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Editorial

The ALERT Doctoral School 2015 entitled Coupled and multiphysics phenomena is

organized by Bernhard Schrefler, Lorenzo Sanavia (both University of Padova) and

Frédéric Collin (University of Liège). The commitment of the school organizers and

contributors of this printed volume must be highly appreciated!

Going through the contributions of their book, it becomes obvious how far we have

proceeded from Terzaghi’s theory of consolidation, which is perhaps one of the first

works in this field. Nevertheless, looking at curricula of geotechnical courses at most

universities, the impression can arise that time stands still and there is no need to

teach more than Terzaghi’s theory. The presented book demonstrates the opposite. It

covers in a comprehensive manner various subjects of physical phenomena coupled

together into powerful theories. It is fascinating to see excursions to environmental

engineering, medicine or geology and to realize that we can describe those fields with

a common language. I am convinced that the book will be useful not only to students

attending the Doctoral School but to anybody with interests on modern geosciences.

As usual, the pdf file of the book can be downloaded for free from the website of

ALERT Geomaterials – http://alertgeomaterials.eu.

On behalf of the ALERT Board of Directors I wish all participants a successful ALERT

Doctoral School 2015!

Ivo Herle

Director of ALERT Geomaterials

Technische Universität Dresden

ALERT Doctoral School 2015
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Coupled and multiphysics phenomena:
Foreword

The contributions assembled in the present volume proceed from the lectures of the

2015 ALERT Geomaterials Doctoral School devoted to Coupled and Multiphysics

Phenomena. The school has been organized and coordinated by Bernhard Schrefler

(Università degli Studi di Padova), Lorenzo Sanavia (Università degli Studi di Padova)

and Frédéric Collin (Université de Liège).

When dealing with the behaviour of multiphase porous systems, e.g. geomaterials,

instances of complexity and interaction are numerous, mainly because of the coexis-

tence of several constituents and phases, their physical and mechanical interactions,

their reactivity and their often non-linear behaviour. The study of these coupled pro-

cesses deals with a large number of applications, e.g. in geomechanics: underground

structures (storage, tunnelling), surface structures (earth and concrete dams, embank-

ments) as well as the exploitation of geo-resources (petroleum and gas extraction,

mines and quarries).

This volume contains nine chapters in which emphasis is given to the presentation of

the fundamental and new concepts that help understanding coupled and multiphysics

phenomena in porous systems. The contributions cover experimental, theoretical, as

well as numerical aspects. The school is divided into three main parts: the descrip-

tion of the couplings in multiphysics phenomena, including the experimental develop-

ments; the mathematical modelling of all these coupled processes, with an introduc-

tion to the constitutive modelling taking into account the dilatancy, which character-

izes the mechanical behaviour of geomaterials; the numerical implementation of the

mathematical models, comprising constitutive equations as well as balance equations

and finally numerical modelling through advanced applications.

The experimental aspects of coupled and multiphysics phenomena are described in

Chapter one. Pierre Delage introduced the different techniques to measure and control

the environmental variables such as suction and temperature. The results obtained

through advanced experimental techniques are presented, providing a global overview

of the knowledge in this particular field.
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Additional coupling phenomena are described by Jacques Huyghe in Chapters two

and three, dealing with physical chemistry of mixtures and swelling, discussing mix-

tures of a liquid with a dissolved substance and considering electrolytic solutions and

osmosis in biological tissues. For their mathematical description, theory of mixtures

has been summarised. Moreover, Chapter three presents insights in finite deformation

poromechanics with application to soil mechanics, poromechanics of the heart muscle

and blood perfusion.

Chapter four by William Gray and Cass Miller deals with thermodynamically con-

strained averaging theory TCAT, which is the most advanced and most general method

to develop governing equations of physical problems able to describe the complex sys-

tem of couplings in the behaviour of multiphase porous systems. This theory is based

on thermo-dynamic principles applied at microscale and averages all quantities from

the microscale to the macroscale in a consistent and well-defined manner, so that the

connection between microscale and macroscale quantities is explicitly known.

