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1 Introduction

After the discovery [1, 2] of a Higgs boson compatible [3, 4] with the Standard Model (SM),

and the non-detection so far of new particles [5] at the LHC, searches for Dark Matter (DM)

in the form of a Weakly Interacting Massive Particle (WIMP) are becoming a central theme

for the LHC general purpose experiments (for a pedagogical review, see e.g. [6]).

In the WIMP hypothesis, the DM particle has a mass in the GeV–TeV range, and

the strength of its couplings to the SM particles is roughly of electroweak size. The relic

density, generated by thermal freeze-out, can then match the cosmological and astrophysical

observations. This so-called “WIMP miracle” receives further support from the fact that

WIMPs are ubiquitous in new physics models of ElectroWeak Symmetry Breaking (EWSB),

motivated by the naturalness problem of the SM. The latter is an appealing and intensively

explored possibility, but WIMP DM might well originate from a completely unrelated

sector. Moreover, we currently have no idea of how the complete EWSB sector looks like,

thus there is not much we can say a priori on the specific properties of WIMP DM.

In the situation described above, a general and model-independent exploration appears

mandatory. Commitment to specific benchmark models (or classes of benchmark models)

should be avoided whenever possible in the analysis of experimental data, or at least

treated as an accessory step in the interpretation. The goal is to search for WIMP DM in

a comprehensive way, leaving no unexplored corners in theory space.1

1For example, when planning future direct-detection experiments sensitive to low-mass WIMPs in the

1–10 GeV range, it may be important to understand on general grounds how much room for discovery is

left after the so far unsuccessful LHC searches, without being committed to specific benchmark models.
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In the case of heavy-mediator DM, this program can be carried out, at least to some

extent. The working hypothesis is that the DM candidate X interacts with the SM through

the exchange of one or more particles, called “mediators”, whose mass is well above the mass

mDM of the DM particle. This assumption is motivated by the present lack of evidence for

new particles at the LHC, but it is not the only possibility. The case in which the mediator

is a SM particle, such as a weak or the Higgs boson, is equally plausible and deserves equal

attention. Light and very weakly coupled mediators can be also conceived.

Focusing on the heavy-mediator case for the rest of this paper, it is relatively easy to

set up a model-independent strategy for DM searches. We can exploit the fact that the

dynamics of the DM particle can be universally described, in the appropriate kinematical

regime, by a low-energy EFT Lagrangian [7–20], invariant under the SM gauge group and

the Lorentz group:2

LEFT = LSM + LX + Lint . (1.1)

In the above equation, LSM denotes the SM Lagrangian, LX is the free Lagrangian for X,

and Lint contains the operators describing the DM interactions with the SM particles, plus

possible additional interactions in the DM and SM sectors. If we knew the true micro-

scopic DM theory, these operators could be computed by integrating out the mediators.

However, their form is universal and the lack of information on the mediator dynamics

merely prevents us from computing the value of their coefficients, which are thus free input

parameters of the EFT.

The allowed operators in Lint can be classified according to their mass dimension

d, for different hypotheses on the DM quantum numbers. In many relevant cases the

DM quantum numbers forbid renormalizable interactions with d ≤ 4, and the lowest-

dimensional operators have d = 5, 6. For the physics to be considered in this paper, we

can assume that the d = 5 operators are negligible and the leading operators have d = 6:

Lint =
1

M2
∗

∑
i

ciOi , (1.2)

where the sum runs over all d = 6 operators Oi allowed by the symmetries, ci are di-

mensionless coefficients and the overall effective coupling strength is parameterized by a

dimensionful coupling 1/M2
∗ .

While the EFT can be formally defined independently of any consideration about its

microscopic origin, its range of applicability and thus its physical relevance depend on the

underlying theory. Namely, the EFT provides an accurate description of the underlying

model only for elementary scattering processes taking place at a low enough centre-of-mass

energy Ecm, below a certain critical scale Mcut usually called the EFT cutoff. This cutoff

is determined by the mass of the mediators in the microscopic theory but it is unknown

from the viewpoint of the EFT and it should thus be treated as a free parameter, on the

same footing as those introduced above.

The EFT is then characterised by at least three parameters:

2At energies as low as those relevant for direct detection experiments, it may even be convenient to switch

to a non-relativistic EFT [21–24], but for obvious reasons this approach precludes a direct comparison with

collider searches and will not be pursued here.
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• the DM mass mDM;

• the scale M∗ of the interaction;

• the cutoff scale Mcut.

If a single operator appears in eq. (1.2), the corresponding dimensionless coefficient can be

absorbed in M∗, otherwise the EFT parameters also include the ci coefficients. With these

free parameters, the EFT faithfully reproduces the predictions of any microscopic theory

for all processes taking place at Ecm < Mcut. Given that the effective operators in eq. (1.2)

may have many possible microscopic origins, exemplified by the plethora of models in the

literature, this simplification is particularly useful.

Notice that Mcut and M∗ are logically independent parameters, however they can be

approximately related by

Mcut = g∗M∗ , (1.3)

where g∗ is a suitably defined coupling strength of the underlying microscopic theory.

The simplest way to motivate the above equation is the analogy with the Fermi theory

of weak interactions, where the cutoff Mcut is the mass of the W boson (the mediator in

this context), g∗ is the SU(2) gauge coupling gw and 1/M2
∗ is the Fermi constant GF : they

indeed obey eq. (1.3) up to numerical factors. Alternatively, the physical meaning of g∗ can

be appreciated by noticing that the EFT interaction strength is given, for processes taking

place at a given center-of-mass energy Ecm, by the dimensionless combination E2
cm/M

2
∗ .

At the mediator scale, i.e. the cutoff scale Mcut, this strength becomes M2
cut/M

2
∗ = g2∗,

providing further justification for interpreting g∗ as the typical mediator coupling. Using

eq. (1.3) to re-express M∗ in terms of g∗ will be important in section 2.2, in order to draw

the current limits on a plane suited for theoretical interpretation.

The EFT can be straightforwardly used to predict the cross-sections for a number of

relevant reactions, namely the DM annihilation in the Early Universe, which determines

the thermal relic density, the present-day annihilation, which controls indirect detection,

and the DM scattering on nucleons, which direct search experiments try to detect. Indeed,

all these reactions take place at safely small Ecm and therefore, up to subtle effects that

might be encountered in the relic density calculation, the EFT predictions are automat-

ically trustable. If collider searches could be added to the list, we would reach the truly

remarkable conclusion that all the experimental information on heavy-mediator DM can be

simultaneously interpreted and compared in a completely model-independent fashion, with

no prejudice on the specific nature of the mediator and of its couplings to DM and to the

SM. However, the usage of the EFT at colliders is problematic, because the energy of the

reaction in which the DM is produced is not necessarily smaller than Mcut, and this risks to

invalidate the EFT predictions. The effect is quantitatively amplified by the requirement

of extra hard objects (e.g., one jet), in addition to the pairs of DM particles, for the signal

to be triggered and disentangled from the background. This problem has been discussed

at length in the recent literature (see e.g. refs. [25–34]), the goal of the present article is to

illustrate a simple and practical solution.

