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Abstract It is argued in the literature that skyscrapers are the most profitable building 

typology that guarantees an efficient use of land when both land values and population 

density are high. Nonetheless evidence from on-going projects in Europe shows that many 

investments in skyscrapers construction fail and are abandoned in favour of low-rise high 

density buildings. When construction has started, tall building projects must be completed 

in order to gain profits and returns on investment. Due to the specific construction 

typology and phasing, the developer has no option to defer completion or proceed by 

sequential investments. On the contrary, low-rise high density buildings are characterized 

by high operational flexibilities as they can be expanded by sequential investments and easily 

modified over time in order to adapt to changes in the state variables (e.g. demand, 

construction costs, market prices, etc.). Investments in low-rise construction generate multiple 

interacting options or compounded options whose values may increase the project Net 

Present Value. This paper investigates the role of flexibility in high density building 

construction projects. We model the value of flexibility to proceed by sequential 

investments according to the Real Option Approach. Sequential investments can actually be 

seen as a series of compound and growth options, where an earlier investment cost represents 

the exercise price required to acquire the subsequent option to continue operating the project 

until the next stage comes due.  
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1. INTRODUCTION 

In urban economic theory, densification processes in cities are caused by the allocative 

preferences of firms and households: cities guarantee more resources and greater potential 

in terms of economic and human capital, labour, and infrastructure than small towns. 

These processes are even more significant in contemporary megalopolis. The entire 

American population is concentrated in the three per cent of the Country territory [1] and 

the fifty per cent of the world’s population lives in cities [2]. If compared to areas of 

sprawl, high urban density calls for specific building typologies: high-rise buildings (e.g. 

tall buildings and skyscrapers) and low-rise settlements (e.g. block buildings).  

The rise and fortune of Skyscraper as symbols of 20th Century modern cities is widely 

discussed in literature. Starting from 1930, skyscrapers were recognized as the most 

efficient land use in the presence of high market land values, continuous population 

growth and firms and capital concentration [3]. The challenge in the 20th Century to build 

the highest tower in the world proved that the capability to construct the highest building 

has an economic value per se, greater than the returns on the underlying real estate 

investment, which turned often to be a failure [4]. It was and still is a matter of status: the 

company value increases worldwide through its identification in a symbolic building. 

Typical examples are the Chrysler Building or the Trump Tower in New York City [5]. 

Nonetheless, evidence from on-going projects in Europe and especially in Southern 

Europe shows that many investments in skyscrapers construction fail and are abandoned 

in favour of more profitable building typologies such as low-rise high density buildings, 

same buildable volume [6]. Significant initial capital outlays and uncertainty over future 

revenues make de facto investments in tall buildings irreversible and somehow 

unacceptably risky especially in times of financial crisis and down real estate markets.  

These constructions are fragile in terms of returns on investments for the different risk 

components related to tall building’s development. Although skyscrapers generate the 

higher value per square meter compared to other building typologies, they are the most 

expensive and the greatest time-consuming construction process. 

The specificity of investments in tall buildings make hard to properly predict the 

developer’s profits and returns on capital. High risks are mainly determined by long 

lasting and out of sequence cycle in construction that characterize tall buildings [4] [6]. 

The average duration for a skyscraper’s development is about ten years, from ideation to 

construction. If we consider that the business model is structured and defined at the 

process beginning, it can be easily shown that there is an increasing market risk that 

affects predicted rent values, due to volatile demand and unpredictable market events  [7] 

[8]: there is higher probability to occur in a negative real estate cycle in long-lasting 

development than in other short-lasting constructions such as low-rise high density blocks. 

Although high density low-rise blocks are less profitable investments than tall buildings in 

terms of value per square meter, the entire development process is less costly (-25% on 

average compared to tall buildings) and might better perform in terms of risk, and 

specifically construction risks. When construction has started, tall building projects must 



Chiara D’Alpaos, Valentina Antoniucci and Giuliano Marella 

 3 

be completed in order to gain profit and returns on investments. Due to the specific 

construction typology and phasing, the developer has no option to defer completion or 

proceed by sequential investments. On the contrary, low rise high density buildings are 

characterized by high operational flexibilities as they can be expanded by sequential 

investment and easily modified over time in order to adapt to changes in the state variables 

(e.g. demand, construction costs, market prices, etc.). Investments in low rise construction 

generate multiple interacting options or compounded options whose values may increase the 

project Net Present Value. 