Manuel Pastor introduces in Chapter five the constitutive modelling of geomaterials

based on Generalized Plasticity Theory. The underlying idea is to show how this

general framework for the development of a constitutive law can be extended from a

purely mechanical case to hydro-mechanical context. This helps in exhibiting the role

of dilatancy in modelling of the most relevant phenomena in soils behaviour such as

liquefaction, bonding and de-bonding due to chemical processes or changes in satura-

tion conditions and influence of particle breakage.

The third part of this book is opened by Manuel Pastor with Chapter six, which in-

troduces the numerical implementation of the mathematical models described in the

previous chapters. The aim is to provide the reader with an overview both of the tech-

niques and the difficulties encountered when modelling this type of problems. The

analysis is restricted to the simplest case where only one fluid filling the pores is con-

sidered, as the main difficulties can be more easily explained and understood.

Then, with the last three chapters, the complexity of the problems increases step by

step by considering variably saturated problems, thermo-hydro-mechanical problems

and, finally, bio- chemo- thermo- hydro-mechanical problems. Hydraulic fractur-

ing, the first numerical modelling of advanced applications, is presented by Bernhard

Schrefler. Fluid-driven fracture propagating in porous media is a common problem in

geomechanics. It is used, for example, to enhance the recovery of hydrocarbons from

underground reservoirs.

Chapter eight by Lorenzo Sanavia presents a fully coupled and non-linear finite ele-

ment model for the analysis of non-isothermal variably saturated soils in dynamics.

Attention is given to the validation step when dealing with the development of numer-

ical models.

In the last chapter, Frédéric Collin introduces the modelling of municipal waste con-

sidered as a bio-chemo-thermo-hydro-mechanical model. This latter material is a per-

fect example of porous media with coupled and multiphysics phenomena. As a con-

sequence of the numerous physical processes, it is proposed to follow a step by step
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approach where each single aspect is introduced. The couplings are first presented

through closed form solutions for simplified cases and then numerically modelled

with all their complexity.

We believe that this volume may provide to postgraduate students, researchers and

practitioners, a valuable introduction and a sound basis for further progress in the

challenging fields of coupled and multiphysics phenomena in porous systems.

Bernhard Schrefler (Università degli Studi di Padova)

Lorenzo Sanavia (Università degli Studi di Padova)

Frédéric Collin (Université de Liège)
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_____________________________________________________________________________________ 

Finite element analysis of non-isothermal 

multiphase porous media in dynamics 

L. Sanavia
1
, T. D. Cao

1,2 

 
1
Department of Civil, Environmental and Architectural Engineering, 

University of Padova, Italy 

 
1,2

Department of Mechanical Engineering, Technische Universität 

Darmstadt, Germany 
____________________________________________________________________ 

This work presents a mathematical and a numerical model for the analysis of the 

thermo-hydro-mechanical (THM) behavior of multiphase deformable porous mate-

rials in dynamics. The fully coupled governing equations are developed within the 

Hybrid Mixture Theory. To analyze the THM behavior of soil structures in the low 

frequency domain, e.g. under earthquake excitation, the u-p-T formulation is advo-

cated by neglecting the relative acceleration of the fluids and their convective terms. 

The standard Bubnov-Galerkin method is applied to the governing equations for the 

spatial discretization, whereas the generalized Newmark scheme is used for the time 

discretization. The final non-linear and coupled system of algebraic equations is 

solved by the Newton method within the monolithic approach. The formulation and 

the implemented solution procedure are validated through the comparison with 

other finite element solutions or analytical solutions. 

1 Introduction 

The analysis of the dynamic response of multiphase porous media has many applica-

tions in civil engineering. Onset of landslides due to earthquakes or rainfall and the 

seismic behavior of dams are examples where inertial forces cannot be neglected. 

Moreover, there are situations where it is important to consider also the effect of 

temperature variation. It is the case of catastrophic landslides, where the mechanical 

energy dissipated in heat inside the slip zone may lead to vaporization of the pore 

water creating a cushion of zero friction, which may accelerate the movement of the 

landslides [Var02]. Another interesting case is the seismic analysis of deep nuclear 

waste disposal. 
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Many authors have developed models for the analysis of the dynamic behavior of 

multiphase porous media in isothermal conditions. A state of art can be found in 

Zienkiewicz et al. [Zie99] and Schanz [Sch09]. Recently, Nenning and Schanz 

[Nen10] presented an infinite element for wave propagation problems; Heider et al. 

