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SCHAEFFER'S REGULARITY THEOREM FOR SCALAR CONSERVATIONLAWS DOES NOT EXTEND TO SYSTEMSLAURA CARAVENNA AND LAURA V. SPINOLOAbstrat. Shae�er's regularity theorem for salar onservation laws an be loosely speaking formu-lated as follows. Assume that the �ux is uniformly onvex, then for a generi smooth initial datum theadmissible solution is smooth outside a loally �nite number of urves in the (t, x) plane. Here the term�generi� is to be interpreted in a suitable sense, related to the Baire Category Theorem. Whereas otherregularity results valid for salar onservation laws with onvex �uxes have been extended to systemsof onservation laws with genuinely nonlinear harateristi �elds, in this work we exhibit an expliitounterexample whih rules out the possibility of extending Shae�er's Theorem. The analysis relies onareful interation estimates and uses �ne properties of the wave front-traking approximation.Keywords: onservation laws, shok formation, regularity, Shae�er Theorem.MSC (2010): 35L65 Contents1. Introdution 22. Overview of previous results 52.1. The wave front-traking approximation algorithm 52.2. The Baiti-Jenssen system 73. Preliminary results onerning the Baiti-Jenssen system 93.1. Analysis of 1-3 interations 93.2. Analysis of 1-1 and 3-3 interations 103.3. Analysis of 1-2 and 2-3 interations 103.4. Analysis of 2-2 interations 113.5. The Riemann problem with well-prepared data 114. Constrution of the ounter-example 154.1. A wave pattern with in�nitely many shoks 154.2. Shok reation analysis 174.3. A more robust initial datum 195. Proof of the main results 235.1. Proof roadmap 235.2. Preliminary onsiderations 245.3. Wave front-traking approximation: initial datum 265.4. Wave front-traking approximation: qualitative interation analysis 285.5. Wave front-traking approximation: quantitative interation estimates 305.6. Wave front-traking approximation: shok generation analysis 335.7. Conlusion of the proof 385.8. Proof of Theorem 1.2 42Notation 45Referenes 461



2 L. CARAVENNA AND L. V. SPINOLO1. IntrodutionWe are onerned with mild regularity properties for systems of onservation laws in one spaedimension, namely equations in the form(1.1) ∂tU + ∂x
[
G(U)

]
= 0.In the previous expression, the unknown U attains values in RN and depends on (t, x) ∈ [0,+∞[×R .The �ux funtion G : RN → RN is of lass C2. If N = 1, we all (1.1) salar onservation law, if

N > 1 we term it system of onservation laws. In 1973, Shae�er [24℄ established a regularity result(see Theorem 1.1 below) that applies to salar onservation laws. This paper aims at showing thatthis result does not extend to the ase of systems.When N > 1, system (1.1) is alled stritly hyperboli if the Jaobian matrix DG(U) admits Nreal and distint eigenvalues(1.2) λ1(U) < · · · < λN (U).We term ~r1(U), . . . , ~rN (U) the orresponding right eigenvetors of DG(U) and we say that the i-thharateristi �eld is genuinely nonlinear if(1.3) ∇λi(U) · ~ri(U) ≥ c > 0, for every U ∈ RNand for some suitable onstant c > 0. In the previous expression, · denotes the standard salarprodut in RN . If the left hand side of (1.3) is identially zero, then the i-th harateristi �eld istermed linearly degenerate.In the present paper we deal with the Cauhy problem posed by oupling (1.1) with the initialdatum(1.4) U(0, ·) = U0and we refer to the books by Dafermos [14℄ and Serre [25℄ for a omprehensive introdution tosystems of onservation laws. In partiular, it is well-known that, even if U0 is smooth and (1.1) isa salar onservation law, the lassial solution of (1.1), (1.4) breaks down in �nite time owing tothe formation of disontinuities. The Cauhy problem (1.1), (1.4) an be interpreted in the sense ofdistributions, but in general distributional solutions fail to be unique. In the attempt at restoringuniqueness, various admissibility onditions have been introdued: we refer again to [14, 25℄ for anoverview.In the following we brie�y go over some well-posedness and regularity results for systems ofonservation laws. We �rstly fous on the salar ase N = 1. The elebrated work by Kruºkov [19℄establishes global existene and uniqueness results in the lass of so-alled entropy admissible solu-tions of the Cauhy problem (1.1), (1.4) under the assumption that U0 ∈ L∞. Regularity propertiesof entropy admissible solutions have been investigated in several papers: here we only mention someof the main ontributions and we refer to [14, 25℄ for a more omplete disussion. First, a famousresult by Ole��nik [22℄ establishes the following regularizing e�et: when the �ux G ∈ C2 is uniformlyonvex, for every t > 0 the solution U(t, ·) has bounded total variation, namely U(t, ·) ∈ BV (R),even if U0 is only in L∞. More reently, Ambrosio and De Lellis [2℄ improved Oleinik's result show-ing that, exept at most ountably many times, the solution U(t, ·) is atually a speial funtion ofbounded variation, namely U(t, ·) ∈ SBV (R); we refer to [3, � 4℄ for the de�nition of SBV (R). Thisis a regularizing e�et of the nonlinearity. A result due to Shae�er [24℄, moreover, states that fora generi smooth initial datum the admissible solution of the Cauhy problem is even better than