– 3 –



J
H
E
P
0
5
(
2
0
1
5
)
0
0
9

The basic observation is that the processes for DM production at colliders can be split

into two kinematically distinct classes, characterised by a centre-of-mass energy below and

above Mcut, respectively. The former class defines our theoretical signal, and its rate is

accurately predicted by the EFT. The latter would instead require the knowledge of the

microscopic theory and its contribution to the cross-section is thus unpredictable within

the EFT. Under certain conditions, to be described below, the second class can be simply

ignored and an experimental limit can be set on the signal defined, as explained above, by

the DM production reaction restricted to Ecm < Mcut. This is possible if the experimental

search is performed as a counting experiment in one or several signal regions, defined by

a certain set of cuts on the visible final state particles. The low and high Ecm processes

both contribute to each signal region, but in a purely additive way, since low and high Ecm

regions are quantum-mechanically distinguishable and do not interfere. Therefore a lower

bound on the expected cross-section is obtained by considering only the “well-predicted”

signal events, namely those restricted to the Ecm < Mcut region. If the result of the search

is negative, an exclusion upper bound σexc is set on the cross-section, which we can interpret

through the inequality

σSEFT

∣∣∣
Ecm<Mcut

≤ σStrue < σexc , (1.4)

where σStrue denotes the “true” signal as it would be computed in the unknown microscopic

theory. Regardless of what the latter theory is, the restricted EFT signal σSEFT system-

atically underestimates the cross-section and thus provides a conservative, but correct,

exclusion limit.3

The rest of the paper is organised as follows. In section 2 we illustrate our limit-setting

strategy in the explicit example of a four-fermion operator obtained as the product of axial

currents involving the SM quarks and a SM-singlet Majorana fermion DM. This choice is

partly motivated by the fact that direct and indirect detection experiments have a poor

sensitivity to this operator, thus collider searches are expected to be the most sensitive

ones, but the same method can be applied to all other operators. We quantify the reach of

current collider searches by recasting the ATLAS mono-jet results available at the time of

this work, and show how the latter can be presented in a theoretically useful way. Besides

the methodological proposal, the important physics point is that, from the general EFT

viewpoint, the present collider bounds on DM have not yet probed the most plausible region

of parameter space. To access such region, we need not only more energy and luminosity, as

expected in the forthcoming runs of the LHC, but also improvements in the experimental

analyses. In section 3 we describe another relevant feature of our strategy, the fact that the

limits set in the EFT can be straightforwardly re-interpreted as constraints on any specific

microscopic model. This is because the EFT parameters can be computed in the underlying

microscopic theory and expressed in terms of the “fundamental” parameters of the latter

(for previous discussions of the interplay between EFT and underlying microscopic models

in DM searches at colliders, see again refs. [25–34]). We consider two representative models,

Model A and Model B, which both give rise to the same axial-axial effective operator,

and compare the limits derived from the EFT with those obtainable from a dedicated

3For a similar approach in the context of Higgs EFTs, see [35].
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interpretation of the mono-jet search within the two models. Since our signal cross-section

systematically underestimates that of the microscopic theory, we obtain conservative limits.

We find that these limits differ significantly from those obtained in the full models only in

the kinematical region where the mediators can be resonantly produced. In such a case,

however, more comprehensive experimental strategies, complementing the event selection

used for heavy-mediator DM searches with other selections that can take full advantage

of the resonant production of the mediators (single or in pairs, with one or more jets in

the event), should be able to provide stronger bounds. We end this section by discussing

two aspects of our simple and practical approach that can be helpful for the comparison

with a similar but more model-dependent approach recently put forward in [27, 29, 30].

We finally present our conclusions in section 4. Some back-up material is collected in three

appendices. Appendices A and B provide details on Model A and Model B, respectively.

Appendix C collects the approximate analytical formulae used to draw the relic density

constraint in some of the figures.

2 Limit-setting strategy

For the present study, we assume that the DM particle is a Majorana fermion, singlet under

the SM gauge group and represented by a self-conjugate four-component spinor X = Xc,

whose free Lagrangian reads

LX =
1

2
X (i∂/−mDM)X . (2.1)

As for the interactions between X and the SM particles, we just choose a representative

example to illustrate our limit-setting strategy, assuming that they can be described, in

the low-energy limit, by the single4 axial-axial four-fermion operator5

O = − 1

M2
∗

(
Xγµγ5X

)(∑
q

qγµγ
5q

)
, (2.2)

where the sum is over all quark flavours (q = u, d, c, s, t, b), the dimensionless coefficient

c has been re-absorbed in the definition of M∗, and the overall minus sign is purely con-

ventional in the present context. This effective operator mediates DM pair-production at

the LHC, a process which is however undetectable and impossible to trigger because of

the lack of visible objects in the final state. Searches are performed by considering extra

visible emissions from the initial quarks, leading to the so-called “mono-V ” signatures,

where V could be a jet [38–43], a photon [44–47], a massive weak boson [48, 49] or a

top quark [50, 51]. Below we restrict our attention to the mono-jet searches, because they

currently show the best sensitivity, but our considerations also apply to the other channels.

4Radiative corrections may generate additional operators [36, 37], this can be important when comparing

with direct dark matter searches but does not play a role in the present context.
5This operator is twice the M6 operator in [12], and formally coincides with the D8 operator in [15],

which is often taken as a benchmark for experimental searches. Notice however that we are dealing with a

Majorana spinor normalised as in (2.1), while D8 involves a canonically normalised Dirac spinor.
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signal region SR1 SR2 SR3 SR4

pjetT and Emiss
T >120 >220 >350 >500

σexc[pb] 2.7 0.15 4.8 10−2 1.5 10−2

Table 1. Signal region definitions (cuts expressed in GeV) and 95% CL limits from ref. [42].

2.1 ATLAS mono-jet recast

Searches for a jet plus missing transverse energy (Emiss
T ) have been performed at the LHC

by the ATLAS [39, 41, 42] and CMS [38, 40, 43] collaborations.6 We focus here on the

ATLAS analysis in ref. [42] because, among those available at the time of the present work,

it is particularly suited to illustrate the general point we would like to make. The search

is performed as a counting experiment in four overlapping signal regions (SR), with pre-

selected events characterized by Emiss
T > 120 GeV, one jet with pjetT > 120 GeV, |η| < 2 and

at most one additional jet with pT > 30 GeV and |η| < 4.5. If found, the second jet is asked

to be separated in the azimuthal direction from the ~p miss
T by a cut ∆φ > 0.5. Additional

requirements, namely on the primary vertex reconstruction and on the absence of extra jets

with anomalous charged/calorimetric composition, are not directly relevant for our study,

since their impact crucially depends on the detector response, which we cannot simulate.

The four signal regions SRi (i = 1, 2, 3, 4) are defined by increasingly strong cuts on Emiss
T

and on pjetT . The results are presented as upper bounds, σiexc, on the visible cross-section

in each region. The SR definitions and the exclusion limits are summarized in table 1.

We reinterpret these limits as follows. The expected signal in each SR is expressed as

σSRi = σ ×Ai × εi , (2.3)

where σ denotes the total signal cross-section defined as in eq. (1.4), Ai is the geometric cut

acceptance, as obtained from a leading-order parton-level simulation, and the efficiency εi
is the correction due to showering, hadronization and detector effects. Acceptances and ef-

ficiencies depend on the DM mass mDM and on the cutoff Mcut, while the operator scale M∗
only enters the total cross-section as an overall factor 1/M4

∗ . We compute the parton-level

quantities σ and Ai by MadGraph 5 [53] simulations, while we estimate the εi corrections

by matching with the limits on the D8 operator scale reported in ref. [42]. In practice, we

simulate the same D8 operator signal considered in ref. [42] (i.e. Mcut =∞ in eq. (1.4)), we

compute σ×Ai and we determine εi such as to reproduce the ATLAS limit on the effective

operator scale as a function of the DM mass. Actually, since only the third SR is used by

ATLAS to set the limit, only ε3 can be obtained in this way. The same efficiencies are used

for the other SRs, although we see no reason why the efficiency should stay the same in

all the regions. The result of this procedure gives rather small efficiencies, of around 60%,

approximately constant over the whole DM mass range. We verified that this considerable

signal loss is mainly due to the fact that our simulation does not include the showering-

level production of extra jets, a significant fraction of which are vetoed in the ATLAS event

6For a very recent update of the ATLAS mono-jet analysis, which appeared after the completion of our

work, see also [52].
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selection. Notice that the efficiencies for our signal might be significantly different from

those estimated in the näıve EFT because, although based on the same effective operator

D8 of eq. (2.2), our signal is constrained by Mcut to the low invariant mass region, thus

it is expected to have different kinematical distributions. A complete simulation in differ-

ent regions of mDM and Mcut, including showering and matching, would be needed for an

accurate analysis, but goes beyond the aim of the present illustrative example.

