entropy production and to compare it with the

prediction by Schnakenbergs formula calculated on the level of the clock model.

The difference between the two quantities is plotted in Fig. 5. As can be seen,

the difference first decreases like
√
t, which is expected for a diffusion-like process.

The diffusion-like behavior can be explained by recalling the three different levels of

description:

• The Schnakenberg formula refers to the three-state configuration space of the

laboratory system. After a short initial transient the configuration entropy becomes

constant (Hsys = ln 3) and the entropy production in the environment saturates at

a constant value Ṡ = 1
2

ln 2.

• Contrarily, the actual entropy production refers to the level of the total system.

It consists of two contributions. On the one hand the biased motion to the right

contributes with a constant entropy production. On the other hand, the probability

distribution broadens, giving an additional contribution to the entropy production.
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Figure 5. Temporal evolution of the difference between actual entropy production

and the prediction by Schnakenberg in cyclic model with 3 configurations and the

rates w→ = 2 and w← = 1, modeled as a chain with length N = 500.

This contribution is expected to scale as 1/
√
t. This explains the straight slope in

the double-logarithmic plot in Fig. 5.

Another notable feature is the pronounced peak in the figure which can be identified with

the moment when the right edge of the linear chain is reached. Here the effective rates

in the laboratory system start to change, leading to a sudden increase of the difference.

As the system is further relaxing towards detailed balance both entropy productions are

decreasing again which accounts for the final rapid decay after the peak. Throughout the

whole time evolution the Schnakenberg entropy production is smaller than the actual

one, confirming that it provides a lower bound.

4. Analytical results

In order to support that the Schnakenberg entropy production is in fact a lower bound,

we proceed in two steps. First we prove that in the case of instant equilibration of the

environment the Schnakenberg entropy production and the actual entropy production

coincide. Then we prove that the Schnakenberg entropy production provides a lower

bound to the actual entropy production. In the following sections we omit the time-

dependencies of the variables introduced in Sect. 4 for ease of reading.

Special case of instant equilibration in the environment

Since the total system is isolated, the rates wc→c′ are symmetric. This allows the actual

total entropy production to be rewritten as

Ṡtot =
∑
c∈Ωtot

∑
c′∈Ωtot

(Pcwc→c′ − Pc′wc′→c) lnPc
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=
∑
c∈Ωtot

∑
c′∈Ωtot

Pcwc→c′ lnPc −
∑
c∈Ωtot

∑
c′∈Ωtot

Pc′wc′→c lnPc

=
∑
c∈Ωtot

∑
c′∈Ωtot

Pcwc→c′ lnPc −
∑
c′∈Ωtot

∑
c∈Ωtot

Pcwc→c′ lnPc′

=
∑
c∈Ωtot

∑
c′∈Ωtot

Pcwc→c′ ln
Pc
Pc′

. (21)

Using the map to the laboratory system the sums can be reorganized by

Ṡtot =
∑
s∈Ωsys

∑
s′∈Ωsys

∑
c∈s

∑
c′∈s′

Pcwc→c′ ln
Pc
Pc′

. (22)

Now let us assume that the environment equilibrates instantly, meaning that all

probabilities Pc belonging to the same sector s coincide, i.e.

Pc = ps ∀c ∈ s , (23)

where ps should not be confused with Ps =
∑

c∈s Pc. Under this assumption Eq. (22)

reduces to

Ṡtot =
∑

s,s′∈Ωsys

s 6=s′

ps ln
ps
ps′

∑
c∈s

∑
c′∈s′

wc→c′ , (24)

where the first sum runs only over different sectors (columns) because of the logarithm.