[Hei11] analyzed a numerical solution of dynamic wave propagation problems in 

infinite half spaces with incompressible constituents and Albers [Alb10] analyzed 

wave propagation problems in saturated and partially saturated porous media. 

 

This work presents a formulation of a fully coupled model for deformable multi-

phase geomaterials in dynamics including thermal effects. 

The model is derived introducing the u-p-T (displacements, pressures, temperature) 

formulation in the multiphase model developed in Lewis and Schrefler [Lew98], in 

which the relative acceleration of the fluids and their convective terms have been 

neglected following [Cha88], [Zie99]. This reduced model is valid for low frequen-

cy problems, as in earthquake engineering, [Cha88], [Zie99]. The standard Galerkin 

method is applied to the governing equations for the spatial discretization, while the 

generalized Newmark scheme is used for the time discretization. The final non-

linear set of equations is solved by the Newton method with a monolithic approach.  

The model has been implemented in the finite element code COMES-GEO, 

[Gaw96], [Lew98], [San06], [San08], [San09], [Gaw09], [Gaw10], [San12] and has 

been validated through the comparison with analytical or finite element quasi-static 

or dynamic solutions. 

2 Macroscopic balance equations 

The full mathematical model necessary to simulate the thermo-hydro-mechanical 

behavior of partially saturated porous media in dynamics was developed within the 

Hybrid Mixture Theory (HMT) by Lewis and Schrefler [Lew98], using averaging 

theories according to Hassanizadeh and Gray [Has79a], [Has79b], [Has80], [Gra91]. 

This model can be derived from the more advanced averaging theory TCAT - Ther-

modynamically Constrained Averaging Theory (see the chapter of this book from 

Gray and Miller or [Gra14] and its references listing the journal papers on this top-

ic). 

 

The variably saturated porous medium is treated as a multiphase system composed 

of solid skeleton (s) with open pores filled with liquid water (w) and gas (g). The 

latter, is assumed to behave as an ideal mixture of dry air (non-condensable gas, ga) 

and water vapor (condensable gas, gw). At the macroscopic level the porous material 

is modeled by a substitute continuum of volume B with boundary ¶B that simultane-

ously fills the entire domain, instead of the real fluids and the solid which fill only a 

part of it. In this substitute continuum each constituent p has a reduced density 

which is obtained through the volume fraction hp(x,t) = dv
p
(x,t) / dv(x,t), where dv is 

the volume of the average volume element (representative elementary volume, 

REV) of the porous medium and dv
p
 is the volume occupied by the constituent p in 

dv. x is the vector of the spatial coordinates and t the current time.  
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The solid is deformable and non-polar and the fluids, solid and thermal effects are 

coupled. All fluids are in contact with the solid phase. In the model, heat conduction 

and heat convection, vapor diffusion, (liquid) water flow due to pressure gradients or 

capillary effects and water phase change (evaporation and condensation) inside the 

pores are taken into account. 

In the partially saturated zones the liquid water is separated from its vapor by a con-

cave meniscus (capillary water). Due to the curvature of this meniscus, the sorption 

equilibrium equation [Gray91] gives the relationship p
c
=p

g
-p

w
 between the capillary 

pressure p
c
(x,t) (also known as matrix suction), gas pressure p

g
(x,t) and liquid water 

pressure p
w
(x,t). This expression is approximated in dynamics; it is used here be-

cause of lack of experimental results. In the following, pore pressure is defined as 

compressive positive for the fluids, while stress is defined as tension positive for the 

solid phase.  

The state of the medium is described by gas pressure p
g
, capillary pressure p

c
, tem-

perature T and displacements of the solid matrix u [San06]. The balance equations 

are developed in geometrically linear framework and are written here at the macro-

scopic level. 

