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Abstract 

This letter shows some counter-intuitive simulation results that for some filter 

parameters in the extended boundaries of the stability triangle, the state vector will 

converge to a periodic orbit after some iterations, no matter what the initial conditions 

are. Also, a new pattern, which looks like a rotated letter ‘X’, is found. The center of 

the rotated letter is located at the origin and the slopes of the ‘straight lines’ of the 

rotated letter are equal to the values of the pole locations. 

 

1.  Introduction 

It is well known that chaotic behavior may occur in a second-order digital filter 

with two’s complement arithmetic [Chua, 1988, 1990; Galias, 1992; Kocarev, 1993, 

1996; Wu, 1993; Yu, 2001]. For the characteristic equation of the all-pole linearized 

digital filter being bzaz 2 , where the filter parameters  ba,  are in the set 

  1 and 2:,  baba , the phase portrait of the state variables, using the direct 

method of implementation, may exhibit one of three types of trajectories, namely the 

type I, II, and III trajectories. The type I trajectory corresponds to a single rotated 

ellipse. For the type II trajectory, there are more than one rotated and translated 

ellipses. The type III trajectory is characterized by an elliptical fractal pattern [Chua, 

1998, 1990; Galias, 1992; Wu, 1993; Yu, 2001]. The state vector  kx  is periodic for 

the type I and type II trajectories, but aperiodic for the type III trajectory. When the 

filter parameters  ba,  are in the set   1 and 2:,  baba , the phase portrait 

exhibits a dense countable set of discontinuous lines, and shows a random-like chaotic 
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pattern, illustrating that the state vector  kx  is aperiodic. One typical example is that 

when 3a  and 1b , the system will correspond to the well known Arnold-Sinai 

cat map [Kocarev, 1993]. When the filter parameters  ba,  are in the set 

    1 and 1:,  babba  or  1 and 1  bab , there are some straight lines on 

the phase portrait [Kocarev, 1996]. The state vector  kx  is aperiodic for most of the 

initial conditions. 

According to the existing literature [Kocarev, 1993, 1996], one might expect 

that when the filter parameters  ba,  are on the extended boundaries of the stability 

triangle, that is,       or 1 and 1or  1 and 2:,  babbaba  

 1 and 1  bab , then the state vector  kx  is aperiodic for most of the initial 

conditions because one of the eigenvalues of the linearized digital filter has magnitude 

greater than one. However, we show some counter-intuitive simulation results in 

section 2 that for some filter parameters  ba,  on the extended boundaries of the 

stability triangle, the state vector  kx  will converge to a periodic orbit after a number 

of iterations, no matter what the initial conditions are. Also, a new pattern on the phase 

portrait is found, which has not been reported before. Finally, a conclusion is 

summarized in section 3. 

 

2.  Simulation Results 

According to our intensive simulations, we have the following observations: 

Observation 1. 

For the system described in [Chua, 1988, 1990; Galias, 1992; Kocarev, 1993, 1996; 

Wu, 1993; Yu, 2001], if 

(i) 1b  and n
na

2
12   where  0\Zn , or  

(ii) 1 ab  and 1b  and a  is an odd number, or  

(iii) 1 ab  and 1b  and a  is an odd number, 

then  00  Zk  and  ZM  such that    kMk xx   for 0kk   and 

           
  


















kx
kx

kkxkxkI
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1
21

2   where,11 and 11:0 xxx .  
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Figure 1 shows the phase portraits of the system with 1b , initial condition 

  









2.0
1.0

0x , and with different values of a . It can be seen from the figure that the 

number of points in the phase portrait when 5.2a  or 25.4a  is much less than 

that of the case when 3a  or 4a . One can verify that when 5.2a , 

   kk xx  214  for 163k , and when 25.4a ,    kk xx  54  for 191k . 

Because of this quasi-periodic property, the state vector  kx  will hit inside a very 

small neighborhood of the same point on the phase portrait after one period, so the 

phase portrait only shows a finite number of different points. However, there is no 

such quasi-periodic property when 3a  or 4a . Instead, there are infinitely many 

points on the phase portrait, and a random-like chaotic pattern is shown. 