A COUNTER-EXAMPLE TO THE REGULARITY OF SYSTEMS 3this: it develops at most a loally �nite number of disontinuity urves, see Theorem 1.1 below.In the following statement, we denote by S(R) the Shwartz spae of rapidly dereasing funtions,endowed with the standard topology (see [23, p.133℄ for the preise de�nition).Theorem 1.1 (Shae�er). Assume that N = 1 and that the �ux G is smooth and uniformly onvex,namely G′′(U) ≥ c > 0 for some onstant c > 0 and for every U ∈ R.Then there is a set F ⊆ S(R) that enjoys the following properties:i) F is of the �rst ategory in S(R), namely(1.5) F =

∞⋃

k=1

Ck, Ck is losed and has empty interior, for every k.ii) For every U0 ∈ S(R) \F, the entropy admissible solution of the Cauhy problem (1.1), (1.4)enjoys the following regularity. For every open bounded set Ω ⊆ [0,+∞[×R there is a �nitenumber of Lipshitz ontinuous urves Γ1, . . . ,Γm ⊆ R2 suh that
U ∈ C∞ (Ω \ ∪m

i=1Γi)The urves Γ1, . . . ,Γm are usually termed shoks. We brie�y omment the above result. First,the assumption that G is uniformly onvex an be relaxed, see for instane Dafermos [12℄. Seealso [27℄ for reent related results. Seond, a haraterization of the set F an be found in a paperby Tadmor and Tassa [26℄. Third, the result is sharp in the sense that one annot hope that theregularity holds for every smooth initial datum. More preisely, even in the ase G(U) = U2/2several authors onstruted initial data in S(R) that develop in�nitely many shoks on ompatsets; see for instane the ounter-example exhibited by Shae�er himself [24, � 5℄. Among reentworks, we mention the onstrution by Adimurthi, Ghoshal and Veerappa Gowda [1℄.The present paper aims at disussing whether or not Shae�er's Theorem 1.1 extends to systems,i.e. to the ase when N > 1. Investigating whether or not the number of shoks is (generially) �niteis motivated not only by intrinsi interest, but also by appliations. In partiular, knowing that thelimit solution admits at most �nitely many shoks simpli�es the study of several approximationshemes. As an example, we reall that the proof of the onvergene of the vanishing visosityapproximation in the ase when the limit solution has �nitely many, non interating shoks wasprovided by Goodman and Xin [17℄ and it is onsiderably simpler than the proof in the generalase, whih is due to Bianhini and Bressan [6℄.We now reall some well-posedness and regularity results for systems of onservation laws. Thepioneering work by Glimm [15℄ established existene of a global in time, distributional solutionsof the Cauhy problem (1.1), (1.4) under the assumptions that the system is stritly hyperboli,that eah harateristi �eld is either genuinely nonlinear or linearly degenerate and that thetotal variation of the initial datum U0 is su�iently small. Uniqueness results were obtained ina series of papers by Bressan and several ollaborators: we refer to the book [8℄ for an overview.In the following, we all the solution onstruted by Glimm admissible solution of the Cauhyproblem (1.1), (1.4). Note that this solution an be also reovered as the limit of a wave front-traking approximation [8℄ and of a seond order approximation [6℄.Several regularity results that apply to salar onservation laws with onvex �uxes have beenextended to systems of onservation laws where every vetor �eld is genuinely nonlinear (i.e. on-dition (1.3) holds for every i = 1, . . . , N). See, for instane, the works by Glimm and Lax [16℄,Liu [21℄ and Bressan and Colombo [9℄ for possible extensions of the deay estimate by Ole��nik [22℄.



4 L. CARAVENNA AND L. V. SPINOLOMoreover, the SBV regularity result by Ambrosio and De Lellis [2℄ has been extended to the aseof systems, see Dafermos [13℄ for self-similar solutions, Anona and Nguyen [4℄ for Temple systemsand Bianhini and Caravenna [7℄ for general systems where every harateristi �eld is genuinelynonlinear.The main result of the present paper states that Shae�er's Theorem 1.1 does not extend tosystems, even those where every harateristi �eld is genuinely nonlinear.Theorem 1.2. There are a �ux funtion G : R3 → R3 , a ompat set K ⊆ [0,+∞[×R and a setB ⊆ S(R) that enjoy the following properties:i) system (1.1) is stritly hyperboli and every harateristi �eld is genuinely nonlinear,namely (1.2) holds and moreover property (1.3) is satis�ed for every i = 1, 2, 3.ii) The set B is non empty and open in S(R).iii) For every U0 ∈ B the admissible solution of the Cauhy problem (1.1), (1.4) has in�nitelymany shoks in the ompat set KSome remarks are in order:
• in the statement of the above theorem by shok we mean a Lipshitz ontinuous urve
x = Γ(t) at whih U is disontinuous.

• The Baire Theorem implies that any set of the �rst ategory (1.5) has empty interior. Sinethe set of �bad data� B is open and non empty, it annot be of the �rst ategory and heneTheorem 1.2 provides a ounter-example to the possibility of extending Shae�er's Theoremto the ase of systems.
• By looking at the expliit onstrution one an infer that B satis�es the following furtherrequirement. For every U0 ∈ B, the total variation of U0 is su�iently small to apply theexistene and uniqueness results in [8, 15℄. This means that the ounter-example providedby Theorem 1.2 belongs to the same lass where we have well-posedness.
• Our onstrution is expliit, in the sense that we provide an expliit formula for the funtion
G, the ompat K and the set B, see (2.3), (5.51) and the onstrution in � 4.