For sake of completeness the equations of the model are only summarized in this 

chapter; the interested reader is refereed to [San15] for more details regarding the 

development of the mathematical model and its finite element implementation. Di-

rect notation is adopted. Boldface letters denote vector or tensors and lightface italic 

letters are used for scalar quantities. 

 

After neglecting the relative velocity and acceleration of the fluids in the governing 

equations of Lewis and Schrefler [Lew98], a set of balance equations for the whole 

multiphase medium is obtained as follows. 

 

The linear momentum balance equations of the mixture in term of the generalized 

effective Cauchy’s stress s′(x,t) [Lew98], [Nut08] takes the form 

 

 ( )g c s

wdiv p S p r r¢ é ù- - + =ë û1 g as  (1) 

 

where [ ]1 s w g

w g
n nS nSr r r r= - + +  is the mass density of the overall medium, 

Sw(x,t) is the degree of saturation of the liquid water n(x,t) is the porosity and Sg(x,t) 

is the degree of saturation of the gas, with Sw+ Sg=1. ( , )s tr x  is the density of the 

solid grain, ( , )w tr x  is the density of liquid water and ( , )g tr x  is the density of the 

gas phase. g is the gravity acceleration vector, 1 is the second order identity tensor 

and ( , )s ta x  the acceleration of the solid phase. The form of Eq. (1) assumes incom-

pressible grains, which is common in soil mechanics. In order to consider compress-

ible grains, the Biot coefficient should be set in front of the solid pressure (this be-

comes important when dealing with rock and concrete). The total stress of equation 

(1), using saturation as weighting functions for the partial pressures, was introduced 

in [Sch84] using volume averaging for the bulk materials and is thermodynamically 

consistent, e.g. [Gra91]. 

Sanavia & Cao 245

ALERT Doctoral School 2015



 

The mass balance equations for the dry air and the liquid water and its vapor are, 

respectively: 

 

 

( )

div grad div grad

div 0

rg gw
ga g g g gaa w

gg 2 g

g

ga s ga ga ga

g g w s g

M Mk p
p

M p

S nS nS 1 n S T

r r r
m

r r r r b

æ öæ ö æ ö
é ù- + + ç ÷ç ÷ ç ÷ë û ç ÷è ø è øè ø

+ + - - - =

k
g D

v
a ga gav 0v 0v 0v 0v 0v 0v 0v 0v 0v 0v 0v 0v 0v 0v 0v 0v 0v 0v 0v 0v 0v 0v 0v 0v 0ga s ga ga g

g g w sg g w sv 0v 0v 0v 0v 0g g w sg g w sv 0v 0v 0v 0v 0v 0v 0v 0v 0v 0v 0v 0

 (2) 

 

and 

 

  

( ) ( )

( )

div grad div grad

div grad div

0

rw rg
w w w gw gw gw

w g

gw
g gw w gw sa w

g w g2 g

g

w gw w

w g

gw gw

sw s g w

c

g

w

w

k k
p p

nS
p p

K

M M p
S S

M p

1 n S T n n S nS

r r r r
m m

r r r

r b r b r r r

r

æ ö æ ö
- + + - +ç ÷ ç ÷

è ø è ø

æ öæ ö
é ù- + +ç ÷ç ÷ ë ûç ÷è øè ø

é ù é ù- + - + -

é ù+ -ë

+ =ë û û

û

ë

k k
g g

D v

0gw gwrgw gw+ =gw gwrgw gwgw gw

p pé ùw g cp pé ùw gp pp pw gw g

ûé ùé ù
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 (3) 

 

where k (x,t) = k(x,t)1 is the intrinsic permeability tensor of the porous matrix in 

water saturated condition [m
2
], which is assumed to be isotropic, k

rp
(x,t) is the fluid 

relative permeability parameter and mp(x, t) is the dynamic viscosity of the fluid [Pa 

s], with p = w, g. Kw is the bulk modulus of the liquid water. bsw = [1-n]bs[Sgr
gw

 + 

rw
Sw], with bs(x, t) the cubic thermal expansion coefficient of the solid. gw

gD (x) is 

the effective diffusivity tensor of water vapor in the gas phase contained within the 

pore space, and Ma, Mw and Mg(x,t) are the molar mass of dry air, liquid water and 

the gas mixture

1

11
-

ú
û

ù
ê
ë

é
+=

a

g

ga

w

g

gw

g
MM

M
r
r

r
r , respectively. These equations contain 

the mass balance equation of the solid phase, which has been introduced to eliminate 

the time derivative of the porosity. 

