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Role of trapping and crowding as sources of negative differential mobility
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Increasing the crowding in an environment does not necessarily trigger negative differential mobility of strongly
pushed particles. Moreover, the choice of the model, in particular the kind of microscopic jump rates, may be
very relevant in determining the mobility. We support these points via simple examples and we therefore address
recent claims saying that crowding in an environment is likely to promote negative differential mobility. Trapping
of tagged particles enhanced by increasing the force remains the mechanism determining a drift velocity not
monotonous in the driving force.
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I. INTRODUCTION

In a system at thermodynamic equilibrium, a particle
responds to a gentle push by moving, on average, toward the
direction of the applied force. Therefore, the mean-velocity-
to-force ratio, called mobility, is a positive quantity. In general,
linear response coefficients are positive in equilibrium because
the structure of the fluctuation response relations involve
positive correlations between observables and the entropy that
perturbations would produce [1]. Far from equilibrium there is
more variability. For example, thermal conductivities that are
not monotonous in the external forcing have been found [2].

If a pushed particle starts to go slower by increasing the
force, then we have the phenomenon of negative differential
mobility (NDM) [3–12]. If the particle responds by drifting
against the force, we speak of absolute negative mobility. The
latter behavior has been observed in models subject to ratchet
effects [13], in systems driven by periodic forces [14,15], and
for driven Janus particles in corrugated channels [16].

Here we focus on NDM. Negative differential conductivity
was discovered in the 1960s and realized in Gunn diodes [17]
and other semiconductors at low temperature [17–19]. Other
examples of NDM are listed in Ref. [10]. A recent application
of NDM is the sorting of soft matter colloidal particles [20].

For common overdamped diffusion, NDM is expected when
particles’ surrounding environment contains shallow barriers,
called “traps” hereafter, in which the particle driven by an
external force might spend more and more time upon an
increase of the force. For this reason, the mobility of the
particle may actually decrease rather than increase if the force
is raised. An example of this effect was given by particles
diffusing within a percolating cluster [3] (an instance of
hopping process in disordered media [21,22]), in which traps
are represented by the dangling ends and all portions with
concavity against the direction of the force. A pedagogical
exemplification of this “getting more from pushing less”
phenomenon was then given by Zia and coworkers [4]. In
a two-lanes jump system that can be solved exactly, NDM
emerges when one lane contains a hook that can trap the
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particle. The NDM may be described [8,9,11] from the point
of view of a recently developed linear response theory for
general nonequilibrium systems [23–25]. In this context, NDM
emerging in simulations of ring polymers impaled by rods of
a lattice with defects [11] might explain irregular migration
speeds in experiments comparing linearized and circular DNA
plasmids [26,27]. NDM was also found for particles diffusing
in a crowded environment [7,9,10].

One expects to observe NDM if there is a form of trapping
due to a specific coupling between the tracers (tagged particle,
polymer, etc.) and their environment. Jamming of particles,
such as in kinetically constrained models [5,6], may also be
seen as a form of mutual trapping. However, just a density
of obstacles does not say anything straightforward about such
propensity to meet traps if the features of the obstacles and of
the tracers are not explicitly specified. Yet, using the formalism
of mesoscopic jump systems, it was recently proposed [10] that
NDM should be a generic feature for particles strongly pulled
in crowded environments.

We believe that shifting the focus from the trapping
mechanism to the role of crowding is not functional to a better
understanding of NDM. To support our point, in this paper we
show that some of the results presented in Ref. [10], and more
generally the appearance of NDM, may depend crucially on
the choice of microscopic jump rates. Moreover, we use some
simple models to show that crowding may be uncorrelated
with NDM or even anticorrelated. This occurs when too many
tagged particles are introduced in the system, so traps are
saturated.

