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Single muscle fiber proteomics reveals unexpected
mitochondrial specialization
Marta Murgia1,2,*, Nagarjuna Nagaraj1, Atul S Deshmukh1,3, Marlis Zeiler1, Pasqua Cancellara2,

Irene Moretti4, Carlo Reggiani2, Stefano Schiaffino4,** & Matthias Mann1,3,***

Abstract

Mammalian skeletal muscles are composed of multinucleated cells
termed slow or fast fibers according to their contractile and
metabolic properties. Here, we developed a high-sensitivity work-
flow to characterize the proteome of single fibers. Analysis of
segments of the same fiber by traditional and unbiased proteomics
methods yielded the same subtype assignment. We discovered
novel subtype-specific features, most prominently mitochondrial
specialization of fiber types in substrate utilization. The fiber type-
resolved proteomes can be applied to a variety of physiological
and pathological conditions and illustrate the utility of single cell
type analysis for dissecting proteomic heterogeneity.
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Introduction

Skeletal muscle makes up about 40% of human body mass and is

responsible for voluntary body movements. It plays a major role

in metabolic homeostasis; for example, it is the dominant tissue in

insulin-dependent glucose uptake and it is the direct conveyor of the

beneficial effects of exercise [1, 2]. The repertoire of motor tasks

and metabolic functions is mediated by specialized muscle fibers,

which are multinucleated single cells originating from myoblasts

fusion. The ‘slow’ type 1 and the ‘fast’ type 2A, 2X and 2B constitute

the four basic fiber types, classically identified based on the molecu-

lar properties of their myosin heavy-chain (Myh) isoforms [3]

(Supplementary Fig S1A). Fast fibers have higher shortening veloc-

ity than slow fibers, increasing in the order 2A < 2X < 2B. These

properties are the result of fiber type-specific structural differences

in the sarcomere and sarcoplasmic reticulum as well as in calcium

transients following the action potential. From the metabolic point

of view, fibers are classified into slow oxidative (SO, type 1), fast

oxidative glycolytic (FOG, type 2A and 2X) and fast glycolytic (FG,

type 2B) types, which have different mitochondrial content [4]

(Supplementary Fig S1B). Primary muscle diseases and metabolic

disorders often affect, or spare, specific fiber types through largely

undefined mechanisms [3]. Importantly, the structural and meta-

bolic properties of each fiber type can be remodeled in response to

hormonal and metabolic changes and by muscle activity [4–6]. The

detailed protein make-up and metabolic profile of different muscle

fiber types are largely unexplored but would clearly be invaluable in

understanding the effects of fiber function at the molecular level.

Single fibers have already been isolated decades ago, when

pioneering studies classified subtypes based on the electrophoretic

mobility of different Myh isoforms as well as contractile properties

[7,8]. These studies revealed metabolic heterogeneity among muscle

fibers based on measurements of enzyme activities, showing the

prevalence of glycolytic enzymes in type 2 and oxidative enzymes

in type 1 fibers. However, each single fiber could only be used for

one or very few readouts, so that a structural and metabolic defini-

tion of fiber types, and in particular a global characterization of the

different type 2 fiber subpopulations, has remained largely elusive

[9]. A first step toward a larger scale view of individual muscle

fibers was the transcriptomic analysis of single type 1 and 2B

muscle fibers [10].

Despite great advances in mass spectrometry (MS)-based proteo-

mics in recent years, single muscle fibers have been beyond its

capabilities so far, preventing fiber type-resolved studies [11,12].

Although large compared to mononuclear cells, individual muscle

fibers contain very limited protein amounts—tens or hundreds of

times less than typical starting amounts in proteomics projects. Most

of this protein mass consists of a few highly abundant sarcomeric

proteins, which limits the capability of the mass spectrometer to

fragment and identify the vast majority of low abundance species.