Under the assumptions explained above, the expected signal takes the form

σSRi(M∗,mDM,Mcut) = σ(M∗,mDM,Mcut)×Ai(mDM,Mcut)× ε

=

[
1 TeV

M∗

]4
× σ(mDM,Mcut)×Ai(mDM,Mcut)× ε , (2.4)

where the overall scaling of the cross section with M∗ has been factored out and the result

expressed in terms of a reference cross-section σ computed for M∗ = 1 TeV. The reference

cross-section times the acceptances are obtained by MadGraph 5 [53] simulations of DM

pair plus one parton production, duly restricted by the hard jet kinematical cuts that define

each SR. Emiss
T cuts are automatically imposed because the jet and the missing transverse

momentum, i.e. the transverse momentum of the DM pair, are back-to-back in our parton-

level sample. The theoretical restriction Ecm < Mcut, which ensures the validity of the

EFT description as explained in the introduction, should be imposed as a cut on the total

invariant mass of the hard final states of the reaction, namely as[
p(DM1) + p(DM2) + pjet

]2
< M2

cut . (2.5)

For our parton level simulation this is equivalent to a cut
√
ŝ < Mcut on the total partonic

centre-of-mass energy, however when going to the showered and matched level one should

be careful not to cut on
√
ŝ but on the variable in eq. (2.5), with pjet the leading jet

four-momentum.

A scan is performed in the (mDM,Mcut) plane for each SR and the values of σ × Ai
are used to construct two-dimensional interpolating functions. A significant dependence on

mDM is only found for mDM & 80 GeV, while for smaller values σ×Ai is basically constant

in mDM. Once the signal cross-sections are known, the 95% CL limits are imposed as

constraints

σSRi(M∗,mDM,Mcut) < σiexc , (2.6)

out of which the 95% CL allowed regions are immediately found in the three-dimensional

parameter space (M∗,mDM,Mcut). The limits from the various signal regions can be studied

separately or combined. For our illustrative purposes, the combination will be performed by

just taking the overlap of the four allowed regions. The results of this simple limit-setting

procedure are discussed in the following section.

2.2 Results and discussion

At fixed mDM and Mcut, the ATLAS limits in eq. (2.6) become lower bounds on the scale

M∗, reported in figure 1 as functions of mDM and for different values of Mcut =350, 450,

600, 800, 1250, 2000, 8000 GeV. The four boxes in the figure correspond to the four

– 7 –
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Figure 1. 95% c.l. lower bounds on M∗, as functions of mDM, for some representative values of

Mcut (in GeV), for the four signal regions of ref. [42].

different signal regions. The upper line in each plot, Mcut = 8 TeV, corresponds to the

näıve EFT limit, obtained without imposing any restriction on the centre-of-mass energy

of the hard scattering.7 The limit deteriorates for decreasing Mcut because of two distinct

effects. The first one is that the total reference cross-section σ decreases, because it is

restricted to a smaller kinematical range. This effect is unavoidable and ultimately due to

the fact that the EFT cannot be trusted above its cutoff: trying to extrapolate the EFT

above Mcut would be inconsistent, and this is precisely why we restrict our signal to the

Ecm < Mcut region. The second effect is that the acceptances are also reduced, because the

kinematical distributions of the restricted signal become softer, thus for decreasing Mcut it

becomes increasingly difficult to pass the cuts on pjetT and on Emiss
T . Being dependent on

the selection, this effect could be mitigated by softer cuts, compatibly with the minimal

Emiss
T trigger requirement and with the fact that the SM background rapidly increases in

the softer region. These considerations show that our signal is kinematically different from

the näıve EFT prediction: an optimized limit in all Mcut regions would require a dedicated

study, which however goes beyond the scope of the present paper and can be properly

performed only by the experimental collaborations.

7The näıve EFT limit in SR3 differs from the ATLAS result on the D8 operator by a 4
√

2 factor, which

reflects the factor 2 enhancement of the cross-section for a Majorana DM particle with respect to the Dirac

case considered in ref. [42], if the same operator is used and the normalisation in eq. (2.1) taken into account.
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Going back to our results in figure 1, we notice that for large Mcut the best limits are

obtained from the SRs with harder cuts, namely from SR2, SR3 and SR4, which all have

comparable reach. The low-cut region SR1 is instead not competitive with the other ones.

The situation changes for low Mcut, because the cut acceptances decrease faster in the SR

with harder cuts than in those with softer ones, and the limits start being dominated by

the latter. For instance, when Mcut goes below 500 GeV or so, the strongest M∗ bound

starts coming from SR1, while the other SRs are no longer sensitive.

The behaviour of the limits as functions of mDM is also easily understood. When

mDM is lowered much below Mcut and the kinematical cuts, the cross-section becomes

independent of mDM and the limit saturates. The limit deteriorates as mDM increases,

because the latter starts having a negative impact on the energy budget of the reaction.

The limit eventually disappears above a certain threshold, which corresponds to the region

where the DM particle is too heavy to be produced with a centre-of-mass energy below

Mcut. The minimal centre-of-mass energy is given by

Emin
cm = pjetT +

√(
pjetT

)2
+ 4m2

DM , (2.7)

where pjetT is the common jet and Emiss
T cut of each SR, out of which the mass threshold is

then found to be8

mmax
DM =

Mcut

2

√
1− 2

pjetT

Mcut
. (2.8)

We thus see once again that soft SRs are favoured for low Mcut, not only because they

produce better M∗ limits, but also because they have an extended reach in the DM mass.9

The combined limits from all four SRs, obtained as the intersection of the allowed

regions as described above or equivalently by taking the strongest M∗ bound at each point,

are displayed in the left panel of figure 2. The main conclusion we can draw is that

the näıve EFT limit is fairly accurate when Mcut is significantly above 1 TeV, while it

considerably overestimates the actual exclusion for lower values of Mcut. As an equivalent

way to express the same information, the right panel of figure 2 shows the limit on M∗
as a function of Mcut for some fixed representative values of mDM: 0, 100, 250, 500, 750,

1000 GeV. This representation is perhaps more convenient, as the dependence on mDM is

rather smooth, and significant only in a limited range. Furthermore, it gives an idea of the

search reach in the low Mcut region. For reference, the dashed line on the left-hand panel

of figure 2 shows the constraint from the relic density (under-abundant below the line and

over-abundant above it), computed with the approximate analytical formulae for the EFT

collected in appendix C.

The plots described above summarise the experimental situation in a simple and concise

way, however they do not tell us how much of the theoretically allowed parameter space

has been actually tested and how much is still unexplored. Namely, it is hard to establish

8The threshold effectively occurs for lower values of mDM when Mcut gets close to the LHC threshold of

8 TeV, because of the rapid large-x decrease of the parton distribution functions.
9Formally, low pjetT improves the mass reach for any value of Mcut. However, at large Mcut the threshold

has a very poor sensitivity to the actual value of pjetT and all SRs have practically the same reach.
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Figure 2. Our combination of the lower bounds on M∗. Left: as a function of mDM, for the same

representative values of Mcut as in figure 1. The dashed grey line is the relic density constraint.