II. JUMP RATES AND A BASIC EXAMPLE

As in previous studies, the results are exposed in the context
of Markov jump processes. The states of the system are discrete
and evolve with jumps taking place in continuous time. More
specifically, we have in mind subsets of the square lattice
where the particle may occupy free sites and jump to the first
neighbors if the transitions are allowed. Forbidden transition
may occur if the target of the jump is already occupied or if
there is an idealized wall separating the two sites involved in
the jump. We use a force F parallel to the x axis and periodic
boundary conditions in this direction. Hence, we monitor the
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TABLE I. Jump rates of the particle on the square lattice
with periodic boundary conditions. Here X = 2(eF/2 + e−F/2) and
Z = eF/2 + e−F/2 + 2, so all rates = 1/4 for F = 0.

Direction Rate Model A Model B

Right k+ eF/2/X ∼ (1 − ε2)/2 eF/2/Z ∼ 1 − 2ε

Left k− e−F/2/X ∼ ε2/2 e−F/2/Z ∼ ε2

Up or down k0 1/4 1/Z ∼ ε

average velocity v ≡ 〈v〉F in the x direction. The differential
mobility μ ≡ dv/dF becomes negative in the regions where
v decreases for increasing F .

For the sake of simplicity we use a unit temperature times
Boltzmann constant combination, kBT = 1, and unit spacing
between sites of the square lattice. This means that the principle
of local detailed balance [28] is met if the jump rate k(C → C ′)
is related to the jump rate k(C ′ → C) of the reversed transition
by

k(C → C ′)
k(C ′ → C)

= exp[U (C) − U (C ′)], (1)

where U (C) is the energy associated to the configuration C.
When a particle is subject to a constant force F and the jump
C → C ′ is in the direction of the force, the energy difference
becomes the work done by the force, U (C) − U (C ′) = F .
When the jump is orthogonal to F , simply U (C) = U (C ′).
There are many (actually infinite) choices of the jump rates
that satisfy the local detailed balance condition.

Normalizing jump rates of all four exit directions from a
site with a common denominator is a popular choice (see, e.g.,
Refs. [4,7,10]), possibly because it is elegant and resembles a
partition function normalization of Boltzmann weights. As a
consequence, the rate of jumps directed transversely to a large
force F scale as ∼ exp(−F ). Another possibility would be to
keep transversal rates independent of F [9]. We call model A
the latter and model B the former. The details of these rates
are given in Table I, where we also specify the scaling for
large F as a function of ε = e−F/2. We pick up just these two
variants among infinite ones because they already represent
two distinct classes of dynamical behavior.

In order to have a quick taste of the qualitatively dissimilar
mobilities that model A and B may give, let us introduce a
minimal two-lanes model of particle diffusing in a meandering
channel. This model includes two kind of states: C1 states
where the force pushes the particle against a barrier (colored
boxes in Fig. 1) and C2 states where the force pulls the particle
away from a barrier (white boxes). One easily finds the density
of states p and the mean velocity of particles in the steady state,

p(C1) = k+ + k0,

p(C2) = k− + k0,

v = k+p(C2) − k−p(C1). (2)

For models A and B the mean velocities are

vA = 1

8
tanh

F

2
, vB = eF/2 − e−F/2

(eF/2 + e−F/2 + 2)2
, (3)

respectively. The first is clearly increasing with F while vB

cannot be monotonous in F as vB ∼ ε for F → ∞ (Fig. 1

FIG. 1. (Color online) Sketch of the two-lanes toy model, and its
mean velocity [see (3)] as a function of the force, for model A and
model B.

shows the plots of both functions). Hence, model A does not
yield NDM in this case, but model B does.

A similar fact pertains to scaling theories focused on the
density of obstacles [7,10]. For example, the theory presented
in Ref. [10] does not yield NDM if constant transversal rates
are plugged in their Eq. (2) for the average velocity of the
tracer, rather than those ∼ ε of model B. Indeed, with model
A rates, the same formula becomes a monotonously increasing
function of F and NDM disappears.