The latter has also constrained studies at the whole muscle level,

which additionally have to deal with the wide heterogeneity of

muscle fibers and variations in size among different fiber types
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[13–15]. Furthermore, muscle is a complex structure containing not

only muscle fibers but also connective and adipose tissue, blood

vessels and nerves, with possible variations of their relative propor-

tions in pathophysiological conditions. With these challenges in

mind, we set out to apply a highly sensitive MS-based proteomic

workflow to characterize the contractile and metabolic features of

individual muscle fiber types as reflected in protein abundances.

Results and Discussion

Single muscle fiber analysis of fast and slow muscles by
high-sensitivity shotgun proteomics

We first obtained a deep skeletal muscle proteome by processing and

enzymatically digesting whole muscle homogenates by the filter-

aided sample preparation (FASP) method and separating the result-

ing peptide mixture into 12 fractions by isoelectric focusing [16,17].

To maximize peptide detection in order to target low abundant

proteins, all measurements were performed in a linear quadrupole

Orbitrap mass analyzer, characterized by high sensitivity, sequenc-

ing speed and mass accuracy [18]. This procedure yielded the quan-

tification of about 6,500 proteins, displaying a prevalence of

sarcomeric elements among the most abundant proteins and a

specific enrichment in mitochondrial annotations (Supplementary

Fig S2A and B). We then developed a workflow for single muscle

fiber proteome analysis on the basis of a recent method, in which all

preparation steps subsequent to mechanical disruption are

performed in a single vessel, thereby minimizing sample loss (Fig 1A

and Supplementary Methods section) [19]. We next employed the

‘match between runs’ feature of the MaxQuant analysis software

[20]. It uses sophisticated liquid chromatography (LC) retention time

alignments and precise masses to transfer peptide identifications

from the deep muscle proteome, where a given peptide is much more

likely to have been fragmented, to a single fiber, where often only

the intact peptide has been measured (Fig 1A).

Combining the deep muscle proteome with the fiber proteome

led to the quantification of a total of 7,174 proteins. Figure 1B

shows the intensity signal of all proteins detected in the individual

muscle fibers, ranked from the highest to the lowest abundant. The

first five sarcomeric proteins account for over 50% of total signal,

with myosin heavy chain ranking highest. Proteins from all other

muscle compartments, including abundant proteins such as the

mitochondrial ATP synthase and the sarcoplasmic reticulum (SR)

calcium ATPase, are confined to the lower half of the MS-signal

range. Even some transcriptional regulators, such as p65 RelA,

could be identified in muscle fibers. Importantly, our data display

ample coverage of metabolic features and of the mitochondrial

proteome (Fig 1C), enabling us to explore the main elements of

muscle metabolism at the single cell level.

Unbiased proteomics can assign fiber types and group
them by function

The four major fiber types are present in the limb and trunk

muscles of adult mice and were sampled in our dissection of soleus

and extensor digitorum longus (EDL) muscles (Supplementary

Fig S1A and B). Mouse muscle fibers are several mm long, and our

isolation procedure typically captured 50% of a single fiber. Myh

isoforms have more than 80% sequence identity; therefore, to

reproduce the Myh isoform-based fiber type assignment by MS, we

used only the intensities of peptides unique for each isoform for

protein quantification. The relative abundance of Myh isoforms

calculated from these data and the assignment of each fiber to its

type is shown in Supplementary Table S1. Interestingly, in addition

to the main one, virtually all of the single fibers express two or

more Myh isoforms at low levels. Type 2A and 2X fibers tend to

have a higher degree of heterogeneity than type 1 and 2B. Fibers

containing over 80% of Myh7 (type 1) or Myh4 (2B) and over 60%

of Myh1 (2X) or Myh2 (2A) were defined as pure type based on the

observed average isoform expression (see Supplementary Methods

and Supplementary Fig S1C). Figure 2A shows the Myh composition

of two representative pure fibers per type, next to four examples of

mixed-type fibers containing two or more comparably abundant

isoforms.

To verify the reproducibility of MS-based fiber type assignment,

we performed technical replicates by reanalyzing the peptide

mixture resulting from the same single fiber. We also performed

experiments in which we split the lysate from a single fiber and

processed them separately. In both approaches, we arrived at essen-

tially identical Myh compositions and always assigned the same

fiber types (Supplementary Fig S3A).