 

The enthalpy balance equation for the multiphase medium is: 

 

  

( ) ( )

( )

( )

div grad div grad div

grad grad grad

0

rw
w w w s

vap eff w vapw

rw rg
w w w g g g g

p pw g

w w

w

w

w gww

p vap sw vap w vapeff
w

k
p H T S H

k k
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C T p H T H n S H

K
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m
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m m
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æ öé ù- - + D - - Dç ÷ë ûè ø
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k
g v
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 (4) 
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where ( )
effpCr (x,t) is the effective thermal capacity of the porous medium, w

pC (x,t) 

and g
pC (x,t) are the specific heat of water and gas, respectively, and ceff(x,t) is the 

effective thermal conductivity of the porous medium. The RHS term of Equation (4) 

considers the contribution of the evaporation and condensation. In equations (2)-(4) 

the advective fluxes have been described using Darcy’s law for liquid water and gas, 

while the diffusion of vapor in the gas phase has been modeled with Fick’s law. A 

recent development of a model which considers the air dissolved in the liquid water 

and its desorption at lower water pressures in quasi-statics loading conditions is 

presented in [Gaw09]. 

3  Constitutive relationships 

For the gaseous mixture of dry air and water vapour, the ideal gas law is introduced. 

The equation of state of perfect gas (Clapeyron’s equation) and Dalton's law are 

applied to dry air (ga), water vapor (gw) and moist air (g). 

 

 /ga ga

ap TR Mr= ,  /gw gw

wp TR Mr= ,  
gwgag ppp += ,  

g ga gwr r r= +  (5) 

 

In the partially saturated zones, the equilibrium water vapor pressure p
gw

(x,t) can be 

obtained from the Kelvin-Laplace equation, where the water vapor saturation pres-

sure, p
gws

(x,t), depending only upon the temperature, can be calculated from the 

Clausius-Clapeyron equation or from an empirical correlation. The saturation degree 

Sw(x,t) and the relative permeability k
rp

(x,t) are experimentally determined functions 

dependent on capillary pressure and temperature (e.g. [Fra08] for Sw). The bulk 

density of liquid water that is dependent on the temperature is modeled using the 

relationship proposed by Furbish [Fur97]. The liquid water viscosity, dry air and 

water vapor viscosity, and the latent heat of evaporation are also temperature de-

pendent relationships. 

 

The solid skeleton is assumed elastic or elasto-plastic, homogeneous and isotropic in 

the numerical simulations described in Section 5. Its mechanical behavior is de-

scribed within the classical rate-independent elasto-plasticity theory for geometrical-

ly linear problems. For the third numerical example, the yield function restricting the 

effective stress state s′(x,t) is developed in the form of Drucker-Prager model for 

simplicity, with linear isotropic softening and non-associated plastic flow to take 

into account the post-peak and dilatant behavior of dense sands, respectively. The 

return mapping and the consistent tangent operator for the Jacobian matrix, equa-

tions (9), is developed in [San06], where the singular behavior of the Drucker-Prager 

yield surface in the zone of the apex is solved by using the multi-surface plasticity 

theory (following the formulation developed in [San02] for isotropic linear harden-

ing/softening and volumetric-deviatoric non-associative plasticity in case of large 

strain elasto-plasticity).  
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The Drucker-Prager yield function with linear isotropic hardening/softening has 

been used in the form 

 

 ( ) [ ]2
03

, , 3 F FF p p c hx a b x= + - +s s  (6) 

 

in which [ ]1
3

:p ¢= σ 1  is the mean effective Cauchy pressure, s  is the L2 norm of 

the deviator effective Cauchy stress tensor s′, c0 is the initial apparent cohesion, aF 

and bF are two material parameters related to the friction angle f  of the soil,  

 

 
2
3

sin 6cos
2

3 sin 3 sin
F F

f f
a b

f f
= =

- -
 (7) 

 

h the hardening/softening modulus and x the equivalent plastic strain.  