This paper investigates the role of flexibility in high density construction projects. We 

model the value of flexibility to proceed by sequential investments. Sequential investments 

can actually be seen as a collection of compound and growth options, where an earlier 

investment cost represents the exercise price required to acquire the subsequent option to 

continue operating the project until the next stage comes due. Compoundness within the same 

multi-stage project (i.e. intraproject interaction) generates a series of point in time (i.e. 

decision nodes) when the project might be better discontinued if it turns out not to perform 

satisfactorily. The possibility to proceed by sequential investments, i.e. block by block, that 

are less affected by adverse economic realizations reduces investments irreversibility and 

mitigate losses [9]. As new information arrives and uncertainty about future cash flows is 

gradually resolved, the developer may have valuable flexibility to alter his initial operating 

strategy in order to capitalize on favourable future opportunities [10] [11]. Indeed, the 

importance of operating options becomes of crucial importance when the environment is 

volatile and construction technology is flexible, thus permitting managerial intervention at 

limited cost. This flexibility gives developers the option to strategically decide the optimal 

construction scheme and can significantly contribute to limiting losses and hedging of 

investment risk. If optimally exercised, operational flexibility may be economically relevant 

and its value is strongly related to the developer’s ability to decide his planned course of 

action in the future, given then-available information. 

The remainder of the paper is organized as follows. In section 2 the model is presented, 

Section 3 provides a numerical example to test the model’s theoretical predictions and 

Section 4 concludes. 

2. SEQUENTIAL INVESTMENTS: THE MODEL 

Sequential investments can be considered as a portfolio of growth options. In this section 

we provide a basic model to determine the optimal investment strategy of an investor who 

has the opportunity to proceed with sequential investments in the construction and 

operation of real estate investments (i.e. the construction of high density residential 

buildings). The developer has the possibility of choosing between two alternative projects 

A and B of different scales (e.g. gross lease area). When future payoff are volatile and 

market conditions are uncertain, the real estate developer can decide firstly to invest in the 

smaller scale project A and wait to invest in the larger scale one until new information 

arrives and uncertainty about future cash flows is gradually resolved in order to capitalize 

on favourable future opportunities. 

Starting from McDonald and Siegel [12] and D’Alpaos and Moretto [13], we extend the 
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benchmark case of a single indivisible project A assuming that the investor has the 

possibility of choosing between two alternative projects A and B of different scales.  

We introduce the following simplifying assumptions: 

a) Investment A and investment B are large-scale projects, but project B is larger in 

scale, and once installed they generate respectively )X( AA

t  and )X( BB

t  with 

X
B
>X

A
 where X is the project’s dimension (i.e. the gross lease area in m

2
). 

b) The projects’ net revenues can be simplified into a linear function: 

A

t

AAB

t

BB X)X(X)X( 
 

       where πt is the instantaneous profit per square meter (m
2
) equal for both the 

projects. The unit profit can be described by the following geometric Brownian 

motion with instantaneous expected return μ≥0 and instantaneous volatility σ>0: 

                                          π=πdzσπ+dtμπ=πd 0tttt                      (1) 

       where tdz  is the increment of a standard Brownian process with mean zero and 

variance dt (i.e. 0=)dz(E t  and dt=)dz(E 2
t ). If we assume that in equilibrium the 

investment value is equal to its discounted expected cash flows, πt is the difference 

between the lease (€/m
2
) and the operating, managerial and maintenance costs. 

c) Investment in projects A and B (i.e. blocks construction) entails sunk capital costs 

I
A
 and I

B
 respectively, where I

B
>I

A
. Investment costs include capital expenditure, 

development costs and administrative costs.  

d) The developer can operate one project at a time and the investment is sequential, 

where investment A occurs before B. In other words, the developer can always 

invest in the smaller scale project and subsequently invest in the bigger scale one, 

incorporating the former into the latter. Alternatively, the developer can invest in 

project B simultaneously incorporating A (i.e. invest in both the projects 

simultaneously). 

e) Finally, for the sake of simplicity, we assume that for both the projects the 

opportunity to invest is not subject to time constraints and at the end of their 

lifetime Tu the projects value is equal to zero. 