Protein epitope signature tags (PrESTs) are recombinant proteins

consisting of a short (generally 100–150 aa) sequence chosen from a

unique region of the target proteins and a quantification tag, which

can accurately quantify absolute amounts of proteins [21]. We

constructed PrESTs against the different Myh isoforms and deter-

mined their absolute levels in single fibers. These ranged from unde-

tectable to more than 500 ng per fiber. The relative isoform

contributions determined from the absolute amounts were essen-

tially superimposable on those of the relative quantification (Supple-

mentary Fig S3B).

To investigate whether the MS-based fiber type assignment

matches the traditional method based on electrophoretic properties

of different Myh isoforms, we split the same fiber lysates into two

parts. Half of the SDS solubilized lysate was then used to typify the

fiber by an electrophoretic procedure that allows separations of Myh

isoforms, whereas the other half was processed for shotgun proteo-

mics with an in-gel-based workflow (Supplementary Methods).

Again, the two methods resulted in the same Myh isoform-based

fiber type classification (Fig 2B).

For estimating protein quantities for the entire detected prote-

ome, we normalized the summed signal of the peptides identifying

each protein based on protein length and peptide number (Supple-

mentary Methods). To minimize quantitative differences among

fibers due to heterogeneity in the analyzed fiber segment as a result

of the isolation procedure, we normalized the entire proteome of

each single fiber by the intensity of skeletal alpha actin (Acta1). The

proteomes of a total of 48 pure fibers, as defined above, and

assigned to fiber type by MS as described above, were used in the

subsequent analyses.

To determine whether the total proteome could also assign single

fibers to their correct subtypes, we performed principal component

analysis (PCA). This showed a diagonal separation in the first

two components of the fast-2B fibers (Fig 2C top). The intermedi-

ate position was occupied by 2A and 2X fibers, with occasional
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overlapping between groups. The corresponding ‘loadings’—the

main proteins driving the separation—included known fiber type-

specific isoforms of sarcomeric proteins and metabolic enzymes

(Fig 2C bottom).

We performed an unsupervised hierarchical clustering to verify

the functional significance of the proteomic differences arising from

our analysis. Unsupervised hierarchical clustering of single-fiber

proteomes revealed a major cluster with high enrichment in

mitochondrial annotations, spanning type 1, 2A and 2X fibers.

Conversely, structural elements of excitation–contraction coupling

and glycolysis defined a cluster highly intense in 2B fibers (Supple-

mentary Fig S3C). Type 1 and 2B fibers clearly separated to the
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Figure 1. Characterization of the proteome of muscle fibers from fast and slow muscles.

A Shotgun proteomics workflow for fibers and whole muscle fractions. For details see main text and Materials and Methods.
B Cumulative abundance of all proteins detected in muscle fibers, ranked on a log10 scale.
C Protein coverage in muscle fibers and whole muscle. Each bar represents a selected category of keyword annotations, for which the number of corresponding protein

coding genes in the mouse genome is considered as 100%. Proteins identified in our fiber database correspond to dark and light blue bars combined and additional
protein identified in our whole muscle database to light green.
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Figure 2. Fiber type assigned on the basis of Myh isoforms corresponds to specific patterns at the whole proteome level.

A MS-based quantification of Myh isoforms reveals four basic pure-type fibers and different combinations of mixed-type fibers.
B Comparison of fiber type assignment using unbiased MS-based quantification and traditional method. Fiber lysates were split into two and processed in parallel on

separate gels (see Supplementary Methods). MS and Myh silver staining of the corresponding half fibers.
C Top, principal component analysis performed on pure fibers (N = 48), using only proteins expressed in all fibers; bottom, loadings showing the main proteins driving
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extremes of the heat map, whereas 2A and 2X formed intermediate

mixed groups with graded properties. Thus, distinct groups of fibers

can be distinguished at the total proteome level on the basis of

predicted functional features.