To take into account the effect of capillary pressure and temperature on the evolu-

tion of the yield surface, the interested reader can refer, for example, to the chapter 

by Manzanal et. al of this book and [Fra08] for capillary dependent constitutive 

relationships in isothermal or non-isothermal conditions, respectively. 

4  Spatial and time discretization 

The finite element model is derived by applying the Galerkin procedure for the spa-

tial integration and the generalized Newmark method for the time integration of the 

weak form of the balance equations (1)-(4) [Lew98], [Zie99], [Zie00].  

In particular, after spatial discretization within the isoparametric formulation, the 

following non-symmetric, non-linear and coupled system of equations is obtained: 

 

 

g c g c

gg gc gT gu gg gc gT g

g c g c

cg cc cT cu cg cc cT c

g c g c

Tg Tc TT Tu Tg Tc TT T

T g c

uu ug uc u
u 'dW - + =

C p C p C T C u K p K p K T f

C p C p C T C u K p K p K T f

C p C p C T C u K p K p K T f

M B K p K p fs

g c g cg c g c
C p C p C T C u K p K pC p

g c g cg c g cg c g cg c g cg c g cg c g c

gT gugT gu

g c g c
C T C u

g c g cg c g cg c g c

g c g c
C p C p C T C u K p K pC p

g c g cg c g cg c g cg c g cg c g cg c g c

cT cucT cu

g c g c
C T C u

g c g cg c g cg c g c

g c g c
C p C p C T C u K p K pC p

g c g cg c g cg c g cg c g c
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 (8) 

 

where the displacements of the solid skeleton u(x,t), the capillary pressure p
c
(x,t), 

the gas pressure p
g
(x,t) and the temperature T(x,t) are expressed in the whole domain 

by global shape function matrices Nu(x), Nc(x), Ng(x), NT(x) and the nodal value 

vectors ( ) ( ) ( ) ( ), , ,c gt t t tu p p T .  

Following the Generalized Newmark Method, equations (8) are rewritten at time 

t(n+1). The elements of the matrices Cij, Kij and the vectors fi are given in [San15]. 

In this study, the generalized Newmark time integration scheme [Zie00] is applied to 

the non-linear equation system (8) and a non-linear system of algebraic equations is 
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obtained, in which the unknowns are 
g cp , p , T ,é ù= D D D D

ë û
é ù
ë û
é ùé ùé ùé ùé ùé ùé ùé ùg cé ùé ùg cg cp , p , T ,p , p ,g cg cg cg c

ë û
é ùDp , p , T ,p ,é ùé ùp , p , T ,p , p ,g cg cg cé ùé ùé ùé ùT ,é ùé ùé ùT ,
ë û
é ùé ùé ùé ùx u . The non-linear 

system is solved by Newton-Raphson method, thus obtaining the equation system 

that can be solved numerically (written below in a compact form) as: 

 

 ( )
1

1

1 1
i

n

i i

n n

+

+
+ +

¶
D @ -

¶ X

G
X G X

X
 (9) 

 

with the symbol ( ) 1
1

+
+· i

n  to indicate the current iteration (i+1) in the current time step 

(n+1) and where ¶G¤¶X is the Jacobian matrix. 

Owing to the strong coupling between the mechanical, thermal and the pore fluids 

fields, a monolithic solution of (9) is preferred. 

5  Finite element simulations 

This section addresses the numerical validation of the model previously derived and 

presents an application studying a biaxial strain localization test. 

Different tests have been simulated and presented in [San15], aiming to validate: a) 

the wave propagation in a solid material (equation (1) restricted to single phase solid 

material), b) the isothermal water saturated model (equations (1) and (3) with Sw=1), 

c) the isothermal variably saturated model (equations (1), (2) and (3)) and d) the 

non-isothermal water saturated model (equations (1), (3) and (4) with Sw=1). Ana-

lytical solutions are available in [Slu92] and [Boe93] for the first two tests respec-

tively, while the numerical results from tests c) and d) have been compared with the 

numerical solution of the corresponding quasi-static models because of the lack of 

analytical solutions. Some representative results of tests c) and d) are illustrated 

here. 