Right: as a function of Mcut, for some representative values of mDM (in GeV).

a priori the “reasonable” Mcut values, and whether the corresponding M∗ limit should be

regarded as a “strong” or a “weak” one. We can do better if we remember that Mcut and

M∗ are actually connected by eq. (1.3). Clearly, we do not know what g∗ is, but we do

have some control on its value. We definitely know that it must be g∗ < 4π, since taking

it larger would make the EFT non-perturbative below the cutoff. This implies an upper

bound on Mcut for any given M∗. In principle, there is no lower bound on g∗, it could be

arbitrarily small pushing Mcut to smaller and smaller values. However, in a WIMP-like

scenario we definitely expect g∗ ∼ gw ∼ 1, to implement the WIMP miracle recalled in the

introduction. Values of g∗ of order unity, and not radically smaller than that, should thus

be considered as plausible benchmarks.

The exclusion limits at fixed g∗, in the (mDM,Mcut) plane, are shown by the coloured

solid lines in figure 3, for the representative values g∗ = 1.8, 2, 4, 6, 4π. The black solid line

is the limit one would obtain in the näıve EFT. We stress that closed excluded regions are

obtained in this case, a fact that can be easily understood in the following terms. For a

given mDM, it is obvious that the limit must disappear at sufficiently large M∗, because

the signal cross-section rapidly decreases for increasing M∗. However, the limit must also

disappear for too low M∗, because at fixed g∗ lowering M∗ means lowering Mcut = g∗M∗,

which deteriorates and eventually kills the signal and the acceptances. There also exist

values of mDM where these two competing effects do not allow to obtain an exclusion for

any value of M∗, which is why the curves close on the right. As a consequence, there are

values of g∗ for which no limit on M∗ can be set, not even for mDM = 0. Our finding

is quantitatively impressive: with the experimental results available so far, a satisfactory

exploration of the parameter space has been possible only for g∗ above 4 or 6: the reference

value g∗ = 1 is not excluded, and the smallest coupling we are sensitive to is g∗ ∼ 1.8.

Making progress in this direction would require more energy and integrated luminosity

at the LHC, as expected in the forthcoming runs, but also improving the sensitivity to

the small Mcut region as explained above. Indeed, the lower exclusion limits, in the low

mDM region, are predicted by eq. (2.7) to occur near g∗M∗ = Emin
cm ' 2pjetT , where we take
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Figure 3. The solid lines enclose the excluded regions in the plane (mDM,M∗), for some repre-

sentative values of g∗, combining the four signal regions of ref. [42]. The black line is the limit

one would obtain with the näıve EFT. The grey triangle is theoretically forbidden because of the

self-consistency requirement M∗ > 2mDM/g∗, for g∗ = 4π. The dashed lines show, with the same

colour code as for the solid lines, how the grey triangle expands for smaller values of g∗.

the lowest possible value for pjetT , corresponding to 120 GeV for SR1 of [42]. This shows

once again the importance of keeping the first signal region at the lowest pjetT and Emiss
T

values compatible with the trigger and background conditions. As a last comment, we

remind the reader that not all the points in figure 3 are theoretically allowed within the

EFT framework. We are working here under the assumption of heavy-mediator DM, which

means, as explained in the introduction, that mDM should be well below Mcut, or at least

mDM < Mcut/2, because otherwise there is no hope for the DM being produced within the

range of validity of the EFT. This leads to the constraint M∗ = Mcut/g∗ > 2mDM/g∗. For

g∗ = 4π this produces the grey theoretically forbidden region in figure 3. For g∗ < 4π the

boundary of the grey triangle moves as indicated by the dashed lines, with g∗ specified by

the same colour code as for the solid lines. However, eq. (2.7) guarantees that (in contrast

with what we would obtain in the näıve EFT), the experimentally excluded region can at

most approach the theoretically excluded one. Indeed, the closeness of the solid lines to

the corresponding dashed lines gives a measure of how much the available EFT parameter

space has been explored for the different values of g∗.

3 Simplified model reinterpretation

In the previous section we consistently derived from experimental data universal bounds

on the EFT defined by the operator (2.2), as functions of the three relevant mass pa-

rameters (M∗,mDM,Mcut). We now show how such bounds can be re-interpreted in any

specific microscopic model underlying the chosen effective interaction. Since it collects

only the contribution to the (positive-definite) signal cross-section coming from the kine-
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matical region Ecm < Mcut, where by definition the EFT is reliable, and it sets to zero

the contribution corresponding to Ecm > Mcut, our prescription for using consistently the

EFT leads to underestimating the signal cross-section. We then expect our bounds to be

systematically more conservative than those obtained by the direct comparison of a specific

microscopic model with the experimental data. The aim of the present section is to perform

a quantitative comparison of the limits derived with the two methods and to comment on

the interpretation and practical consequences of any significant difference in the results.

We consider two illustrative simplified models, characterized by quite different dy-

namics at the mediator scale, but nevertheless giving rise to the same leading effective

operator (2.2) in the low-energy EFT. In Model A, DM annihilation into quark-antiquark

pairs and the inverse process occur via the s-channel exchange of a spin-1 Z ′ boson of

mass mZ ′ , coupled to the axial-vector currents of quarks and DM with strengths gq and

gX , respectively. Very similar simplified models were discussed in refs. [54–59]. In Model B,

the same processes occur via the t/u-channel exchange of color-triplet scalars of mass m̃,

with the same gauge quantum numbers as the squarks q̃ of supersymmetric extensions of

the SM, but with a universal Yukawa coupling of strength gDM to quarks and DM. Very

similar simplified models were discussed in refs. [60–65]. We have collected some useful

details on the two models in appendices A and B, respectively.

Before comparing the interpretation of the experimental results in the EFT and in the

two simplified models, we display in figure 4 the tree-level Feynman diagrams contributing

to the three hard partonic processes associated with the scattering pp→ jet + MET:

(I) : q(p1) + q(p2)→ X(p3) +X(p4) + g(k) ; (3.1)

(II) : q(p1) + g(p2)→ X(p3) +X(p4) + q(k) ; (3.2)

(III) : q(p1) + g(p2)→ X(p3) +X(p4) + q(k) . (3.3)

The symbols in brackets label the four-momenta of the corresponding particles. Process I

is described by diagram A1 in Model A, by diagrams B1 and B4 in Model B. In the case

of diagrams A1 and B1, it is understood that we should add the corresponding diagrams

with the gluon radiated from the antiquark rather than from the quark line. Process II is

described by diagrams A2 and A3 in Model A, and by diagrams B2, B3 and B5 in Model

B, plus those obtained by exchanging the momenta p3 and p4 of the Majorana DM fermion

X. Process III is described by the same diagrams of process II, with the prescription that

all the arrows on the quark and squark lines should be reversed.

The limits from our consistent EFT analysis and directly from the simplified models

are obtained as follows. In the EFT, we compute the EFT parameters in each simplified

model and we just apply the constraints derived in the previous section. The scale M∗ of

the effective operator (2.2) is given by

M∗ =
mZ ′√
gq gX

(Model A) , M∗ =
2 m̃

gDM
(Model B) . (3.4)

The cutoff scale Mcut, at which the EFT description loses its validity, is identified with the

mediator mass Mmed, i.e. with mZ′ in Model A and with m̃ in Model B. Then, after this
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Figure 4. Feynman diagrams describing the jet + Emiss
T DM signal at hadron colliders for models

A (Z ′ mediator) and B (q̃ mediator) considered in the text.

identification, the effective coupling g∗ is:

g∗ =
√
gq gX (Model A) , g∗ =

gDM

2
(Model B) . (3.5)

To extract limits directly in the simplified models, we recast the ATLAS mono-jet analysis

of ref. [42] as in section 2.1, with the only difference that now the signal cross-section is

computed in the complete simplified model, i.e. with the diagrams in figure 4 and with no

Mcut restriction, for any value of Mmed and of mDM. For each point of the simplified model

parameter space, the expected signal rate is computed in each SR and the corresponding

exclusion limits are applied.