Since investments A and B are not traded assets, their expected rate of return μ falls below 

the equilibrium total expected rate of return μ̂ required by investors in the market from an 

risk-equivalent traded financial security. The resulting rate of return shortfall 0>μ-μ̂≡δ  

represents the opportunity cost (in annual terms) to invest at time zero and it is analogous 

to a constant dividend yield [14] [15]. 

In equilibrium, according to the risk-neutral valuation approach [16] [17], the actual 

growth rate μ can be replaced by the risk-neutral equivalent drift r-δ. 

We can therefore discount certainty-equivalent cash flows at the risk-free rate r. 
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Consequently we can therefore rewrite (1) as follows: 

                                         0tttt dzdt)r(d .   (2) 

Given the above assumptions, the market value of the project B is:  

                                       { } )e-1(
δ

Xπ
=dtΠeE=)π(V uTδ-

B
B
t

rt-uT

0

B ∫        (3) 

where Tu is the project useful life. 

On the contrary, while determining the market value of project A we must take into 

account that once A is installed, it generates a growth option, i.e. the opportunity to invest 

in project B. It is optimal to switch to project B whenever the instantaneous profit πt 

becomes large enough. In particular, we can express V
A
(π) as: 

                                ( )I-)π(Ve+dtΠeEmax=)π(V B

*τ

Bτr-A
t

rt-
*τ

0*τ

A ∫       (4) 

where τ
*
 is the optimal switching time from A to B. 

The solution to problem (2) is to switch from A to B as soon as π t exceeds the critical 

threshold π
*

AB: 

                                             

)e-1)(X-X(

I
δ

1-α

α
=π

uTδ-AB

B
*

AB         (5) 

where 1>+-+-=α 2σ

r2
2

2σ

δ-r

2

1

2σ

δ-r

2

1
. 

The market value of project A turns out to be: 

                        {

π>πifI-)e-1(

π≤πif)(+)e-1(

=)π(V
*

AB
BuTδ-

δ

BXπ

*

AB1-α

BIα
*

ABπ

πuTδ-

δ

AXπ

A
      (6) 

It deserves to mention that (5) is positive if and only if X
B
-X

A
>0. Some comments on (6) 

are necessary. For any ),0( *

AB , V
A
(π)≤V

B
(π). The current values of projects A and B 

coincide when π=0, while for any ),[ AB    we observe that BBA I-=)π(V-)π(V . In 

other words the current value of project B is always greater than the value of project A, 

which includes the option value to switch, eventually, from A to B at cost I
B
. It is worth 

incurring a sunk cost I
B
 whenever the net revenues generated by project B are greater than 

the net revenues generated by project A. 
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In order to determine under which conditions it is optimal to proceed with sequential 

investments, let’s consider the opportunity to invest in project A, which embeds the option 

to switch at a future date to project B. For each ,t   this is equivalent to solve the 

following problem: 

                                          AA)t(r

tt

A I)(VeEmax)(F  



 




.       (7) 

According to (6), due to the non-linearity in π, there is a discontinuity in the threshold A , 

exceeded which it is optimal to invest in project A: 

                                   {

≥1-ifδ

<1-ifδ

=π

AI

BI

AX

BX

)uTδ-
e-1(BX

AI+BI

1-α

α

AI

BI

AX

BX

)uTδ-e-1(AX

AI

1-α

α

*

A        (8) 

In the first case AB
**

A π<π therefore it is optimal to invest firstly in project A and then 

wait until the instantaneous profit πt exceeds *
ABπ  to invest in project B incorporating A. 

On the contrary when *
AB

*
A π≥π  it is optimal to invest in both the projects simultaneously 

and, therefore, proceed directly with the implementation of B incorporating A. 

3. NUMERICAL EXAMPLE 

In this section we present a numerical example to clarify applications of the above model and 

test the model’s theoretical predictions on a stylized case study. We compare the decision to 

invest in a tall building to the decision to invest in low-rise buildings (i.e. blocks) and proceed 

by sequential investments.  