• Our onstrution shows, as a byprodut, that a �nite total variation wave-pattern ontainingin�nitely many shoks an be robust with respet to suitable perturbations of the initialdata.
• Our ounter-example requires 3 dimensions, namely N = 3. It is known that 2× 2 systemsare usually muh better behaved than higher dimension systems, see for instane the dis-ussion in [14, � XII℄. An interesting question is whether or not She�er's Theorem extendsto (suitable lasses of) 2×2 systems 1. We plan to address this question in a separate study.To onlude, we brie�y outline the proof of Theorem 1.2. The set B will be basially obtained byonsidering small W 1,∞ perturbations of a ertain funtion Ũ . The main point in the proof is thenonstruting G and Ũ in suh a way thati) when U0 = Ũ the admissible solution of the Cauhy problem (1.1)-(1.4) develops in�nitelymany shoks, andii) the same happens when U0 is a small perturbation of Ũ .We hoose as �ux funtion G a partiular representative of a family of �uxes introdued by Baiti andJenssen [5℄. Note that in [5℄ the authors exhibit a wave-pattern ontaining in�nitely many shoks.1We thank Alberto Bressan for this remark.



A COUNTER-EXAMPLE TO THE REGULARITY OF SYSTEMS 5Atually, the original wave-pattern in [5℄ ontains large amplitude waves, but the onstrution anbe adapted to obtain a wave-pattern with small total variation. Although we use several resultsestablished in [5℄, our analysis is quite di�erent from the one in [5℄. More preisely, there are threemain hallenges in adapting the onstrution in [5℄ for our goals:
• we need to show that the wave-pattern in [5℄ an be exhibited by a solution with smoothinitial datum: this issue is takled by relying on the notion of ompression wave, see � 4.2.1.
• A muh more severe obstrution is the fat that the wave-pattern we obtain by mimikingthe onstrution in [5℄ is a priori not robust with respet to perturbations. We refer tothe disussion at the beginning of � 4.3 for a more detailed explanation, but very looselyspeaking the problem is the following. By following the onstrution in [5℄ we obtain awave-pattern with in�nitely many shoks, but, owing to the fat that we require that thetotal variation of the solution is bounded, most of the shoks we onstrut are very weak,and ould be in priniple aneled by an arbitrary small perturbation of the initial data.Owing to this lak of robustness, we have to introdue a di�erent and more ompliatedonstrution than the original one in [5℄. Even in the ase when there is no perturbation,the struture of the admissible solution is muh more omplex than the one onsideredin [5℄.
• The analysis in [5℄ relies on the onstrution of expliit solutions. In our ase, omputingexpliit solutions is prohibitive and hene we argue by introduing a wave front-trakingapproximation. We perform areful interation estimates to gain preise information on thestruture of the approximate solution and we eventually pass to the limit by using �ne prop-erties of the wave front-traking approximation established by Bressan and LeFloh [10℄.The paper is organized as follows. In � 2 for the reader's onveniene we go over some previousresults. More preisely, in � 2.1 we reall some of the main properties of the wave front-trakingapproximation, while in � 2.2 we introdue the Baiti-Jenssen system and reall some of the mainproperties. In � 3 we establish preliminary estimates on admissible solutions of the Baiti-Jenssensystem. In � 4 we onstrut the funtion Ũ . In � 5 we establish the proof of Theorem 1.2.In partiular, we show that the solution of the Cauhy problem with initial datum Ũ developsin�nitely many shoks and that this behavior is robust with respet to perturbations of Ũ .For the reader's onveniene, we ollet the notation of this paper at Page 45.2. Overview of previous resultsFor the reader's onveniene, in this setion we go over some previous results that we will needin the following. More preisely, we proeed as follows:� 2.1: we quikly summarize the wave front-traking algorithm [8℄ and we �x some notation.� 2.2: we introdue the Baiti-Jenssen system and we disuss some of its properties.2.1. The wave front-traking approximation algorithm. In this paragraph we brie�y goover the version of the wave front-traking algorithm disussed in [8℄ (see in partiular Chapter 7 inthere). We refer to [8℄ and to the books by Dafermos [14, � 14.13℄ and by Holden and Risebro [18℄for a more extended disussion and for a omprehensive list of referenes. Also, in the followingdisussion we assume that eah harateristi �eld is genuinely nonlinear (i.e., that (1.3) holds true)beause this hypothesis is satis�ed by our system.