In the following section we show a similar effect for a
variant of the two-dimensional diffusion within slowly moving
barriers, which was recently used [9,10] as a main benchmark
for testing ideas on NDM.

III. SINGLE TAGGED PARTICLE
WITHIN FLOATING BARRIERS

Model A was used [9] (with a slightly different nor-
malization of rates) to show how NDM arises for particles
moving in crowded environments when the (nonoverlapping)
obstacles have low-enough mobility γ : Given a configuration
C with N obstacles and 1 tagged particle [see an example in
Fig. 2(a)], the bare escape rate from C is λ(C) = λ1 + Nγ ,
where λ1 = k+ + k− + 2k0 is the escape rate of the particle
from any site within an empty grid (λ1 = 1 for the rates
summarized in Table I). We extract a waiting time τ according
to an exponential distribution p(τ ) ∼ exp[λ(C)τ ]. After the
extracted τ , a move is attempted, picking up the tagged particle
with probability 1/λ or a random barrier with probability γ /λ.
The tagged particle is then moved with a random selection of
the direction that follows the rates previously exposed, while a
barrier tries to jump with probability 1/4 to a random nearest
neighbor. An update realizes the new configuration only if
it is allowed, otherwise the configuration is unchanged and
another waiting time is added to the already-spent τ until a
valid new configuration is achieved. Such modified Gillespie
algorithm [29] is very simple to implement and allows us to
sample efficiently the dynamics of these models. Note that
a time scale τ ∗ = 1/γ is associated to barriers’ motion, as
opposed to a time scale equal to 1 for the particle motion.
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(a) (b)

FIG. 2. (Color online) (a) Configuration with density of obstacles
ρb = 0.2. The circle (red online) is the tagged particle and the squares
are the barriers. The four obstacles marked with a cross are forming
a trap for the tracer. (b) Same ρb = 0.2, when obstacles cannot have
vertices overlapped.

We have performed simulations within square lattices of
side L filled with density ρb = N/L2 of floating barriers. An
example of a typical configuration for ρb = 0.2 is shown in
Fig. 2(a). In all simulation we find that both models A and B
display a similar NDM at sufficiently large values of F .

However, it is not possible to switch with ease from one
choice of microscopic jump rates to another. Indeed, even
with the same crowding of obstacles, the situation changes
drastically if these cannot share corners [Fig. 2(b)] and thus
cannot join to form concave traps. In this case model A
looses NDM while model B continues to display NDM
(Fig. 3) because the tracer cannot easily move away from a
situation as in Fig. 2(b), where the rates of model B lead
to an effective trapping of the particle. By now this should be
hardly surprising, as the constraint of nonoverlapping barrier’s
corners leads to morphologies analogous to those exemplified
by the meandering channel model of the previous section,
where no concavity is present and model A finds no traps to
generate NDM. In the limit of low ρb the corner constraint
should be irrelevant. Yet theoretical approaches [7,10] were
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FIG. 3. (Color online) Mean velocity vs force for models A
and B with nonoverlapping corners [case (b) of Fig. 2], for L = 20,
ρb = 0.2, and two values of the obstacles’ mobility γ . Similar results
are found for other small γ ’s, in particular model A is quite insensitive
to the value of γ .

used to compute a nontrivial mobility also in the limit of low
obstacle densities. Our results suggest that this procedure leads
to an incomplete picture if only model B is considered.

IV. MULTIPLE TAGGED PARTICLES
WITHIN FLOATING BARRIERS

The crowding of an environment may result from the
presence of different molecular species, and in general it is
not straightforward to anticipate the mobility of particles in
complex conditions. Here we may think of the supercrowded
environment of the cell [30] which affects the diffusive
properties of passive particles [31]. Much less is known about
the behavior of active particles like molecular motors in such
an environment [32].