We asked whether MS-based proteomics could reveal potential

subcellular changes in Myh composition along the longitudinal fiber

axis, which is a common feature in extraocular muscles [22] but

has not been extensively investigated in other body muscles.

Furthermore, we asked whether regional differences in Myh

isoforms are associated with other segmental differences in muscle

phenotype. To this end, we analyzed biological replicates, consist-

ing of single fibers from EDL mechanically cut into two halves

directly after isolation. Myh isoform analysis and PCA revealed that

biological replicates were in general more different than technical

replicates (Fig 2D, see Supplementary Fig S3A for comparison)

and were in some cases quite distinct at the proteome level (Fig 2D

and E, Supplementary Fig S3D). Our observation at the prote-

ome scale is in accord with previous reports in rabbit limb muscles,

of nonuniform distribution of fast- and slow-myosin subunits

along the axis of single fibers [23]. Regional changes can be

profound in some cases, which is in agreement with pioneering

physiological studies showing segmental differences in the shorten-

ing velocity of single fibers [24]. These results also indicate that

proteomics can now quantify biological heterogeneity within a

single cellular unit.

Our precise and unbiased fiber type assignment allows us to

define a fiber type-resolved proteome: We assign each single and

pure fiber to its proper subtype and obtain the median estimated

expression values of each protein in the subtype (Supplementary

Table S2). Figure 2F shows that each of the subset proteomes has

the expected distribution of fiber type-specific Myh isoforms, vali-

dating this procedure.

Differences in structural proteins between subtypes

The single-fiber-resolved proteomes for the first time afford a global

view of the fiber type distribution of contractile and cytoskeletal

protein isoforms and can be inspected in the MaxQB database [25].

The data support many previous observations, for instance high

expression levels of Actn3 in 2B fibers, but also reveal novel

features. An example is the fourfold higher expression of Tcap/

telethonin in type 1 than in fast fibers, a finding which we verified

by Western blotting (Supplementary Fig S4A and B).

Most protein components of the sarcoplasmic reticulum and

T-tubule system show a higher abundance in type 2B fibers (Supple-

mentary Fig S4C), as expected from the greater development of

these membrane systems in fast fibers [26]. A novel finding is that

the T-tubule protein STAC3, involved in excitation–contraction

coupling, is about fourfold more abundant in 2B and 2X compared

to type 1 and 2A fibers. This is likely the result of post-translational

regulation, since qPCR analysis did not reveal any significant

difference between fast and slow muscles [27]. Atlastin 2 (Atl2)

and Lunapark (Lnp) have opposite roles in generating and maintain-

ing the shape of the endoplasmic/sarcoplasmic reticulum, and

specifically in either promoting tubule formation and branching

(Atl2) or inhibiting branching (Lnp) [28,29]. Our data document

their presence in muscle fibers and reveal that Atl2 is twofold more

abundant in 2B and 2X fibers, which have a more convoluted SR,

whereas Lnp is threefold more abundant in type 1, 2A and 2X fibers,

which have a less developed SR than type 2B [30].

To discover potential new fiber type-specific proteins in an unbi-

ased manner, we designed eight expression profiles, each character-

ized by high expression in one of the subtypes, and searched with a

correlation analysis the proteins with the most similar expres-

sion profile (Supplementary Fig S5). This analysis retrieved known

or predicted subtype-specific proteins but also novel ones. For

instance, Mitsugumin-53/Trim72, a protein that plays a role in

membrane repair, is fivefold higher in type 1 than in all another

fiber types. While the physiological significance of these observa-

tions needs to be addressed further, they illustrate the potential of

our results for the discovery of new fiber type-specific features.

Fiber type-specific differences in the mitochondrial proteome

Skeletal muscle is a tissue with high energy demand and is

frequently affected in mitochondrial diseases. Our single-fiber

proteomes covered a total of 654 proteins annotated as mitochon-

drial, with an average of more than 270 quantified in individual

fibers. The majority of components of the respiratory chain

and TCA cycle were quantified in each fiber as well (Fig 1C). Type

2B fibers are known to have lower mitochondrial content, and

this was clearly reflected in our measurements (Supplementary

Table S2). Intriguingly, however, our data now reveal that the

major pathways—OXPHOS, beta-oxidation and TCA cycle—show

significant variations among the various fiber types (Fig 3A). These

differences imply the existence of distinct subsets of mitochondrial

proteins associated with specific fiber types and are discussed

below.