6 L. CARAVENNA AND L. V. SPINOLOWe �rst introdue some notation. We reall that the i-wave fan urve through Ū is(2.1) Di[s, Ū ] :=

{
Ri[s, Ū ] s ≥ 0

Si[s, Ū ] s < 0.In the previous expression, Ri is the integral urve of ~ri passing through Ū , namely the solution ofthe Cauhy problem(2.2) 



dRi

ds
= ~ri(U),

Ri[0, Ū ] = Ū .Also, we denote by Si the i-Hugoniot lous, i.e. the set of states that an be joined to Ū by ashok of the i-family, namely by a i-shok. The speed of the shok an be omputed by using theRankine-Hugoniot onditions. We all the absolute value |s| strength of the shok between Ū and
Si[s, Ū ].We are now ready to outline the the onstrution of the wave front-traking approximation. We�x a small parameter ν > 0 and we denote by Uν the wave front-traking approximation. The�nal goal is to show that when ν → 0+ the family Uν onverges to the admissible solution of theCauhy problem (1.1)-(1.4). The main steps to onstrut Uν are the following (we refer to [8, � 7℄for a detailed disussion):i) we onstrut Uν

0 , a pieewise onstant approximation of the initial datum U0.ii) At eah disontinuity of Uν
0 we solve the Riemann problem between the left and the rightstate by relying on the Lax Theorem [20℄. We want to de�ne Uν in suh a way that Uν(t, ·)is pieewise onstant for almost every t > 0. Hene, we replae the rarefation wavesin the Lax solution of the Riemann problem with a suitably de�ned pieewise onstantapproximation. The resulting approximate solution is alled aurate Riemann solver.iii) We repeat the above proedure at eah disontinuity point of Uν

0 and we de�ne Uν byjuxtaposing the approximate solution of eah Riemann problem. In this way, Uν is pieewiseonstant and has a �nite number of disontinuity lines. By a slight abuse of notation, weall rarefation waves the disontinuity lines orresponding to rarefations. We an alsointrodue a notion of strength for the rarefation wave (see [8, Chapter 7℄ for the tehnialdetails).iv) Let us onsider the point at whih two waves (i.e., disontinuity lines) interat (i.e. rosseah other). The interation determines a new Riemann problem, whih is solved by usingthe same proedure as in step 2. above. In this way we an extend the wave front-trakingapproximation Uν after the �rst interation ours.v) In priniple, it may happen that the number of disontinuity lines of Uν blows up in �nitetime: this would prevent us from de�ning Uν globally in time. The number of disontinuitiesan blow up if for instane Uν ontains a wave pattern like the one illustrated in Figure 3.vi) To prevent the number of disontinuities from blowing up, we introdue the so-alled nonphysial waves. The exat de�nition is quite tehnial and it is given in [8, �7.2℄, but thebasi idea is the following. We introdue a threshold µν and we onsider an interationpoint. If the produt between the strengths of the inoming waves is bigger than µν , thenwe use the aurate Riemann solver de�ned at step 2. If it is smaller, we use a so-alledsimpli�ed Riemann solver. The simpli�ed Riemann solver involves a minimum number of



A COUNTER-EXAMPLE TO THE REGULARITY OF SYSTEMS 7outgoing waves. Basially, all the new waves are paked together in a single non physialwave, whih travels at a faster speed than any other wave.vii) The analysis in [8, �7℄ shows that, by relying on a suitable hoie of the approximate and ofthe simpli�ed Riemann solver, of the approximate initial datum Uν
0 and of the threshold µν ,one an prove that the approximate wave front-traking solutions Uν onverge as ν → 0+to the unique admissible solution of the Cauhy problem (1.1), (1.4).2.2. The Baiti-Jenssen system. In this paragraph we reall some results from [5℄. More pre-isely, we proeed as follows.� 2.2.1: we introdue the expliit expression of the Baiti-Jenssen system and we omment on it.� 2.2.2: we reall the expliit expression of the eigenvalues and we go over the struture of the wavefan urves.2.2.1. The system. We introdue the Baiti-Jenssen system. We �x η ∈ ]0, 1[ and we de�ne thefuntion Fη : R3 → R3 by setting(2.3) Fη(U) :=




4
[
(v − 1)u− w

]
+ ηp1(U)

v2

4
{
v(v − 2)u− (v − 1)w

}
+ ηp3(U)


In the above expression, u, v and w denote the omponents of U , namely U = (u, v, w). Thefuntions p1 and p3 are given by

p1(U) =
1

2

{
[w − (v − 2)u]2 − [w − vu]2

]}
= 2uw − 2u2(v − 1),(2.4)

p3(U) =
1

2

{
v[w − (v − 2)u]2 − (v − 2)[w − vu]2

}
= w2 − u2(v − 2)v.(2.5)In the following we are onerned with the system of onservation laws(2.6) ∂t U + ∂x

[
Fη(U)

]
= 0,whih we term Baiti-Jenssen system. Two remarks are here in order. First, (2.3) is exatly system(3.11) in [5℄ provided that we hoose ε = η, g(v) = v2, a(v) = v, b(v) = v − 2, c = 4. The reasonwhy we only onsider a partiular representative of the lass of systems onsidered in [5℄ is beausewe want to simplify the analysis and the exposition. Indeed, some parts of the proof of Theorem 1.2are already fairly tehnial and we have deided to keep the rest as simple as possible. However,we are on�dent that our argument an be extended to muh more general lasses of systems.Seond, the elebrated existene and uniqueness results [15, 8℄ mentioned in the introdutionimply that there are onstants C > 0 and δ > 0 suh that, if U0 is a ompatly supported funtionsatisfying