As a first step toward more complex systems, in the simple
model described in the previous section we may think the
crowding not only determined by its barriers but also by a finite,
possibly large, number of tracers. The total density of occupied
sites in the system is thus the sum of the density of barriers ρb

and the density of tracer particles ρp. The resulting model is,
more than that of Ref. [10], a combination of the symmetric
and asymmetric exclusion processes. The condition of a finite
yet low density of tracers seems similar to the condition of
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FIG. 4. (Color online) (a) Configuration for model A with
L = 20, ρp = 0.04, ρb = 0.25, γ = 10−3, and F = 8 pushing par-
ticles to the right. Tracers that may follow F by eventually never
stepping back against it are drawn as empty circles (only one in this
case). (b) The same for ρp = 0.08. (c) Mean velocity vs force (same
parameters) for several particle densities.
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low filling of bands of electrons, which leads to NDM in
low-temperature semiconductors [19,21].

For model A it is not difficult to find conditions of low
ρ = ρp + ρb where NDM is present as well as conditions with
high ρ where NDM is not observed, see the examples in Fig. 4.
The latter state of normal mobility arises because the behavior
of tracers emerges as an average of two typical conditions, one
of tracers stuck in traps and one of tracers free to move because
all available traps are occupied by other tracers. For several
values of ρb we find that the contribution from running tracers
determines a normal mobility for sufficiently high values of ρp .
This is expected to occur when there are more particles than
the average number of traps [e.g., as in Fig. 4(b)]. If instead
ρp is low enough, trapping is still the dominating behavior
[see Fig. 4(a)].

This model therefore is an example where increased
crowding leads to the disappearance of NDM. Again, this
strengthens our point that the link between crowding and
the mobility of particles is not straightforward. On the other
hand, the numerical results may be correctly interpreted at
least qualitatively in terms of saturation of trapping effects.
Also in this case one could devise simpler systems where the
mechanism of filling of all the traps is more easily detected. For
example, in the two-lanes models where one lane is occupied
by “hook” states that act as traps [4,8], we have numerically
verified that NDM is present only if the number of tagged
particles is at most equal to the number of traps.

V. DISCUSSION AND CONCLUSIONS

We have presented results from some simple models
suggesting that the phenomenon of NDM in many cases can
be ascribed to the presence of long-living traps that catch
the strongly pushed traced particles. There is instead no
one-to-one correspondence between crowding and NDM. In
particular, according to our results, it seems far fetched to
draw conclusions from either simulations or from mesoscopic
theories if these rely on the specific choice of the jump rates.

The choice of transversal jump rates normalized so they
decrease with the force is quite popular but it needs to
be understood and justified. For example, starting from the
concept of Brownian motion of a particle in a fluid, we do
not see how the increasing force could lead to a weaker
transversal motion, namely to a diffusion coefficient in the fluid
that depends on a transversal F . Also for particles diffusing
by jumping in a pattern of energy minima it is not general
to find a decrease of transversal motion generated by an
applied force. Think, for example, of a particle density within
a minimum, at the microscopic level of description (while
the mesoscopic level is the one of jump systems describing
the energy minimum as a single state). If the applied force
shifts the maximum of this density closer to the energetic
saddle points that connect to nearby states, also in transverse
directions, then we would witness a case where the force would
actually enhance the transversal motion. It seems that such a
scenario is in principle as likely as that where the transversal
motion is depressed by the force. Hence, transversal jump
rates that decrease exponentially with the applied force should
be tested in parallel with other choices, keeping in mind that
any specific system might be a realization of one of these
choices.

Our examples also show that focusing on the density of
objects responsible for the crowding is not a stand-alone
strategy. One needs first to determine whether the tagged
mobile objects (e.g., particles or polymers) might become
more stuck by the crowded environment when the pushing
force is increased. Furthermore, it is also relevant to check
if, on average, the traps are at least as many as the tagged
particles. The study of NDM in more complex simulations
than those considered so far (such as the condition outlined in
the previous section where multiple tracers coexists) should
help to further clarify these issues. Of course, this is just
part of a broader scenario where kinetic constraints, jamming,
glassy dynamics, alternating external forces, self-propulsion,
etc., furnish many more mechanisms leading to negative
mobility.