5.1 Drainage of liquid water from initially water saturated soil 

column 

This numerical test is based on an experiment performed by Liakopoulos [Lia65] on 

a column 1 meter high (Figure 1) of Del Monte sand and instrumented to measure 

the moisture tension at several points along the column during its desaturation due to 

gravitational effects. Before the start of the experiment, water was continuously 

added from the top and was allowed to drain freely at the bottom through a filter, 

until uniform flow conditions were established. Then the water supply was ceased 

and the tensiometer readings were recorded. The finite element simulation is per-

formed with the two-phase flow model in isothermal conditions. For the numerical 

calculation, a two-dimensional problem in plane strain conditions is solved; the 

spatial domain of the column is divided into 20 eight-node isoparametric finite ele-

ments of equal size. Furthermore, nine Gauss integration points were used. The 
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material parameters are listed in [Gaw96] or [San15], as well as the description of 

the boundary conditions and the equations for the saturation-capillary pressure and 

the relative permeability of water-capillary pressure relationships. 

This problem has been solved considering single or two-phase flow mainly in quasi-

static condition (e.g. [Gaw96]); a finite element solution in dynamics was presented 

in [Sch98]. The initial hydro-mechanical equilibrium state is obtained via a prelimi-

nary quasi-static solution. 
The comparison between the dynamic and the quasi-static solution is plotted in Fig-

ures 2 to 4, where the profiles for liquid water pressure, liquid water saturation and 

vertical displacement along the column are plotted. Since the inertial loads are neg-

ligible in the experiment, the finite element solution in dynamics gives almost the 

same results of the quasi-static model [Gaw96], [Gaw09]. 

 

 

Figure 1: Geometry and finite element discretization of the sand column. 

 

a) b)   

Figure 2: Profiles of capillary pressure versus height: a) dynamic solution; b) com-

parison between the quasi-static and the dynamic solution. 

 

0,1 m
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0,1 m

1 m
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a)  b)  

Figure 3: Profiles of liquid water saturation degree versus height: a) dynamic solu-

tion; b) comparison between the quasi-static and the dynamic solution. 

 

a)  b)  

Figure 4: Profiles of vertical displacement versus height: a) dynamic solution; b) 

comparison between the quasi-static and the dynamic solution. 

5.2 Numerical validation of the non-isothermal water saturated 

model 

This problem deals with a water saturated thermo-elastic consolidation [Abo85], 

simulating a column, 7 m high and 2 m wide, of a linear elastic material subjected to 

an external surface load of 10 kPa and to a surface temperature jump of 50 K above 

the initial temperature of 293.15 K (Figure 5). The material parameters used in the 

computation are summarized in [San08]. The liquid water and the solid grain are 

assumed incompressible for the quasi-static analysis, whereas the compressibility of 

the liquid water is taken into account in the dynamic analysis. The initial and bound-

ary conditions are described in [San08] and [San15]. Plane strain condition is as-

sumed. The spatial domain is discretized with eight-node isoparametric elements; 

nine Gauss points are used. 

The solution of the finite element model presented in this work is compared with the 

quasi-static solution [San08] and is plotted in Figures 6 and 7. The results show that 

the dynamic solution is faster than the quasi-static one at the beginning of the analy-

sis, and that the dynamic solution reaches the quasi-static one at the steady-state. 
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Figure 5: Description of the non-isothermal water saturated test. 

 

a) b)  

Figure 6: Temperature time history for node 319 up to the steady state solution (a) 

and in the first period (b) highlighted in a). 

 

a)  b)  

Figure 7: a) Capillary pressure time history for node 319 and b) vertical displace-

ment time history for node 399. 

 

 = 10 kPa 

 = 50 K 
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5.3 Globally undrained biaxial compression test 

A plane strain compression test of initially water saturated dense sand in globally 

undrained conditions is simulated here with the model developed in the previous 

sections. This case was solved in [San06] in quasi-static conditions and is inspired 

by the experimental work of Mokni and Desrues [Mok98], in which cavitation of the 

liquid water was experimentally observed at localization.  