TotVar U0 ≤ δ,then the Cauhy problem obtained by oupling (2.6) with the ondition U(0, ·) = U0 has a unique,global in time admissible solution whih satis�es
TotVar U(t, ·) ≤ C TotVar U0, for every t > 0.In priniple, both δ and C depend on η. However, by looking at the proof of the onvergene ofthe wave front-traking approximation one realizes that C and δ only depend on bounds on Fη andits derivatives of various orders. Sine all these funtions are uniformly bounded in η ∈]0, 1[, then



8 L. CARAVENNA AND L. V. SPINOLOwe an hoose C and δ in suh a way that they do not depend on η. In the following, we will let ηvary but we will always assume that the funtion U attains values in the unit ball, namely |U | < 1.This will be a posteriori justi�ed beause we will hoose a ompatly supported initial datum withsu�iently small total variation.2.2.2. Eigenvalues and wave fan urves. We now reall some features of system (2.3) and we referto [5, pp. 841-843℄ for the proof. First, the eigenvalues of the Jaobian matrix DFη(U) are
λ1(U) = 2η

[
w − (v − 2)u

]
− 4 < λ2(U) = 2v < λ3(U) = 2η

[
w − vu

]
+ 4.(2.7)Note that(2.8) − 6 < λ1(U) < −5

2
< −2 < λ2(U) < 2 < 3 < λ3(U) < 5 if |U | < 1 and 0 ≤ η <

1

4and hene in partiular(2.9) |λ1(U)|, |λ2(U)|, |λ3(U)| < 6 if |U | < 1 and 0 < η <
1

4
.Note that (2.8) implies that the system is stritly hyperboli if |U | < 1 and 0 ≤ η < 1/4. Notefurthermore that 2 is a Lipshitz onstant of eah eigenvalue if |U | < 1 and 0 ≤ η < 1/4. The �rstand the third right eigenvetors are(2.10) ~r1(U) =



1

0

v


 and ~r3(U) =




1

0

v − 2


 ,respetively. The expliit expression of the seond eigenvetor is not relevant here. Note howeverthat the assumption of genuine nonlinearity is satis�ed sine(2.11a) ∇λ1(U) · ~r1(U) = 4η > 0, ∇λ2(U) · ~r2(U) = 2 > 0and(2.11b) ∇λ3(U) · ~r3(U) = −4η < 0.Note that (2.11b) implies (1.3) provided that we hange the orientation of ~r3. Owing to (2.10),the 1- and the 3-wave fan urve through Ū = (ū, v̄, w̄) are straight lines in the planes v = v̄. Morepreisely,

D1[σ; Ū ] =




σ + ū

v̄

v̄σ + w̄


 = Ū + σ~r1(Ū) = Ū + σ~r1(v̄),(2.12a)

D3[τ ; Ū ] =




τ + ū

v̄

(v̄ − 2)τ + w̄


 = Ū + τ~r3(Ū) = Ū + τ~r3(v̄).(2.12b)Owing to (2.11), we have that

• if σ < 0, then Ū and D1[σ; (ū, v̄, w̄)] are onneted by a 1-shok. If σ > 0, then Ū and
D1[σ; (ū, v̄, w̄)] are onneted by a 1-rarefation wave.

• if τ < 0, then Ū and D3[σ; (ū, v̄, w̄)] are onneted by a 3-rarefation wave. If τ > 0, then
Ū and D3[σ; (ū, v̄, w̄)] are onneted by a 3-shok.To understand the struture of the seond wave fan urve through Ū we use the following simpleobservation, whih for future referene we state as a lemma.



A COUNTER-EXAMPLE TO THE REGULARITY OF SYSTEMS 9Lemma 2.1. Assume that U = (u, v, w) is an admissible solution of the system of onservationlaws (2.6). Then the seond omponent v is an entropy admissible solution of the salar onservationlaw(2.13) ∂t v + ∂x
[
v2
]
= 0.Proof. Lemma 2.1 was used in [5℄, but we provide the proof for the sake of ompleteness. Owingto the analysis in [6℄ (see in partiular Theorem 1 and � 15 in there), the admissible solution U anbe reovered as the unique limit ε → 0+ of the seond order approximation

∂t Uε + ∂x
[
Fη(Uε)

]
= ε ∂2

xxUε.We then onlude by onsidering the seond omponent and realling that the entropy admissiblesolution of a salar onservation law is the unique limit of the vanishing visosity approximation(see [14, � 6.3℄). �By ombining (2.11) with Lemma 2.1 and by realling that the �ux in (2.13) is onvex weonlude tha we an hoose the parametrization of D2 in suh a way that
• if s < 0, then Ū and D2[s, Ū ] are onneted by a 2-shok and the seond omponent of
D2[s, Ū ] is v̄ + s < v̄