[1] R. Kubo, M. Toda, and N. Hashitsume, Statistical Physics:
Nonequilibrium Statistical Mechanics, 2nd ed. (Springer, Berlin,
1992), Vol. 2.

[2] B. Li, L. Wang, and G. Casati, Negative differential thermal
resistance and thermal transistor, Appl. Phys. Lett. 88, 143501
(2006).

[3] D. Dhar, Diffusion and drift on percolation networks in an
external field, J. Phys. A 17, L257 (1984).

[4] R. K. P. Zia, E. L. Praestgaard, and O. G. Mouritsen, Getting
more from pushing less: Negative specific heat and conduc-
tivity in nonequilibrium steady states, Am. J. Phys. 70, 384
(2002).

[5] R. L. Jack, D. Kelsey, J. P. Garrahan, and D. Chandler, Negative
differential mobility of weakly driven particles in models of
glass formers, Phys. Rev. E 78, 011506 (2008).

[6] M. Sellitto, Asymmetric Exclusion Processes with Constrained
Dynamics, Phys. Rev. Lett. 101, 048301 (2008).

[7] S. Leitmann and T. Franosch, Nonlinear Response in the Driven
Lattice Lorentz Gas, Phys. Rev. Lett. 111, 190603 (2013).

[8] P. Baerts, U. Basu, C. Maes, and S. Safaverdi, Frenetic origin of
negative differential response, Phys. Rev. E 88, 052109 (2013).

[9] U. Basu and C. Maes, Mobility transition in a dynamic
environment, J. Phys. A 47, 255003 (2014).

[10] O. Bénichou, P. Illien, G. Oshanin, A. Sarracino, and R. Voi-
turiez, Microscopic Theory for Negative Differential Mobility
in Crowded Environments, Phys. Rev. Lett. 113, 268002 (2014).

[11] D. Michieletto, M. Baiesi, E. Orlandini, and M. S. Turner, Rings
in random environments: Sensing disorder through topology,
Soft Matter 11, 1100 (2015).

[12] G. Oshanin, J. Klafter, and M. Urbakh, Saltatory drift in a
randomly driven two-wave potential, J. Phys.: Condens. Matter
17, S3697 (2005).

[13] R. Eichhorn, P. Reimann, and P. Hänggi, Brownian Motion
Exhibiting Absolute Negative Mobility, Phys. Rev. Lett. 88,
190601 (2002).

[14] L. Machura, M. Kostur, P. Talkner, J. Łuczka, and P. Hänggi,
Absolute Negative Mobility Induced by Thermal Equilibrium
Fluctuations, Phys. Rev. Lett. 98, 040601 (2007).