Now we show that the Schnakenberg entropy production (16) leads to the same

expression. Using Eq. (12) we get

Ṡtot0 =
∑

s,s′∈Ωsys

s 6=s′

Js→s′ ln
Js→s′

Js′→s

=
∑

s,s′∈Ωsys

s 6=s′

(∑
c∈s

∑
c′∈s′

Pcwc→c′

)
ln

∑
c∈s
∑

c′∈s′ Pcwc→c′∑
c∈s
∑

c′∈s′ Pc′wc′→c
. (25)

By using the assumption of instant equilibration of the environment and the symmetry

of the rates in the total system we can further simplify this formula:

Ṡtot0 =
∑

s,s′∈Ωsys

s 6=s′

(∑
c∈s

∑
c′∈s′

pswc→c′

)
ln
ps
∑

c∈s
∑

c′∈s′ wc→c′

ps′
∑

c∈s
∑

c′∈s′ wc′→c

=
∑

s,s′∈Ωsys

s 6=s′

ps ln
ps
ps′

∑
c∈s

∑
c′∈s′

wc→c′ (26)

If we now compare (26) to (24), we see, that for instant equilibration (Pc = Pc′ = ps
for c, c′ ∈ s) and symmetric rates in the total system the actual entropy production

calculated using the Schnakenberg formula is equal to the entropy production calculated

via Shannon formula and the master equation.
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Schnakenberg formula as the minimal entropy production

Now we prove that the Schnakenberg entropy production provides a lower bound to the

actual entropy production. To this end we first define the function

h(x, y) = (x− y) ln
x

y
, (27)

with x, y ∈ R+. For x 6= y this function is positive and zero otherwise. The Hessian

matrix of h

H =

(
∂2h(x,y)
∂x2

∂2h(x,y)
∂x∂y

∂2h(x,y)
∂y∂x

∂2h(x,y)
∂y2

)
=

(
x+y
x2 −x+y

xy

−x+y
xy

x+y
y2

)
(28)

is positive semidefinite. This implies that h is convex, which in turn allows us to use

Jensen’s inequality:

n∑
i=1

aih(xi, yi) ≥ h

(
n∑
i=1

aixi,
n∑
i=1

aiyi

)
, ai ≥ 0,

n∑
i=1

ai. (29)

Furthermore one can easily see that h is homogenous, i.e.,

h
(x
λ
,
y

λ

)
=
h(x, y)

λ
. (30)

To describe the entropy production with Eq. (27) we need to rewrite Eq. (21) again,

using the symmetry of the rates in the total system and the definition of the probability

currents:

Ṡtot =
∑
c∈Ωtot

∑
c′∈Ωtot

Pcwc→c′ ln
Pc
Pc′

=
∑
c∈Ωtot

∑
c′∈Ωtot

Pcwc→c′ ln
Pcwc→c′

Pc′wc′→c

=
∑
c∈Ωtot

∑
c′∈Ωtot

Jc→c′ ln
Jc→c′

Jc′→c
(31)

This can be further rewritten by switching indices providing us with the desired form:

Ṡtot =
∑
c∈Ωtot

∑
c′∈Ωtot

1

2
(Jc→c′ + Jc→c′) ln

Jc→c′

Jc′→c

=
1

2

( ∑
c∈Ωtot

∑
c′∈Ωtot

Jc→c′ ln
Jc→c′

Jc′→c
+
∑
c∈Ωtot

∑
c′∈Ωtot

Jc→c′ ln
Jc→c′

Jc′→c

)

=
1

2

( ∑
c∈Ωtot

∑
c′∈Ωtot

Jc→c′ ln
Jc→c′

Jc′→c
+
∑
c′∈Ωtot

∑
c∈Ωtot

Jc′→c ln
Jc′→c
Jc→c′

)

=
1

2

( ∑
c∈Ωtot

∑
c′∈Ωtot

Jc→c′ ln
Jc→c′

Jc′→c
−
∑
c′∈Ωtot

∑
c∈Ωtot

Jc′→c ln
Jc→c′

Jc′→c

)
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=
1

2

∑
c∈Ωtot

∑
c′∈Ωtot

(Jc→c′ − Jc′→c) ln
Jc→c′

Jc′→c

=
1

2

∑
c∈Ωtot

∑
c′∈Ωtot

h(Jc→c′ , Jc′→c) (32)

Rewriting Eq. (18) provides us with a similar result for the Schnakenberg entropy

production:

Ṡtot0 =
∑
s∈Ωsys

∑
s′∈Ωsys

Js→s′ ln
Js→s′

Js′→s

=
∑
s∈Ωsys

∑
s′∈Ωsys

1

2
(Js→s′ + Js→s′) ln

Js→s′

Js′→s

=
1

2

( ∑
s∈Ωsys

∑
s′∈Ωsys

Js→s′ ln
Js→s′

Js′→s
+
∑
s∈Ωsys

∑
s′∈Ωsys

Js→s′ ln
Js→s′

Js′→s

)

=
1

2

( ∑
s∈Ωsys

∑
s′∈Ωsys

Js→s′ ln
Js→s′

Js′→s
+
∑

s′∈Ωsys

∑
s∈Ωsys

Js′→s ln
Js′→s
Js→s′

)

=
1

2

( ∑
s∈Ωsys

∑
s′∈Ωsys

Js→s′ ln
Js→s′

Js′→s
−
∑

s′∈Ωsys

∑
s∈Ωsys

Js′→s ln
Js→s′

Js′→s

)

=
1

2

∑
s∈Ωsys

∑
s′∈Ωsys

(Js→s′ − Js′→s) ln
Js→s′

Js′→s

=
1

2

∑
s∈Ωsys

∑
s′∈Ωsys

h(Js→s′ , Js′→s) (33)

We now assume that the set π−1(s) = {c : π(c) = s} is finite for all s and let ns be

the number of total system configurations c of which each laboratory configuration s

consists. Using Eq. (29) with n = ns · ns′ , ai = 1
n

and xi = Jc→c′ , yi = Jc′→c and

summing over c ∈ s and c′ ∈ s′ we get the following inequality:

1

n

ns∑
c∈s

ns′∑
c′∈s′

h(Jc→c′ , Jc′→c) ≥ h

(
1

n

ns∑
c∈s

ns′∑
c′∈s′

Jc→c′ ,
1

n

ns∑
c∈s

ns′∑
c′∈s′

Jc′→c

)
. (34)

Taking 1
n

out from the right hand side using Eq. (30) and further simplifying by using

Eq. (12) we obtain the following inequality:

1

n

ns∑
c∈s

ns′∑
c′∈s′

h(Jc→c′ , Jc′→c) ≥
1

n
h

(
ns∑
c∈s

ns′∑
c′∈s′

Jc→c′ ,
ns∑
c∈s

ns′∑
c′∈s′

Jc′→c

)
ns∑
c∈s

ns′∑
c′∈s′

h(Jc→c′ , Jc′→c) ≥ h

(
ns∑
c∈s

ns′∑
c′∈s′

Jc→c′ ,
ns∑
c∈s

ns′∑
c′∈s′

Jc′→c

)
= h(Js→s′ , Js′→s). (35)
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We can now apply the sum over all s, s′ ∈ Ωsys and the factor 1
2

to both sides of Eq. (35)

and compare it to Eq. (32) and Eq. (33), which will result in the desired inequality:

1

2

∑
s∈Ωsys

∑
s′∈Ωsys

ns∑
c∈s

ns′∑
c′∈s′

h(Jc→c′ , Jc′→c) ≥
1

2

∑
s∈Ωsys

∑
s′∈Ωsys

h(Js→s′ , Js′→s)

Ṡtot ≥ Ṡtot0 (36)

This completes the proof that the Schnakenberg entropy production provides a lower to

the actual entropy production.

5. Conclusions and outlook

In this work we have tried to explain entropy production of nonequilibrium systems in

the environment by embedding the laboratory system into a larger isolated total system

without introducing the notions of energy conservation, work, heat and temperature.

We have shown that the commonly accepted formula for this purpose found by

Schnakenberg is only exact in the case of instant equilibration of the environment. This

is not surprising since Schnakenberg himself derived this formula by using methods of

equilibrium thermodynamics, implicitly assuming that the environment is arbitrarily

close to equilibrium.

The conjecture that the Schnakenberg formula provides a lower bound of the actual

entropy production of the total system was proven in general and confirmed by a numer-

ical investigation of a random Markov process. Furthermore we have given an analytical

argument showing that the actual entropy production becomes minimal, and thereby

equal to the one given by the Schnakenberg formula, in the case of infinitely fast equi-

libration among the corresponding configurations in the environment. We have tested

these findings numerically by creating an artificial environment for a simple three-state

nonequilibrium clock model.
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