• if s > 0, then Ū and D2[s, Ū ] are onneted by a 2-rarefation wave and the seond om-ponent of D2[s, Ū ] is v̄ + s > v̄.3. Preliminary results onerning the Baiti-Jenssen systemThis setion onerns the Baiti-Jenssen system (2.6). It is divided into two parts:
• In � 3.1, � 3.2, � 3.3 and � 3.4 we disuss interation estimates for the Baiti-Jenssen system.More preisely, in � 3.1, � 3.2 we reall some analysis from [5℄. In � 3.3 we state a newversion of a result established in [5℄. The proof is provided in the ompanion paper [11℄. In� 3.4 we go over a new interation estimate established in [11℄.
• In � 3.5 we disuss new results onerning the solution of the Riemann problem in the asewhen the left and the right states satisfy suitable strutural assumptions.Both parts will be used in � 5 in the analysis of the wave-front traking approximation of a generallass of Cauhy problems.3.1. Analysis of 1-3 interations. In this paragraph we onsider the interation between a shokof the �rst family, i.e. a 1-shok, and a 3-shok. More preisely, we term Uℓ, Um and Ur the left,middle and right state before the interation, respetively (see Figure 1, left part). In other words,(3.1) Um = D3[τ, Uℓ], Ur = D1[σ,Um]for some τ > 0, σ < 0, where D1[·] and D3[·] are given in (2.12).We now want to solve the Riemann problem between Uℓ (on the left) and Ur (on the right). Wereall that the 1- and the 3-wave fan urves are just straight lines in planes where the v omponentis onstant, see (2.12). The slope of the lines only depends on v. This implies that the 1- and the3-wave fan urves ommute and the solution of the Riemann problem between Uℓ (on the left) and

Ur (on the right) ontains no 2-wave. In other words, the following holds. We denote by U ′
m themiddle state after the interation (see again Figure 1, left part). From (3.1) we get(3.2) U ′

m = D1[σ,Uℓ], Ur = D3[τ, U
′
m].
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τ

Ur

Um

σ
τ

Uℓ

σ U ′
m

Uℓ

τℓ + τr

Um

Ur

τr

τℓFigure 1. A 1-3 interation (left) and a 3-3 interation (right). The value of v isonstant aross eah interation3.2. Analysis of 1-1 and 3-3 interations. Owing to the partiular struture (2.12) of the 1-and 3-wave fan urves, the inoming shoks in 1-1 interations and 3-3 interations simply merge.In partiular, no new wave is produed. More preisely, we have the following: we fous on 3-3interations and we refer to Figure 1 for a representation. We term Uℓ, Um and Ur the left, middleand right state before the interation, respetively. In other words,
Um = D3[τℓ, Uℓ], Ur = D3[τr, Um]for some τℓ, τr > 0. Owing to (2.12), we have Ur = D3[τℓ + τr, Uℓ] and hene the only outgoingwave is a 3-wave. The analysis of 1-1 interations is ompletely analogous.3.3. Analysis of 1-2 and 2-3 interations. In this paragraph we expliitly disuss the interationof a 1-shok with a 2-shok. The analysis of the interation of a 2-shok with a 3-shok is ompletelyanalogous. Lemma 3.1 below an be loosely speaking formulated as follows: if η and the strength ofthe inoming shoks are su�iently small, then the outgoing waves are three shoks (and hene, inpartiular, no outgoing wave is a rarefation). Also, we have a bound from below and from aboveon the strength of the outgoing shoks. Note that a result similar to Lemma 3.1 is establishedin [5℄: the novelty of Lemma 3.1 is that we have a more preise estimate on the strength of theoutgoing 3-shok, ompare the left part of (3.6) with [5, eq. (5.9)℄. Also, in the ase of Lemma 3.1we restrit to data with small total variation. The proof of Lemma 3.1 is provided in [11℄ and isbased on perturbation argument: one �rstly establishes Lemma 3.1 in the ase when η = 0 andthen onsiders the ase η > 0.To give the formal statement of Lemma 3.1 we introdue some notation. We term Uℓ, Um and

Ur the left, middle and right state before the interation, respetively. See Figure 2, left part, fora representation. In other words,(3.3) Um = D2[s, Uℓ], Ur = D1[σ,Um] for some s < 0, σ < 0.Also, we denote by U ′
m and U ′′

m the new intermediate states after the interation, namely(3.4) U ′
m = D1[σ

′, Uℓ], U ′′
m = D2[s

′, U ′
m], Ur = D3[τ, U

′′
m]for some σ′, s′ and τ ∈ R. Here is the formal statement of our result.
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Uℓ

U ′′
m τ

Ur

σ
Um

s

Uℓ

U ′
mσ′ s′

σ

s1
Um

s2

Ur

τ
U ′′
m

s1 + s2U ′
m

Figure 2. A 1-2 interation (left) and a 2-2 interation (right).Lemma 3.1. Assume that (3.3) and (3.4) hold. Then(3.5) s′ = s.Also, there is ε > 0 suh that the following holds. If |Uℓ|, |s|, |σ| ≤ 1/4 and 0 ≤ η < ε, then(3.6) − 2|σ| < σ′ < −|σ|
2

and 1

100
sσ < τ < 10sσ.3.4. Analysis of 2-2 interations. In this paragraph we state a result from [11℄ onerning theinteration between two 2-shoks. As usual, we term Uℓ, Um and Ur the left, middle and right statebefore the interation. We refer to Figure 2, right part, for a representation. Lemma 3.2 an beloosely speaking formulated as follows. Fix a onstant a > 0 and assume that Uℓ, Um and Ur areall su�iently lose to some state (a, 0,−a). Then the outgoing waves are three shoks.The proof of Lemma 3.2 is given in [11℄ and it is divided into two parts: we �rstly establish theresult in the ase η = 0 by relying on the expliit expression of the 2-wave fan urve. We thenextend it to the ase η > 0 by using a perturbation argument.Here is the formal statement.Lemma 3.2. There is a su�iently small onstant ε > 0 suh that the following holds. Fix aonstant a suh that 0 < a < 1/2 and set U ♯ := (a, 0,−a). Assume that

|Uℓ − U ♯| ≤ εa, s1, s2 < 0, |s1|, |s2| < εa, 0 ≤ η ≤ εa .Assume furthermore that
Ur = D2