For Model A, the result in the full model is illustrated by the purple lines in figure 5,

as an exclusion limit on M∗ as a function of Mmed ≡ mZ ′ , for two representative values

of mDM ≡ mX and for two postulated values of the (width/mass) ratio of the mediator:

ΓZ′/mZ′ = 1/8π (solid) and ΓZ′/mZ′ = 1/3 (dashed). We will see below that using the

(mZ ′ ,M∗) plane to represent the result suffers from an important limitation. Furthermore,

M∗ is not a natural variable for the simplified model, where it is a derived quantity rather

than a fundamental parameter. In this context, other ways of representing the limits could

be more effective. The choice of the (mZ′ ,M∗) plane is however convenient for comparing
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Figure 5. 95% CL limit on M∗ for Model A, as a function of mZ ′ , for mX = 50 GeV (left) and

mX = 250 GeV (right). The horizontal dashed line corresponds to the limit obtained in the näıve

EFT. The blue line gives the limit consistently extracted in the EFT with Mcut = mZ ′ . All the

other lines refer to the full model, and assume either ΓZ′ = mZ ′/(8π) (solid) or ΓZ′ = mZ ′/3

(dashed). The purple lines show the limits obtained in the full model. The red lines corresponds to

the resonant production of the mediator. The orange lines correspond to the correct relic abundance

for a thermal freeze-out, computed according to the formulae for Model A reported in appendix C.

From the top left to the bottom right, the increasingly dark grey shaded areas correspond to

ΓZ′/mZ ′ > 1/(8π), 1/3, 1 and to g∗ > 4π.

these results with the EFT limits and with other studies of Model A, such as those in

refs. [16, 28, 43]. In the figure, our consistent EFT limits, as reinterpreted in Model A,

are represented by blue solid lines, while the black dashed horizontal line shows the näıve

EFT limit, formally obtained by sending Mcut to infinity for fixed M∗. For reference, the

orange lines correspond to the correct relic abundance for a thermal freeze out, computed

here with the approximate analytical formulae for Model A reported in appendix C.

First, we can visually check that our consistent EFT limits are actually correct model-

independent constraints, as they lie systematically below those obtained by working directly

with the simplified model. Notice that this is not true for the näıve EFT limits, which

overestimate the exclusion for very low mediator mass. Second, we observe that the limits

obtained directly in Model A are slightly stronger that the EFT ones, and that this effect is

considerably amplified for a moderately light mediator in the case of the smaller ΓZ′/mZ′

ratio. The reason for this behaviour is that the simplified model cross-section can get

significantly enhanced with respect to the EFT one, leading to a stronger bound, only

thanks to the resonant production of the mediator, which can only take place if the latter is

light enough. Furthermore, the resonant enhancement is of order πmZ′/ΓZ′ , and this is why

it is more pronounced for a narrow mediator. These considerations are made quantitative

by the solid and dashed red lines in figure 5, with the same conventions as before. These

lines represent the limits on the simplified model obtained by computing the signal rate

restricting the invariant mass of the Z ′ propagators within two widths from its pole mass.

The fact that the red lines are so close to the purple lines representing the “true” limit, when

they are both significantly above the blue line, confirms that the resonant production is
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what drives the enhancement. It also suggests that in this kinematical region DM searches

in the simplified model should be actually regarded as mediator searches, and the results

reported as limits on σ(pp→ Z ′)× BR(Z ′ → XX). Also, Z ′ resonant production followed

by the decay into quark-antiquark pairs, leading to a peak in the di-jet invariant mass

distribution, may be a complementary signal to be looked for [66–69], with or without the

extra jet: in such a case, we would obtain a limit on σ(pp→ Z ′)× BR(Z ′ → qq). We will

comment further on this in the conclusions.

We now turn to the aforementioned limitation of the (mZ′ ,M∗) plane, which was

already noticed in refs. [28, 43, 52], but we find important to emphasise. Model A has four

parameters: mDM, mZ ′ , gq, gX . In figure 5, the DM mass is set to a fixed value and each

point of the plane uniquely determines mZ ′ and M∗. Then also the product gq gX is fixed

by the left-hand side of eq. (3.4), namely

gq gX =
m2
Z′

M2
∗
. (3.6)

Only one combination of the two couplings is left free at this point, and it might seem a

good idea to fix it point-by-point to fit the values of ΓZ′/mZ′ that were assumed in drawing

the purple lines in the figure. However, we must take into account that, for fixed gqgX , the

accessible values of ΓZ′/mZ ′ are bounded from below:

ΓZ′

mZ′
= α g2q + β g2X ≥ gqgX

√
4αβ =

m2
Z′

M2
∗

√
4αβ , (3.7)

where α and β are suitably defined coefficients (see appendix A) that do not depend on

gq and gX , and have only a mild dependence on the spectrum through phase space. This

means that the (mZ′ ,M∗) plane is divided into regions, whose boundaries are curves (or,

approximately, straight lines), where ΓZ′/mZ′ is always larger than a certain value. Some

representative regions are displayed as grey shaded areas in figure 5: from the top left to

the bottom right, they correspond to ΓZ′/mZ′ > 1/(8π), 1/3, 1. The fourth and darkest

region at the bottom right corresponds to g∗ =
√
gqgX > 4π, where neither the EFT

nor the simplified model admit a consistent perturbative description. In the neighbouring

region where ΓZ′/mZ′ > 1, the EFT can still be consistently used, but the same does not

apply to the chosen underlying simplified model: the fact that ΓZ′/mZ′ > 1 is telling us

that in such strong coupling regime the simple mediator interpretation of the origin of the

effective interaction breaks down. Even in the perturbative regime, the direct simplified

model lines are obtained by assuming a given ΓZ′/mZ′ , thus they become inconsistent on

the right of the boundary of the corresponding ΓZ′/mZ′ region, because they cannot be

associated to any physical point of the simplified model parameter space. On the left plot,

for instance, we should have stopped drawing the purple and red solid lines corresponding

to ΓZ′/mZ′ = 1/(8π) where they cross the boundary between the white and the very light

grey region, at mZ ′ ∼ 600 GeV. Similarly, we should have stopped the purple and red

dashed lines, corresponding to ΓZ′/mZ′ = 1/3, where they cross the boundary of the two

light grey regions, at mZ ′ ∼ 1.1 TeV. The only justification for keeping them is that the

limits on the width are theoretical constraints, while the actual location of the curves is the

result of the experimental analysis, which might improve its sensitivity in the future. When
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Figure 6. The same as in figure 5, but for model B. The only difference is that, from top left

to bottom right, the two diagonal lines correspond to Γq̃/m̃ = 1/8π, 1/3, and the grey areas to

Γq̃/m̃ > 1 and to g∗ = gDM/2 > 4π.

this will happen the exclusion curves will move up and will exit more and more out of the

inconsistent regions. As far as current data are concerned, however, this observation shows

that the DM limits are actually rather poor, especially in the region of narrow mediator

width, which corresponds to a weakly-interacting particle. But after all, this is exactly

what we concluded from our exploration of the EFT parameter space: ‘small’ g∗ effective

couplings of order one are still unconstrained. Here we have just verified that the simplified

model can not help us much in this respect.

Very similar considerations apply to Model B, whose bounds are depicted in figure 6.