OXPHOS protein levels were especially abundant in 2A fibers, in

accordance with the greatest content of mitochondria among the

subtypes (Supplementary Fig S6) [26]. However, when we normal-

ized for mitochondrial content (using cytochrome c or succinate

dehydrogenase as indicators of mitochondrial quantity [31]), other

protein subsets significantly deviated from this simple trend, there-

fore reflecting functional mitochondrial heterogeneity. Type 1

fibers had highest protein levels in enzymes responsible for beta-

oxidation, located in the mitochondrial matrix, including Acadl,

Hadha, Etfa and Etfb complex and Etfdh. After this normalization,

the differences in proteins involved in beta-oxidation were statisti-

cally significant between subtypes (P < 0.05) (Supplementary

Table S3). Proteins involved in the conversion of fatty acids to

fatty acyl-CoA esters via Acsl1, located in the outer mitochon-

drial membrane, and proteins involved in fatty acid import at the

inner mitochondrial membrane such as Cpt2A were similarly

prevalent in type 1 fibers. The same held true for proteins involved

in ketone body metabolism, such as Oxct1, an enzyme responsible

for acetoacetyl-CoA production from acetoacetate, and Acat1,

which converts acetoacetyl-CoA into acetyl-CoA (Fig 3A and

Supplementary Table S3).

Proteins associated with the regulation of pyruvate dehydroge-

nase (PDH) and the TCA cycle show greater abundance in type 2X

fibers. For example, the protein phosphatase Pdp1 is more than

twofold more abundant than in other subtypes. When muscle fibers

are stimulated by insulin or by contractile activity, Pdp1 dephosph-

orylates the E1a subunit of PDH, thus activating the PDH complex.

Relatively high concentration of Pdp1 in type 2X fibers may
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Source data are available online for this figure.
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better prepare these fibers to activate PDH activity and thus the TCA

cycle in response to stimulation. The NAD-dependent isocitrate

dehydrogenase 3 (Idh3) is a member of the TCA cycle, and all three

different subunits of this heterotetramer are likewise more than

twofold higher (Fig 3A). Isocitrate dehydrogenase activity was

previously reported to be higher in mitochondria isolated from fast

glycolytic, type 2B muscles [32, 33]. However, 2B fibers could not

be distinguished from 2X fibers in those studies, whereas our data

clearly show that Idh3 is higher in type 2X fibers whereas it is

lowest in 2B fibers. To confirm these findings with an independent

approach, we stained serial sections of soleus and EDL with anti-

bodies specific to Idh3a and assigned fiber type using Myh isoform-

specific antibodies (Fig 3B, left). In accord with our MS results, Idh3

showed a reactivity largely corresponding to type 2X fibers (aster-

isk) in EDL and was higher in type 2A than in type 1 fibers (dot) in

soleus. Other TCA cycle enzymes, such as malate dehydrogenase

(Mdh2), were also significantly more highly expressed in 2X

fibers (Supplementary Table S3). Interestingly, TCA cycle genes

were the most abundant mitochondrial genes induced by the over-

expression of the transcriptional coactivator PGC-1beta, which

was reported to selectively drive the formation of type 2X fibers in

skeletal muscle [34].