[
s2,D2[s1, Uℓ]

]
.Then there are σ < 0 and τ > 0 suh that(3.7) Ur = D3

[
τ,D2

[
s1 + s2,D1[σ,Uℓ]

]]
.3.5. The Riemann problem with well-prepared data. In this paragraph we disuss the stru-ture of the solution of Riemann problems with �well-prepared� data. The main and most generalresult of this setion is stated in Lemma 3.4 below: under suitable and general strutural assump-tions on the onstant states U− and U+, whih we express in the form of averages, the solution ofthe Riemann problem is obtained by juxtaposing three shoks and hene, in partiular, it ontainsno rarefation wave. Sine the statement of Lemma 3.4 is a bit umbersome, we �rst deal withpartiular and simpler ases in Lemmas 3.3 and 3.4 below. In � 5.3 we will use all these results to



12 L. CARAVENNA AND L. V. SPINOLOdisuss the wave-front traking approximation of the initial datum for a general lass of Cauhyproblems.Lemma 3.3. There is 0 < ε < 1 suh that the following holds. Fix UI ∈ R3 suh that |UI | ≤ 1/2.Let ~r1I , ~r2I and ~r3I be the vetors(3.8) ~r1I := ~r1(UI), ~r2I := ~r2(UI), ~r2I := ~r3(UI).If U−, U+ ∈ R3 satisfy(3.9) |U− − UI | < εand
|U+ − U− + b~r1I + b~r2I − b~r3I | < εb(3.10)for some 0 < b < ε, then the following holds. There are τ, σ and s suh that(3.11) 0 < τ < 2b, −2b < σ < 0, −2b < s < 0and(3.12) U+ = D3

[
τ,D2

[
s,D1[σ,U

−]
]]
.Proof. First, we point out that, if ε is su�iently small, then (3.10) implies that(3.13) U+ − U− = −b1~r1I − b2~r2I + b3~r3Ifor some b1, b2, b3 satisfying(3.14) 1

2
b < b1, b2, b3 <

3

2
b.Next, we use the Loal Invertibility Theorem and we determine τ, s and σ satisfying (3.12). Owingto the regularity of the inverse map, we an infer from (3.13) and (3.14) that(3.15) |σ|+ |s|+ |τ | < Cb.Here and in the rest of the proof, C denotes a universal onstant. The preise value of C an varyfrom line to line. Next, we reall that the wave fan urve D1 satis�es (2.12) and we introdue thenotation(3.16) U ′

m = D1[σ,U
−] = U− + σ~r1(U

−) = U− + σ~r1I + σ
[
~r1(U

−)− ~r1I

]
.Also, we term(3.17) U ′′

m := D2[s, U
′
m] = U ′

m + s~r2I + s
[
~r2(U

′
m)− ~r2I

]
+

[
D2[s, U

′
m]− U ′

m − s~r2(U
′
m)

]By using (3.12) and the expliit expression of the wave fan urve D3 (see (2.12)) we arrive at
U+ = U− + σ~r1I + s~r2I + τ~r3I

+ σ
[
~r1(U

−)− ~r1I

]
+ s

[
~r2(U

′
m)− ~r2I

]
+

[
D2[s, U

′
m]− U ′

m − s~r2(U
′
m)

]
+ τ

[
~r3(U

′′
m)− ~r3I

]

︸ ︷︷ ︸
R(σ, s, τ, U−)

(3.18)



A COUNTER-EXAMPLE TO THE REGULARITY OF SYSTEMS 13We reall that ~r2(U ′
m) is the derivative dD2[s, U

′
m]/ds omputed at s = 0. By using (3.9), (3.15),we obtain that the rest term R an be ontrolled as follows:

|R(σ, s, τ, U−)| ≤ Cb(ε+ ε) + Cb2 + Cbε

≤ Cbε.
(3.19)To establish the last inequality, we use the assumption that b < ε. Next, we ompare (3.18)with (3.13) and by using (3.19) we dedue that

|b1 + σ|+ |b2 + s|+ |b3 − τ | < Cεb.Owing to (3.14), this implies (3.11) provided that ε is su�iently small. The proof of the lemmais omplete. �We only sketh the proof of the following lemma beause it is similar to Lemma 3.3. Note,furthermore, that Lemma 3.3 an be reovered from Lemma 3.4 by taking the limit ξ → 0+.However, we deided the give the omplete statement and proof of Lemma 3.3 to highlight thebasi ideas underpinning Lemmas 3.4 and 3.5.Lemma 3.4. There is 0 < ε < 1 suh that the following holds. Fix UI ∈ R3 suh that |UI | < 1/2.Let ~r1I , ~r2I and ~r3I be the same vetors as in (3.8). Assume that UI , U
−, V −, U+ ∈ R3 , and b, ξ ∈ Rsatisfy the following onditions: formula (3.9) holds and moreover(3.20) |V − − U−| <