We analyse the case of a developer that wants to supply a certain gross building area but can 

decide to invest and construct a tall building (Alternative T) or to construct low-rise blocks 

(Alternative LR). As far as the LR alternative is concerned, the entrepreneur has the discretion 

of choosing between two alternative projects A and B of different scale (i.e. gross building 

area) and has the opportunity to proceed with sequential investments. The value of the 

investment in the tall building can be properly determined according to the Net Present Value 

rule under the hypothesis that markets are complete and the tower value is equal to its 

discounted future net revenues (i.e. revenues from lease minus operating, managerial and 

maintenance costs). Whereas, as previously said, traditional capital budgeting techniques can 

be misleading in the presence of operational flexibility. The value of the flexibility to 

implement sequential investments is therefore determined as described in the previous 

section. 

Summary information on technical and economic data relative to the various investment 

alternatives are displayed in Table 1. 
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Table 1. Technical and economic data relative to alternative T and alternative LR 

3.1. The value of the T alternative 

We determine the value of the T alternative according to D’Alpaos and Moretto (2005) and 

we introduce the following simplifying assumptions. 

a) Once installed, project T generates net revenues cash flows that can be simplified 

into a linear function: 

TT
t

TT Xπ=)X(Π  

       where π
T

t is the instantaneous profit per square meter (m
2
) and X

T
 is the project’s 

dimension (i.e. gross building area in m
2
). Analogously to the assumptions 

introduced in Section 2, the unit profit can be described by the following geometric 

Brownian motion with mean zero and variance dt: 

T
0

T
tt

T
t

T
t

T π=πdzσπ+dtπ)δ-r(=πd  

b) Investment cost is I
T
 and it is considered to be completely irreversible. 

c) Project T useful life Tu is equal to project A and B useful life.  

d) At the end of its lifetime the investment value is equal to zero. 

The project value is : 

{ } )e-1(
δ

)X(Π
≡dtΠeE=)Π(V uTδ-

TT
T
t

rt-uT

0

TT ∫  

The investment expected Net Present Value, NPV
T
, is therefore: 

NPV
T
=V

T
(

T
)-I

T
. 

r [%] 4

σ [%] 10; 20; 30; 40

δ [%] 1; 2; 3; 4

Tall building

Number of floors 14                                     

Total gross lease area [m
2
] 6                                       

Construction and development costs, I
T
 [€] 5,390,000

Current net annual lease, π
T
 [€/m

2
 year] 77                                     

Useful life, Tu  [years] 50                                     

Low rise buildings

Number of blocks 3

Total gross lease area, X [m
2
] 6                                       

Construction and development costs per 1 block, I
LR,1

 [€] 1,924,200

Construction and development costs per 2 blocks, I
LR,2

 [€] 3,451,400

Construction and development costs per 3 blocks I
LR,3

 [€] 4,581,500

Current net annual lease, π
LR

 [€/m
2
 year] 69                                     

Useful life, Tt  [years] 50                                     
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The results of simulations are shown in Table 2. 

 

Table 2. Alternative T Net Present Value [€] and unit Net Present Value [€/m
2
] for different values of δ 

The tall building represents a positive net present value project for any δ. For increasing 

values of δ, the Net Present Value decreases: the smaller the cost of carry, the smaller the 

investment Net Present Value. The Net Present Value does not vary according to σ. 

3.2. The value of the LR alternative 

By (3) and (6) we obtain the value of projects A and B respectively, while by (5) and (8) we 

derive the thresholds that trigger the investments and we determine the profitability of 

whether or not it is optimal to proceed with sequential investments. We performed 

simulations assuming different values for the parameters. In particular we assumed σ=10%, 

20%, 30%, 40% and δ=1%, 2%, 3%, 4%. The triggers obtained for σ=10% and σ=40% are 

shown in Table 3. 

 

Table 3. Alternative LR optimal triggers [€] and uENPV [€/m
2
] for different values of δ and σ=10%; 40% 

NPV
T 

[€] uNPV
T
 [€/m

2
]