Another mitochondrial isocitrate dehydrogenase isoform, Idh2,

caught our attention because its expression levels were reversed

compared to Idh3, with dramatically higher expression levels in type

1 fibers (> 30-fold difference between type 1 and 2B). Indeed, we

confirmed by immunohistochemistry (Fig 3B, middle panel) that

Idh2 was highly expressed in soleus, with only occasional small

fibers in EDL corresponding to type 2A fibers (arrowheads). Idh2 is

a NADP-dependent enzyme that is structurally different from Idh3,

whose functional role is the object of debate. According to one inter-

pretation, Idh2 does not contribute to flux through the TCA cycle

like Idh3 but actually works in the reverse direction, converting

glutamine-derived alpha-ketoglutarate into citrate, a source of

carbon for fatty acid synthesis [35]. An alternative interpretation is

based on the observation that individuals homozygous for loss-of-

function mutations in IDH3B, encoding the b subunit of Idh3, show

no alteration associated with the corresponding enzyme deficiency

in any tissue except for the retina [36]. Idh2 activity was normal in

affected individuals, suggesting that Idh2 can act like Idh3 in the

isocitrate to a-ketoglutarate forward reaction of the TCA cycle. Our

data show that type 1 fibers, which have abundant Idh2 protein

levels, contain relatively low amounts of Idh3 subunits, comparable

to those present in the mitochondria-poor type 2B fibers. This

supports the notion that Idh2 is the major TCA cycle enzyme

responsible for the oxidative decarboxylation of isocitrate in slow

type 1 fibers.

Nicotinamide nucleotide transhydrogenase (Nnt), located in the

mitochondrial inner membrane, can also produce NADPH like Idh2.

Interestingly, the relative distribution of Nnt protein matches that of

Idh2 (> 30-fold difference between type 1 and 2B) (Fig 3). NADPH

generated by Idh2 or Nnt can be used for the reduction of glutathi-

one and thioredoxins counteracting reactive oxygen species (ROS),

which are presumably higher in mitochondria from type 1 fibers

due to the more active fatty acid beta-oxidation pathway [37]. Thus,

the heterogeneity in the TCA cycle between subtypes discovered by

single-fiber proteomics can shed new light on differential substrate

utilization.

Another striking observation was that Gpd2, the mitochondrial

component of the glycerophosphate shuttle, was about tenfold more

abundant in type 2B fibers, even though they have the lowest mito-

chondrial content. Other proteins have a significantly higher expres-

sion in 2B fibers after normalization for mitochondrial content

(Supplementary Table S4). A previous study had already reported

higher levels of Gpd2 in type 2B fibers [33]. This finding suggests

that a significant portion of glycolytic flux in 2B fibers is diverted to

the formation of the glycerol 3-phosphate that shuttles to mitochon-

dria where it is transformed into dihydroxyacetone phosphate by

Gpd2 activity. The glycerophosphate shuttle contributes to the

reoxidation of cytosolic NADH produced by glycolysis, thus enabling

a sustained ATP production by the glycolytic pathway without

excessive accumulation of lactic acid [38]. Conversely, our proteo-

mics data indicate that the capacity for mitochondrial import of

pyruvate is limited in 2B fibers because of the more than fivefold

lower protein levels of the mitochondrial pyruvate carrier, which is

formed by two recently discovered small proteins, Mpc1 and Mpc2,

located in the mitochondrial inner membrane [39, 40]. The distribu-

tion of Mpc1 and Mpc2 in skeletal muscle fibers has not been previ-

ously investigated, and their stoichiometry in the complex is not

known. Here, we observe significant variations in the ratio of the

two subunits in different fiber types, with Mpc2 abundant in type 1,

2A and 2X fibers, whereas Mpc1 has higher levels in type 1

compared to 2X and 2B fibers.

Previous biochemical studies in single muscle fibers, such as

the seminal studies by Lowry [7] and Pette [41], have revealed the

existence of a wide range of activity for a number of mitochondrial

enzymes, with the tendency for slow type 1 fibers showing highest

activities, fast glycolytic 2B fibers lowest activities and type 2A

fibers intermediate activities. The interpretation was that those

differences reflected essentially quantitative differences in the

amount of mitochondria and oxidative enzyme along a continuous

spectrum between the two extremes of mitochondria-rich and mito-

chondria-poor fibers. A limitation of those studies was that only

few enzymes were analyzed and fiber typing was not precise. Our

proteomic studies based on quantitative measures of hundreds of

mitochondrial proteins in four fiber types reveal a more complex

scenario and clearly establish that mitochondria differ in the vari-

ous muscle fiber types not only quantitatively but also qualita-

tively, with various subsets of mitochondrial proteins showing

distinct fiber type-specific patterns of metabolic function. This

supports the notion of metabolic specialization that is finely tuned

to the physiological properties of muscle fibers. With further

streamlining of the technology, similar experiments could now be

done in humans and as a function of drug, exercise or disease

perturbation.