Also in this case the enhancement of the limit obtained directly in the simplified model

is mostly due to the resonant production of the mediator, which can occur even in the

so-called ‘t-channel mediator’ case if an extra jet is emitted in the final state. This process

corresponds (see diagrams B.3 and B.5 in figure 4) to an associated DM-q̃ production

followed by the q̃ decay into DM plus jet. Once again, in the region of Model B where

the squarks are light enough, experiments should extend their selection criteria and look

more generally for n = 1, 2, . . . jets plus Emiss
T , to include the possibility of resonant squark

production, both singly and in pairs. Of course, part of this is already being done in the

context of standard squark searches within simplified supersymmetric models [70, 71]. An

experimental analysis along the above lines has been recently suggested by ref. [72] within

a simplified supersymmetric model with a very light gravitino: something similar could be

devised also for Model B and similar simplified models for DM with ‘t-channel mediators’.

A second point worth stressing for Model B is that the issue with the (m̃,M∗) plane is even

more severe than in Model A, because the model has only three parameters, therefore after

fixing mDM, m̃ and M∗ the (width/mass) ratio of the mediator is fixed. In this case, figure 6

shows two lines corresponding to Γq̃/m̃ = 1/8π, 1/3, a grey area where where Γq̃ > m̃, and

a dark grey area where g∗ = gDM/2 > 4π. The only physical points of the four exclusion

curves derived in Model B (purple and red, solid and dashed) are those at the intersection

with the lines corresponding to the assumed value of Γq̃/m̃, marked as full purple dots.
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Other approaches. We are not the first to address the issues related with the näıve

use of the EFT for DM in kinematical regimes extending beyond its range of validity: as

already mentioned, they have been studied at length in the literature [25–33]. In particular,

refs. [27, 29, 30] proposed a criterion (recently adopted in refs. [47, 52]) to estimate how

sensitive the näıve limits on M∗ are to the unsafe region of the EFT and how much they

deteriorate if the latter region is excluded from the analysis. Below we discuss two aspects of

our approach in a way that can be helpful for the comparison with this previous literature.

The first point to be discussed concerns the choice of the kinematical variable to be

used for discriminating the safe EFT region from the unsafe one. From the EFT viewpoint,

the natural variable is clearly the hard scale of the process, Ecm: this was our choice for

the present paper. However, within specific ‘mediator’ models, or more precisely classes

of models, another possible choice is the variable Qtr, as proposed in refs. [27, 29, 30].

Qtr = +
√
|Q2

tr| is defined as the maximal virtuality of the mediator propagator, computed

over the Feynman diagrams contributing to the partonic DM production process under

study. Since Qtr < Ecm, using Qtr to define the safe kinematical region of the EFT means

gaining signal cross-section, thus obtaining a stronger and still reliable limit. Notice that,

since the definition of Qtr depends on whether the mediator propagates in the s or in the

t channel in the two-body annihilation qq ↔ XX, Qtr is not suited for setting a model-

independent limit. However, one might still consider the two possibilities in turn and set

separate limits for the two cases of s- and t-channel mediation. While this clearly does not

exhaust all possibilities,10 it might be still worth doing if it considerably enhances the reach.

To explore the exclusion reach of this method and compare it with ours, we start

by recalling the (trivial) expressions for Qtr in Models A (s-channel) and B (t-channel),

corresponding to the diagrams in figure 4 and the conventions in eqs. (3.1)–(3.3). In

Model A, for both process I and process II (the kinematics of III is identical to that of II,

so it does not need a separate discussion), Qtr is just the invariant mass of the DM pair

Q2
tr = (p3 + p4)

2 = (p1 + p2 − k)2 (AI, AII) . (3.8)

In model B, instead, we have to consider process I and II,III separately. In the case of

process I, Qtr reads11

Q2
tr = max

{
(p1 − k − p4)2 = (p3 − p2)2 , (p1 − p4)2 = (p3 − p2 + k)2 ,

(p1 − k − p3)2 = (p4 − p2)2 , (p1 − p3)2 = (p4 − p2 + k)2
}

(BI) , (3.9)

while for process II,III we have

Q2
tr = max

{
(p1 − p3)2 = (p4 − p2 + k)2 , (p3 + k)2 = (p1 + p2 − p4)2 ,
(p1 − p4)2 = (p3 − p2 + k)2 , (p4 + k)2 = (p1 + p2 − p3)2

}
(BII) . (3.10)

10The effective interaction might well be generated by the combined exchange of s- and t-channel medi-

ators, or by radiative effects not falling in any of these two categories.
11Notice that, if in Model B we had assumed a Dirac DM particle, only half of the conditions in eqs. (3.9)

and (3.10) should have been imposed. Therefore, the model dependence of this strategy depends on the

assumptions made both on the mediator (s-channel or t-channel) and on the nature of the DM particle

(Dirac or Majorana fermion, complex or real scalar).
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Figure 7. Limits on M∗ as functions of Mmed obtained for Models A and B with three different

methods. The purple lines are derived in the full models, assuming two representative values of the

ratio Γmed/Mmed: 1/(8π) (solid) and 1/3 (dashed). The solid blue line is derived in the EFT with

our method as described in the text. The solid green line is derived in the EFT by imposing the

condition on Qtr proposed in refs. [27, 29, 30]. Upper plots: Model A. Lower plots: Model B.

Notice that the subprocesses are quantum-mechanically distinguishable and therefore it

makes sense to adopt a different definition of Qtr for each of them.

The result of the comparison is displayed in figure 7, where we show the limits on M∗
as functions of Mmed, obtained for Models A (upper plots) and B (lower plots) with three

different methods. The purple and blue lines represent the full model and our approach

to the EFT, respectively, namely the same curves as in figures 5 and 6. The green line is

also derived in the EFT, but with the cut Qtr < Mcut instead of Ecm < Mcut. In the limit

of heavy mediators, all the lines coincide as expected. The differences are in the region of

relatively light mediators, where the EFT limit obtained with Qtr has, as expected, a better

reach in M∗ than our method. However, in our view the improvement is not sufficiently

significant, especially when compared with that obtainable in the full simplified model,

to motivate the use of Qtr rather than Ecm. Our recommendation is thus to stick to the

simple and model-independent version of our method, possibly trying to extend the reach

by the direct search of the mediator which, as described in the previous section, is the sole

responsible of the improved reach of the simplified model.

The second aspect to be clarified is that the consistent EFT limits in the (mDM,M∗)

plane, at fixed g∗, cannot be inferred from those obtained in the näıve EFT by just per-
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forming a rescaling of M∗. It is indeed clear that such a rescaling cannot lead to closed

exclusion curves such as those we obtained in figure 3. One might be tempted to consider a

rescaling here because the EFT cross-section is proportional to 1/M4
∗ , so that the reduction

of the cross-section caused by the kinematical cut might be reabsorbed into an effective

M∗. Namely, one might consider defining the ratio12

R(M∗,mDM, g∗) =
σ(M∗)

∣∣∣
Qtr<Mcut=g∗M∗

σ(M∗)
, (3.11)

where σ denotes the signal cross-section computed in the näıve EFT for a given signal

region. At fixed g∗ and mDM, R is a function of M∗, which tends to one for sufficiently

high M∗ and to zero for sufficiently low M∗, because of the effect of the kinematical cut

illustrated in eq. (2.7). Given that R measures the reduction of the cross-section with

respect to the näıve EFT, one might think of getting the limit on M∗ at each mDM, call

it M̃∗, starting from the limit obtained in the näıve EFT, call it MEFT
∗ , and solving the

implicit equation

M̃∗ =
[
R
(
M̃∗,mDM

)] 1
4
MEFT
∗ . (3.12)

The effective operator scale M̃∗ obtained in this way is the one that reproduces, in the EFT

with the cut on Qtr, the same signal cross-section that was needed for setting the bound

at MEFT
∗ in the näıve EFT. Namely, eq. (3.12) is equivalent to

σ(M̃∗)
∣∣∣
Qtr<Mcut=g∗M̃∗

= σ
(
MEFT
∗

)
, (3.13)

where we have exploited the fact that in the näıve EFT σ(M∗) simply scales as 1/M4
∗ .