A sample of 34 cm height and 10 cm width is compressed with imposed vertical 

displacement applied to the top surface at a velocity of 3.6 mm/s (Figure 8). Vertical 

and horizontal displacements are constrained at the bottom surface; the boundary of 

the sample is impervious and adiabatic. 

The mechanical behavior of the solid skeleton is simulated using the elasto-plastic 

Drucker-Prager constitutive model (with isotropic linear softening and non-

associated plastic flow) summarized in Section 3. At time t= 0 seconds, the initial 

conditions for the domain are the hydrostatic water pressure, the gas pressure at 

atmospheric value and a temperature of 293.15 K. Gravity acceleration is taken into 

account; the initial stress state in equilibrium with the initial conditions and thermo-

hydro boundary conditions is computed with the corresponding quasi-static model 

[San06]. The geomechanical characteristics of the dense sand are given in [San06]. 

Figures 9 and 10 show the contour plots at 13 seconds of the following thermo-

hydro-mechanical variables: equivalent plastic strain, volumetric strain, capillary 

pressure, liquid water saturation and relative humidity. Positive volumetric strains 

are observed inside the dilatant shear bands (Figure 9b), inducing a liquid water 

pressure drop up to the development of capillary pressures (Figure 10a) desaturating 

the plastic zones (Figure 10b) because of the phase change of the liquid water into 

vapor due to cavitation (Figure 10c). 

 

 

Figure 8: Finite element discretization and boundary conditions of the biaxial com-

pression test. 
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a) b)  

Figure 9: Numerical solution at 13 s: a) equivalent plastic strain, b) volumetric 

strain. 

 

a) b) c)  

Figure 10: Numerical solution at 13 s: a) capillary pressure, b) liquid water satura-

tion, c) relative humidity. 

 

To study the independence of shear band width from the finite element size in dy-

namics, e.g. [Sch96], [Sch99], [Zha99] and [Sch06], test runs with meshes of 85, 

340 and 1360 elements have been carried out. In this case, the analysis of the finite 

element results [Cao15] shows that the shear band width is reasonably mesh inde-

pendent, while the peak value of the equivalent plastic strain and, as a consequence, 

of the volumetric strain, the capillary pressure, the water vapor pressure and the 

relative humidity are sensitive to mesh refinement and a regularization scheme 

would be needed as expected (e.g. [Zha99], [Sch99] and [Sch06]), because the inter-
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nal length scale given by the liquid water motion [Zha99] is not sufficient to regular-

ize the numerical solution. 

6  Conclusions 

A model for the analysis of the thermo-hydro-mechanical behavior of porous media 

in dynamics was developed. Starting from the generalized mathematical model de-

veloped in [Lew98] for deforming porous media in non-isothermal conditions, the u-

p-T formulation was derived following [Zie99]. The validity of such an approxima-

tion is limited to low frequencies problems [Zie99], as in earthquake engineering. In 

this formulation, the relative accelerations of the fluids and the convective terms 

related to these accelerations are neglected. 

The numerical model was derived within the finite element method: the standard 

Bubnov-Galerkin procedure [Zie00] was adopted for the discretization in space, 

while the implicit and unconditionally stable generalized Newmark procedure was 

applied for the discretization in time [Zie00]. 

The model was implemented in the finite element code Comes-Geo [Lew98], 

[Gaw96], [San06], [San08], [San09], [Gaw09], [Gaw10]. The formulation and the 

implemented solution procedure were validated through the comparison with litera-

ture benchmarks, finite element solutions or analytical solutions. In this work, com-

parison between the finite element solution in dynamics and the corresponding qua-

si-static solution is presented by studying the non-isothermal consolidation in a 

water saturated column and the drainage of liquid water in an initially water saturat-

ed soil column. 

This work extends the model developed in [Sch98] to non-isothermal conditions and 

removes the passive air phase assumption of the multiphase porous media model in 

dynamics developed in [Zie99] and [Gaw98]. 
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