Similarly, Figure 2 shows the phase portrait and the symbolic sequences of 

such a system [Chua, 1988, 1990; Galias, 1992; Kocarev, 1993, 1996; Wu, 1993; Yu, 

2001] with the same initial condition as those of Figure 1, but now 1 ab , and with 

different values of a . It can be seen from the figure that when 3a  or 5a , the 

symbolic sequences become zero and only finitely many points are on the straight lines 

of the phase portrait. One can verify that when 3a ,    kk xx  2  for 28k , 

and when 5a ,    kk xx  2  for 90k . On the other hand, there is no such 

quasi-periodic property when 4a . Hence, there are infinitely many points on those 

straight lines of the phase portrait. For 1 ab , a similar result is obtained, as 

shown in Figure 3. 

Is the above phenomenon true only for some particular initial conditions? We 

have conducted extensive simulations and find that it is true no matter what initial 

conditions are. Figure 4 shows the phase portrait of such a system [Chua, 1988, 1990; 

Galias, 1992; Kocarev, 1993, 1996; Wu, 1993; Yu, 2001] with 1b , 5.2a , and 

with different initial conditions generated by a random number generator. It can be 

verified that the state vector  kx  converges to a periodic orbit for those initial 

conditions. And, similar results have been obtained for the case when 1 ab , 3a , 

or 1 ab , 3a , as shown in Figures 5 and 6, respectively. 

Observation 2. 

For the system described in [Chua, 1988, 1990; Galias, 1992; Kocarev, 1993, 1996; 
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Wu, 1993; Yu, 2001], if 1b  and n
na

2
12   where  4,3,2,1,1,2,3 n , then a 

new pattern, which looks like a rotated letter ‘X’, is exhibited on the phase portrait, no 

matter what the values of the initial conditions are. The center of the rotated letter is 

located at the origin, and the slopes of the ‘straight lines’ of the rotated letter ‘X’ are 

equal to the values of the pole locations.  

Figures 1 and 4 show examples in which a rotated letter ‘X’ is exhibited on the 

phase portrait centered at the origin and with slopes of the ‘straight lines’ being the 

values of the pole locations. 

 

3.  Conclusion 

In this letter, we report that for some filter parameters in the extended 

boundaries of the stability triangle, the state vector will converge to a periodic orbit 

after a number of iterations, no matter what the initial conditions are. Also, a new 

pattern, which looks like a rotated letter ‘X’, is found. The center of the rotated letter 

is located at the origin, and the slopes of the ‘straight lines’ of the rotated letter are 

equal to the values of the pole locations. 
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Fig. 1. Phase portrait with b=-1, x(0)=[0.1 0.2]T, and different values of a. (a) a=2.5, 

(b) a=-4.25, (c) a=3, (d) a=4. 
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Fig. 2. Phase portrait and symbolic sequences with b=a+1, x(0)=[0.1 0.2]T, and 

different values of a. (a) phase portrait with a=4, (b) symbolic sequences with a=4, (c) 

phase portrait with a=3, (d) symbolic sequences with a=3, (e) phase portrait with a=5, 

and (f) symbolic sequences with a=5. 
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Fig. 3. Phase portrait and symbolic sequences with b=-a+1, x(0)=[0.1 0.2]T, and 

different values of a. (a) phase portrait with a=-4, (b) symbolic sequences with a=-4, 

(c) phase portrait with a=-3, (d) symbolic sequences with a=-3, (e) phase portrait with 

a=-5, and (f) symbolic sequences with a=-5. 
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Fig. 4. Phase portrait with b=-1, a=2.5, and different initial conditions. (a) x(0)=[-

0.7222 –0.4556]T, (b) x(0)=[-0.5945 –0.6024]T, (c) x(0)=[-0.6026 –0.9695]T, and (d) 

x(0)=[0.2076 0.4936]T. 
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Fig. 5. Phase portrait with a=3, b=a+1, and different initial conditions. (a) x(0)=[-

0.5947 -0.9607]T, (b) x(0)=[0.3443 0.3626]T, and (c) x(0)=[0.6762 -0.2410]T. 
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Fig. 6. Phase portrait with a=-3, b=-a+1, and different initial conditions. (a) 

x(0)=[0.6636 -0.1422]T, (b) x(0)=[0.0056 -0.3908]T, and (c) x(0)=[0.4189 -0.6207]T. 
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