Materials and Methods

Preparation of single muscle fibers

Soleus and EDL muscles were isolated from 3-month-old wild-type

CD1 mice (Charles River), housed in a standard environment with

water and food ad libitum. The animals (N = 10) were sacrificed by

cervical dislocation and the muscles immediately removed by

cutting through the tendons. Fibers were mechanically dissociated
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in an ice-cold solution containing potassium propionate (150 mM),

KH2PO4 (5 mM), magnesium acetate (5 mM), EGTA (5 mM) and

DTT (1 mM) using tweezers and individually transferred to stan-

dard Eppendorf tubes. Some fibers were cut into two halves at isola-

tion and frozen in separate tubes. Fibers were lysed and

proteolytically digested as described in Supplementary Methods.

Liquid chromatography and mass spectrometry

Peptides were separated on 50-cm columns of ReproSil-Pur C18-AQ

1.9 lm resin (Dr. Maisch GmbH) packed in-house. The columns

were kept at 50°C using a custom-made column oven controlled by

the SprayQC software [42]. Liquid chromatography performed on

an EASY-nLC 1000 ultra-high-pressure system was coupled through

a nanoelectrospray source to a Q Exactive mass spectrometer (all

from Thermo Fisher Scientific). Peptides were loaded in buffer A

(0.1% (v/v) formic acid) applying a nonlinear 270-min gradient of

2–60% buffer B (0.1% (v/v) formic acid, 80% (v/v) acetonitrile) at

a flow rate of 250 nl/min. Data acquisition switched between a full

scan and 5–10 data-dependent MS/MS scans. Multiple sequencing

of peptides was minimized by excluding the selected peptide candi-

dates for 45 s.

Computational proteomics

The MaxQuant software (version 1.4.3.19) was used for the analysis

of raw files. Peak lists were searched against the mouse Uniprot

FASTA database version of February 25, 2012 (81213 entries) and a

common contaminants database (247 entries) by the Andromeda

search engine [20, 43]. False discovery rate was set to 1% for

peptides (minimum length of 7 amino acids) and proteins and was

determined by searching a reverse database. A maximum of three

missed cleavages were allowed in the database search. Peptide iden-

tification was performed with an allowed initial precursor mass

deviation up to 7 ppm and an allowed fragment mass deviation

20 ppm. The mass spectrometry proteomics data have been depos-

ited to the ProteomeXchange Consortium via the PRIDE partner

repository with the dataset identifier PXD001641.

Bioinformatic analysis

Analyses were performed with the Perseus software (version

1.4.2.23), part of the MaxQuant environment (http://www.perseus-

framework.org). Categorical annotations were supplied in the form

of Uniprot Keywords, extracted from the UniProt database. Two-

sample Welch tests were performed using 0.05 FDR for truncation

and 250 randomizations. Protein intensity values normalized by

protein length were divided by the value of skeletal actin (Acta) and

then multiplied by a constant to obtain integers. We performed hier-

archical clustering on Z-score normalized proteins. To determine

enrichments in clusters, Fisher’s exact test was carried out with an

FDR value of 0.04.

Immunohistochemistry

Cryosections of soleus and EDL muscles, frozen as a single block,

were fixed in 4% paraformaldehyde and permeabilized using 0.2%

Triton X-100 prior to staining with antibodies anti-Idh2

(HPA007831) and Idh3a (AV42237), both polyclonals from SIGMA.

Immunofluorescence with Myh isoform-specific antibodies was

performed as described in [44].

Supplementary information for this article is available online:

http://embor.embopress.org
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