δ=1% 10,778,426 1,960

δ=2% 7,500,152 1,367

δ=3% 5,081,812 923

δ=4% 3,269,637 594

3670 5500 3670 5500


* 

AB=222 
* 

AB=147 
* 

AB=607 
* 

AB=265


* 

A=62 
* 

A=41 
* 

A=169 
* 

A=74

uENPV
A

=3,210 uENPV
A

=5,122 uENPV
A

=3,741 uENPV
A

=2,983


* 

AB=295 
* 

AB=805


* 

A=74 
* 

A=202

uENPV
A

=4,976 uENPV
A

=5,573


* 

AB=145 
* 

AB=96 
* 

AB=399 
* 

AB=96


* 

A=40 
* 

A=27 
* 

A=111 
* 

A=27

uENPV
A

=1,894 uENPV
A

=3,166 uENPV
A

=2,495 uENPV
A

=2,031


* 

AB=192 
* 

AB=530


* 

AB=48 
* 

AB=133

uENPV
A

=3,104 uENPV
A

=3,776


* 

AB=126 
* 

AB=83 
* 

AB=343 
* 

AB=228


* 

A=35 
* 

A=23 
* 

A=96 
* 

A=64

uENPV
A

=1,068 uENPV
A

=1,898 uENPV
A

=1,652 uENPV
A

=1,390


* 

AB=167 
* 

AB=455


* 

A=42 
* 

A=114

uENPV
A

=1,915 uENPV
A

=2,538


* 

AB=124 
* 

AB=82 
* 

AB=325 
* 

AB=216


* 

A=34 
* 

A=22 
* 

A=91 
* 

A=60

uENPV
A

=552 uENPV
A

=1,026 uENPV
A

=1,061 uENPV
A

=940


* 

AB=164 
* 

AB=431


* 

A=41 
* 

A=108

uENPV
A

=1,556 uENPV
A

=1,658

Gross lease area (m
2
)

G
ro

ss
 l

e
a
se

 a
re

a
 (

m
2
)

G
ro

ss
 l

e
a
se

 a
re

a
 (

m
2
)

G
ro

ss
 l

e
a
se

 a
re

a
 (

m
2
)

Gross lease area (m
2
)

1830

3670

3670

3670

δ=1%

δ=2%

1830

1830

3670

r=4%

G
ro

ss
 l

e
a
se

 a
re

a
 (

m
2
)

δ=3%

δ=4%

1830
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The results displayed in Table 3 show that the optimal investment strategy for any σ and δ is 

to invest in the smaller scale project and wait to invest in the bigger scale one until the 

instantaneous profit πt becomes greater than the threshold π
*

AB. In other words it is always 

optimal to invest in sequential investment and build one block at a time. Economies of scale 

are small and do not affect the optimal investment strategy. For increasing values of δ, ceteris 

paribus, the thresholds π
*
AB and π

*
A decreases (Tab. 3). For increasing values of σ, ceteris 

paribus, the threshold increases (Tab. 3). The uncertainty over future net payoffs induces the 

developer to build one block at the time and pay indeed the additional cost to switch to the 

subsequent investment. For increasing values of σ, the difference between π
*

AB and π
*

A 

increases and as a consequence the expected time to switch to the bigger scale project 

increases. The greater the uncertainty the greater the option value to invest sequentially; the 

greater the uncertainty, the longer the switching times. Table 3 illustrates the unit Net Present 

Value of the smaller scale investment that includes the option value to switch to further 

investments, uENPV henceforth. By comparison of Table 2 and Table 3, it emerges that it is 

always preferable to proceed by sequential investments instead of construct the tall building, 

regardless the tall building is a positive net present value project. In order to maximize the 

investment value, the developer should invest in low-rise buildings: the developer should start 

implementation of the smaller scale project and wait to invest in the bigger scale one as soon 

as the current net unit revenue exceeds the threshold that triggers the investment. 

4. CONCLUSIONS 

The paper investigates the role of flexibility in sequential property investments . The tall 

building unit Net Present Value is positive and greater than the unit Net Present value of 

the low-rise alternative (e.g. uNPV
T
=1,960 €/m

2
 vs uNPV

LR
=1,665 €/m

2
 when δ=1%). 

Nonetheless it is widely recognized that the Net Present Value rule assumes 

management’s passive commitment to a “certain static operating strategy” and fails 

because it is not able to capture managerial flexibility to adapt and revise later decisions in 

response to unexpected market events. In particular traditional capital budgeting techniques 

fail to capture the value of flexibility that characterizes sequential investments. In fact the 

model results show that the unit Net Present Value of the tall building is always lower 

than the unit Net present Value of the low-rise alternative that includes the growth option 

value (uNPV
T=

964 €/m
2
 vs uENPV

LR
=1,068 €/m

2
 when δ=3% and σ=10%). It is therefore 

profitable for the developer to proceed by sequential investments and construct low-rise 

buildings. 
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