The above method for obtaining M̃∗ is more elaborate than directly comparing the

experimental limit on the cross-section with the prediction of the kinematically restricted

EFT, as we suggested in section 2.1. Furthermore, the rescaling method might obscure the

fact that eq. (3.13), or equivalently eq. (3.12), has either zero (which means that no limit can

be set) or two solutions for M̃∗, but it never has only one. The behaviour of the restricted

EFT cross-section, compared with the näıve EFT, is pictorially represented in figure 8.

The cross-section vanishes before approaching M∗ = 0, because of the cut Qtr < g∗M∗.

Therefore there are two values of M∗ for which the cross-section equals the experimental

limit, which means that the excluded region has one upper but also one lower limit in M∗,

differently from the näıve EFT as depicted in the figure. Therefore, the true limit cannot

be set by just rescaling the näıve EFT exclusion curve. Notice also that certain strategies

to solve eq. (3.12), such as applying an iterative procedure starting from M̃∗ = MEFT
∗ ,

might obscure the existence of the lower bound, as they systematically converge to the

upper one. The quantitative impact on the excluded regions in the (mDM,M∗) plane, for

different values of g∗, was already displayed in figure 3 for our kinematical requirement

Ecm < g∗M∗.

12Using Qtr or Ecm makes no difference for the point we want to make here.
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Figure 8. A pictorial representation of how the bounds on M∗ depend on the prescription for

computing the signal in the EFT. The signal cross-section is displayed as a function of M∗, for fixed

g∗ and mDM. The black and the blue lines correspond to the näıve EFT and to our consistent pre-

scription, respectively. The horizontal purple line represents the experimental limit. The resulting

excluded interval for M∗ is reported near the horizontal axis for the two prescriptions.

4 Conclusions

We described a simple strategy to set robust and model-independent limits on heavy-

mediator DM at the LHC. Our method is based on the generic form of the operators in the

EFT containing only the DM and the SM particles, with no assumptions on the underlying

dynamics. However, it also takes into account the presence of a cutoff scale Mcut above

which the EFT loses its validity. Mcut must be regarded as one of the free parameters of

the EFT, on the same footing as the DM mass mDM and the effective interaction scale M∗.

We have to do so if we aim at a comprehensive exploration of the whole range of theoretical

possibilities. The parameter Mcut can be traded for g∗, the typical coupling strength at

the mediator scale. As explained in the paper, g∗ can be defined in the EFT alone, and

further characterised for any assumed underlying model.

We applied our method explicitly to the ATLAS mono-jet search of ref. [42], obtaining

the exclusion contours in the (mDM,M∗) plane shown in figure 3, for fixed representative

values of g∗. We believe that this kind of plots illustrates the current experimental situation

in an accurate and comprehensive way, providing a fair assessment of the LHC sensitivity

to heavy-mediator DM. At the moment, we are only sensitive to large values of g∗, while

the region g∗ ∼ 1, which is arguably the most natural one for WIMP DM, is still largely

untested. Making progress requires higher energy and luminosity, but also an optimisation

of the experimental search strategies. As pointed out in section 2, our signal is kinematically

different from that of the näıve EFT, in particular it is characterised by softer Emiss
T and pjetT

distributions. The reach of the searches would then benefit from a sensitivity improvement

in the soft region.

In section 3 we considered two different simplified models, both giving rise to the same

effective operator considered in section 2. We compared our EFT limits, reinterpreted

in the two models, with those obtained from a dedicated comparison of the experimental
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bounds with the prediction of the two models, reaching two main conclusions. First, the

limits set within the simplified models can be considerably stronger than the EFT ones,

but only because of the resonant production of the mediator, which enhances the simplified

model cross-section. Therefore, a DM search performed within a simplified model (in the

only interesting region where the limit is potentially stronger than in the EFT) is actually

not a search for DM, but a search for the mediator, and as such it should be interpreted.

The canonical σ×BR limit as a function of the mediator mass appears to be the best

option for presenting the experimental results. The second conclusion is that the current

experimental sensitivity is still rather poor, even when working within a simplified model.

In particular the region of weak coupling, i.e. narrow mediator, is mostly unexplored, in

accordance with what we found in our EFT analysis. We finally discussed two aspects

of our approach, to facilitate the comparison with the recent literature. We found that

the usage of the variable Qtr in place of Ecm to define the safe kinematical region of the

EFT does not improve the sensitivity significantly enough to pay back for the increased

model-dependence. We also remarked that just rescaling the näıve EFT limit does not

account for the impossibility, within mono-jet searches, of excluding arbitrarily low values

of M∗ at fixed mDM and g∗.

In summary, we have found that the LHC sensitivity to the heavy-mediator DM hy-

pothesis is still limited and wide regions of the parameter space still wait to be explored.

On the experimental side, improving the analysis in the soft region would be of great

help. On the phenomenological side, more comprehensive methods should be elaborated

to cover each different region of the parameter space with the most suitable strategy. Non-

resonant DM signals are well described by the EFT which, as outlined in the present paper,

when consistently used provides a robust model-independent way to approach the problem.

Within specific models, this needs to be supplemented by resonant mediator searches, which

however should be performed by exploiting fully the predictive power of the assumed me-

diator dynamics. This means taking into account all the mediator production mechanisms

(single and/or pair) and all its possible decay modes, including the one to visible objects

which might give complementary informations. These aspects are left to future work.
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A Model A: axial-vector mediator

We collect here some details on the first of the two simplified models considered in the text,

Model A. Previous discussions of very similar models can be found in refs. [54–59]. The

mediator is a neutral vector boson Z ′, singlet under the SM gauge group, with mass mZ ′ , a
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universal axial coupling gq to quarks, no renormalisable couplings to leptons, and an axial

coupling gX to the Majorana DM fermion X of mass mX . Since the model is introduced for

purely illustrative purposes, without making reference to an underlying more fundamental

theory, we introduce an explicit Z ′ mass term and we neglect Z-Z ′ mixing, as well as

anomalies and their cancellation mechanisms.

The model Lagrangian is

LA = LSM + LX + LZ ′ + LAint , (A.1)

LZ ′ = −1

4
Z ′µνZ

′µν +
1

2
m2
Z ′Z

′
µZ
′µ , (A.2)

LAint = Z ′µ

(
gq
∑
q

qγµγ5q + gXXγ
µγ5X

)
≡ Z ′µ J

µ
Z ′ , (A.3)

where LSM is the SM Lagrangian, LX is the free Lagrangian for X in (2.1), Z ′µν = ∂µZ
′
ν −

∂νZ
′
µ, and the sum in (A.3) runs over all quark flavours (q = u, d, c, s, t, b). The model has

four parameters,

gq , gX , mZ ′ ≡Mmed , mX ≡ mDM , (A.4)

which can all be taken to be real and positive (in principle, gq and gX could have either

sign, but this is not relevant for the present study).