042121-4

http://dx.doi.org/10.1063/1.2191730
http://dx.doi.org/10.1063/1.2191730
http://dx.doi.org/10.1063/1.2191730
http://dx.doi.org/10.1063/1.2191730
http://dx.doi.org/10.1088/0305-4470/17/5/007
http://dx.doi.org/10.1088/0305-4470/17/5/007
http://dx.doi.org/10.1088/0305-4470/17/5/007
http://dx.doi.org/10.1088/0305-4470/17/5/007
http://dx.doi.org/10.1119/1.1427088
http://dx.doi.org/10.1119/1.1427088
http://dx.doi.org/10.1119/1.1427088
http://dx.doi.org/10.1119/1.1427088
http://dx.doi.org/10.1103/PhysRevE.78.011506
http://dx.doi.org/10.1103/PhysRevE.78.011506
http://dx.doi.org/10.1103/PhysRevE.78.011506
http://dx.doi.org/10.1103/PhysRevE.78.011506
http://dx.doi.org/10.1103/PhysRevLett.101.048301
http://dx.doi.org/10.1103/PhysRevLett.101.048301
http://dx.doi.org/10.1103/PhysRevLett.101.048301
http://dx.doi.org/10.1103/PhysRevLett.101.048301
http://dx.doi.org/10.1103/PhysRevLett.111.190603
http://dx.doi.org/10.1103/PhysRevLett.111.190603
http://dx.doi.org/10.1103/PhysRevLett.111.190603
http://dx.doi.org/10.1103/PhysRevLett.111.190603
http://dx.doi.org/10.1103/PhysRevE.88.052109
http://dx.doi.org/10.1103/PhysRevE.88.052109
http://dx.doi.org/10.1103/PhysRevE.88.052109
http://dx.doi.org/10.1103/PhysRevE.88.052109
http://dx.doi.org/10.1088/1751-8113/47/25/255003
http://dx.doi.org/10.1088/1751-8113/47/25/255003
http://dx.doi.org/10.1088/1751-8113/47/25/255003
http://dx.doi.org/10.1088/1751-8113/47/25/255003
http://dx.doi.org/10.1103/PhysRevLett.113.268002
http://dx.doi.org/10.1103/PhysRevLett.113.268002
http://dx.doi.org/10.1103/PhysRevLett.113.268002
http://dx.doi.org/10.1103/PhysRevLett.113.268002
http://dx.doi.org/10.1039/C4SM02324B
http://dx.doi.org/10.1039/C4SM02324B
http://dx.doi.org/10.1039/C4SM02324B
http://dx.doi.org/10.1039/C4SM02324B
http://dx.doi.org/10.1088/0953-8984/17/47/004
http://dx.doi.org/10.1088/0953-8984/17/47/004
http://dx.doi.org/10.1088/0953-8984/17/47/004
http://dx.doi.org/10.1088/0953-8984/17/47/004
http://dx.doi.org/10.1103/PhysRevLett.88.190601
http://dx.doi.org/10.1103/PhysRevLett.88.190601
http://dx.doi.org/10.1103/PhysRevLett.88.190601
http://dx.doi.org/10.1103/PhysRevLett.88.190601
http://dx.doi.org/10.1103/PhysRevLett.98.040601
http://dx.doi.org/10.1103/PhysRevLett.98.040601
http://dx.doi.org/10.1103/PhysRevLett.98.040601
http://dx.doi.org/10.1103/PhysRevLett.98.040601


ROLE OF TRAPPING AND CROWDING AS SOURCES OF . . . PHYSICAL REVIEW E 92, 042121 (2015)

[15] F. Marchesoni and S. Savel’ev, Rectification currents in two-
dimensional artificial channels, Phys. Rev. E 80, 011120 (2009).

[16] P. K. Ghosh, P. Hänggi, F. Marchesoni, and F. Nori, Giant
negative mobility of Janus particles in a corrugated channel,
Phys. Rev. E 89, 062115 (2014).

[17] E. M. Conwell, Negative differential conductivity, Phys. Today
23, 35 (1970).

[18] F. Nava, C. Canali, F. Catellani, G. Gavioli, and G. Ottaviani,
Electron drift velocity in high-purity Ge between 8 and 240 K,
J. Phys. C 9, 1865 (1976).

[19] D. I. Aladashvili, Z. A. Adamiya, K. G. Lavdovskii, E. I. Levin,
and B. I. Shklovskii, Negative differential resistance in the
hopping-conductivity region in silicon, Pis’ma Zh. Eksp. Teor.
Fiz. 47 390 (1988) [JETP Lett. 47, 466 (1988)].

[20] R. Eichhorn, J. Regtmeier, D. Anselmetti, and P. Reimann,
Negative mobility and sorting of colloidal particles, Soft Matter.
6, 1858 (2010).

[21] N. Van Lien and Shklovskii, Hopping conduction in strong
electric fields and directed percolation, Solid State Commun.
38, 99 (1981).
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