Notice that the choice of a purely axial interaction, universal for all quark flavours, is

crucial to generate the effective interaction (2.2) from (A.3) in the low-energy limit. At

leading order in E/mZ ′ � 1, the approximate solution of the Z ′ equations of motion is

Z ′µ = − 1

m2
Z ′
JµZ ′ ,

which substituted in (A.1) gives

LAEFT = −
g2X

2m2
Z ′

(
Xγµγ5X

) (
Xγµγ

5X
)

(A.5)

−
g2q

2m2
Z ′

∑
q

(
qγµγ5q

)∑
q

(
qγµγ

5q
)

(A.6)

− gqgX
m2
Z ′

(
Xγµγ5X

)∑
q

(
qγµγ

5q
)
. (A.7)

The effective interaction term (A.7) between the SM quarks and the DM field reproduces

the one in (2.2) as long as

M∗ =
mZ ′√
gq gX

. (A.8)

Notice also that integrating out the heavy Z ′ generates two additional four-fermion op-

erators, (A.5) and (A.6). However, (A.5) is subject only to very mild constraints from

the limits on DM self-interactions. The four-quark operator (A.6) can be probed by the

searches for contact interactions [73, 74], but can be parametrically suppressed by choosing

gX > gq for fixed g∗.
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At tree-level, and including only two-body decays, the total decay width of the Z ′ is

ΓZ′ =
mZ ′

12π

2g2X

(
1−

4m2
X

m2
Z ′

)3/2

+
∑
q

3g2q

(
1−

4m2
q

m2
Z ′

)3/2
 , (A.9)

with the obvious modifications if some of the final states are not kinematically accessible.

B Model B: coloured scalar mediators

We collect here some details on the second of the two simplified models considered in the

text, Model B. Previous discussions of very similar models can be found in refs. [60–65].

In Model B, the interactions between the SM quarks and the DM particle X are mediated

by three families of degenerate complex scalars of mass m̃, with the same gauge quantum

numbers of the corresponding left- and right-handed quarks. Since they are identical to the

squarks of supersymmetric extensions of the SM, we denote them with the same symbols,

(ũiL, d̃iL, ũiR, d̃iR), where i = 1, 2, 3 are family indices. Similarly, the Majorana fermion X

mimicks, although in the simplified fashion specified by its interactions below, the lightest

neutralino of supersymmetric models.

The model Lagrangian reads

LB = LSM + LX + Lq̃ + LBint , (B.1)

Lq̃ =

3∑
i=1

[
(∂µũiL)†(∂µũiL) +

(
∂µd̃iL

)†(
∂µd̃iL

)
+ (∂µũiR)†(∂µũiR) +

(
∂µd̃iR

)†(
∂µd̃iR

)
− m̃2

(
ũ †iLũiL + d̃ †iLd̃iL + ũ †iRũiR + d̃ †iRd̃iR

)]
+ . . . , (B.2)

LBint = −gDM

[
3∑

1=1

(
ũiL uiL + d̃iL diL + ũiR uiR + d̃iR diR

)
X + h.c.

]
, (B.3)

where LSM and LX are the same as in Model A, and the dots in (B.2) denote the squark

gauge interactions, generated by promoting ordinary derivatives to SM covariant deriva-

tives. Notice that the mass degeneracy and the universality of the Yukawa couplings

among quarks, squarks and DM evade the typical problems of supersymmetric models

with flavour-changing neutral currents. The model has three parameters,

gDM , m̃ ≡Mmed , mX ≡ mDM , (B.4)

which can all be taken to be real and positive (gDM can be complex, but it can be chosen

to be real and positive by absorbing its phase into a redefinition of the squark fields).

As for Model A, we can derive the EFT by solving the classical equations of motion

for the squarks in the low-energy limit E � m̃:

ũiL=−gDM

m̃2
XuiL , ũiR=−gDM

m̃2
XuiR , d̃iL=−gDM

m̃2
XdiL , d̃iR=−gDM

m̃2
XdiR . (B.5)
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Substituting into LB yields

LBEFT =
g2DM

m̃2

3∑
i=1

[
(XuiL)(uiLX) + (XuiR)(uiRX) + (XdiL)(diLX) + (XdiR)(diRX)

]
= −

g2DM

4 m̃2

(
Xγµγ5X

) [ 3∑
i=1

(
uiγµγ

5ui + diγµγ
5di
)]

, (B.6)

where for the second equality we have used the Fierz identities and the fact that when X

is a Majorana spinor XγµX = 0. The effective interaction term (B.6) between the SM

quarks and the DM particle reproduces the one in (2.2) as long as

M∗ =
2 m̃

gDM
. (B.7)

At tree-level, and assuming m̃ > mX + mq, where q is the corresponding quark, the

decay width of the generic q̃ is

Γq̃ =
m̃

16π
g2DM

√
1 +

(
m2
q +m2

X

)2
m̃4

− 2
m2
q +m2

X

m̃2

(
1−

m2
q

m̃2
−
m2
X

m̃2

)
. (B.8)

C Formulae for the relic density

We collect here the approximate analytical formulae used for the calculation of the relic

density in the EFT (figure 2), in Model A (figure 5) and in Model B (figure 6), before re-

quiring that it reproduces the recent precise determination by the Planck collaboration [75]

(for our purposes, the latter can be rounded to ΩDMh
2 = 0.12 with negligible error). They

can be straightforwardly derived from the existing literature (see e.g. [76, 77]). Up to terms

of order 1/xf , where xf is the value of x = mX/T at freeze-out:

ΩDMh
2 ≈ 1.07 · 109 (GeV)−1

xf
√
g∗MP

1
16m2

X

(
a+ 3b

xf

) , (C.1)

where h is the dimensionless Hubble parameter, g∗ ∼ 100 is the number of relativistic

degrees of freedom, MP ' 2.4 × 1018 GeV is the reduced Planck mass, mX is the mass of

the DM particle in GeV, and

xf = ln(λ)− 1

2
ln[ln(λ)] + ln

[
1 +

6b

a

1

ln(λ)

]
, (C.2)

λ = 0.038
2
√
g∗
MPmX

(
a

16m2
X

)
. (C.3)

In the EFT, introducing the dimensionless parameters αq = mq/mX ,

a =
∑
q

96

π

(
mX

M∗

)4

α2
q

√
1− α2

q , (C.4)

b =
∑
q

4

π

(
mX

M∗

)4 (
8− 16α2

q + 11α4
q

) (
1− α2

q

)−1/2
, (C.5)

where the sums run over the quark flavours whose mass is below mX .
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In the two models underlying the EFT, we introduce two additional dimensionless

parameters, β = mX/Mmed and γ = Γmed/Mmed, to account for the finite mass Mmed and

width Γmed of the mediator. Then in Model A (Z ′ mediator)

a =
∑
q

96

π
g2qg

2
X

β4
√

1− α2
q

(4β2 − 1)2 + γ2
α2
q

(
1− 8β2 + 16β4

)
, (C.6)

b =
∑
q

4

π
g2qg

2
X

β4√
1− α2

q [(4β2 − 1)2 + γ2]2

{(
8− 16α2

q + 11α4
q

) (
1 + γ2

)
− 8β2

[(
8− 16α2

q + 14α4
q

)
+ 3α2

q

(
2− α2

q

)
γ2
]

+ 16β4
[(

8− 16α2
q + 26α4

q

)
+ 3α2

q

(
4− 3α2

q

)
γ2
]

+ 768β6
(
β2 − 1

)
α4
q

}
, (C.7)

and in Model B (q̃ mediator)

a =
∑
q

6g4DM

π

β4
√

1− α2
q(

1 + β2 − α2
qβ

2
)2

+ γ2
α2
q , (C.8)

b =
∑
q

g4DM

4π

β4√
1− α2

q

[(
1 + β2 − α2

qβ
2
)2

+ γ2
]3 {(8− 16α2

q + 11α4
q

) (
1 + γ2

)2
+ 4β2

(
1− α2

q

) (
4− 18α2

q + 11α4
q

) (
1 + γ2

)
+ 2β4

(
1− α2

q

)2 [(
8− 48α2

q + 33α4
q

)
+ (8− 24α2

q + 11α4
q)γ

2
]

+ 4β6
(
1− α2

q

)3 (
4− 10α2

q + 11α4
q

)
+ β8

(
1− α2

q

)4 (
8 + 11α4

q

)}
. (C.9)
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