√
ε
b

ξ
, 0 < b < ε, 0 < ξ <

√
εb.Assume furthermore thateither |U+ − U− −D1[−ξ, V −] + V − + b~r1I + b~r2I − b~r3I | < b/4(3.21a) or |U+ − U− −D2[−ξ, V −] + V − + b~r1I + b~r2I − b~r3I | < b/4(3.21b) or |U+ − U− −D3[ξ, V

−] + V − + b~r1I + b~r2I − b~r3I | < b/4.(3.21)Then (3.12) holds for some τ, σ, s suh that
0 < τ < 2b, −2b < s < 0, −2b− ξ < σ < −ξ if (3.21a) holds(3.22a)
0 < τ < 2b, −2b− ξ < s < −ξ, −2b < σ < 0 if (3.21b) holds(3.22b)
ξ < τ < ξ + 2b, −2b < s < 0, −2b < σ < 0 if (3.21) holds.(3.22)Proof. We only onsider the ase when (3.21b) holds sine the analysis of the other ases is analo-gous, but simpler. We �rst rewrite (3.21b) as(3.23) ∣∣∣U+ − U− + b~r1(U

−) + (b+ ξ)~r2(U
−)− b~r3(U

−) +R1(ξ, UI , U
−, V −)

∣∣∣ ≤ b/4,where the term R1 is de�ned by setting
R1(b, ξ, UI , U

−, V −) :=b
[
~r2I − ~r2(U

−)
]
+ b

[
~r1I − ~r1(U

−)
]
+ b

[
~r3I − ~r3(U

−)
]

−
[
D2[−ξ, V −]− V − + ξ~r2(V

−)
]
+ ξ

[
~r2(V

−)− ~r2(U
−)

]
.

(3.24)Owing to (3.9) and (3.20), it satis�es(3.25) |R1(b, ξ, UI , U
−, V −)| ≤ Cεb+ Cξ2 + Cξ|V − − U−| ≤ C

√
εb



14 L. CARAVENNA AND L. V. SPINOLOHere and in the rest of the proof, C denotes a universal onstant. Its preise value an vary fromline to line. Next, we use the Loal Invertibility Theorem to determine τ, s and σ satisfying (3.12).Owing to the regularity of the inverse map, we have(3.26) |σ|+ |s|+ |τ | < C(b+ ξ).We de�ne U ′
m and U ′′

m as (3.16) and (3.17) and by arguing as in the proof of Lemma 3.3 we onludethat (3.12) implies
U+ = U− + σ~r1(U

−) + s~r2(U
−) + τ~r3(U

−)

+ s
[
~r2(U

′
m)− ~r2(U

−)
]
+

[
D2[s, U

′
m]− U ′

m − s~r2(U
′
m)

]
+ τ

[
~r3(U

′′
m)− ~r3(U

−)
]

︸ ︷︷ ︸
R2(σ, s, τ, U

−)

(3.27)By using (3.26) we obtain(3.28) |R2(σ, s, τ, U
−)| ≤ C(b+ ξ)2Finally, we ompare (3.23) and (3.27) and we use (3.25) and (3.28) and we obtain(3.29) |σ + b|+ |s+ b+ ξ|+ |τ − b| ≤ b/4 + C

√
εb+ C(b+ ξ)2.By using the inequality ξ2 ≤ εb, we eventually arrive at (3.22b). �By arguing as in the proof of Lemma 3.4, we establish the following result. Note that Lemmas 3.3and 3.4 an be both reovered as partiular ases of Lemma 3.5.Lemma 3.5. There is 0 < ε < 1 suh that the following holds. Let m be a Borel probability measureon R. Fix UI ∈ R3 suh that |UI | < 1/2. Let ~r1I , ~r2I and ~r3I be the same vetors as in (3.8). Fix

U−, U+ ∈ R3 and assume that(3.30) |U− − UI | < ε.Assume, furthermore, that the the funtions
Ṽ − : R → R3 , b̃, ξ̃1, ξ̃2, ξ̃3 : R → [0,+∞[.satisfy the following onditions for m-a.e. z ∈ R:

0 ≤ b̃(z) < ε, 0 ≤ ξ̃i(z) <

√
ε̃b(z) for i = 1, 2, 3,(3.31a)

[
ξ̃1(z) + ξ̃2(z) + ξ̃3(z)

]
|Ṽ −(z)− U−| <

√
ε b̃(z).(3.31b)Finally, set

b =

∫R b̃(z)dm(z), ξ1 =

∫R ξ̃1(z)dm(z), ξ2 =

∫R ξ̃2(z)dm(z), ξ3 =

∫R ξ̃3(z)dm(z).(3.31)and assume that∣∣∣∣U
+ − U− −

∫R {D3

[
ξ̃3(z),D2

[
− ξ̃2(z),D1[−ξ̃1(z), Ṽ

−(z)]
]]

− Ṽ −(z)
}
dm(z)

+ b~r1I + b~r2I − b~r3I

∣∣∣ < b/4.

(3.31d)Then (3.12) holds for some τ, σ, s suh that
− 2b− ξ1 ≤ σ ≤ −ξ1, − 2b− ξ2 ≤ s ≤ −ξ2, ξ3 ≤ τ ≤ ξ3 + 2b.(3.32)



A COUNTER-EXAMPLE TO THE REGULARITY OF SYSTEMS 154. Constrution of the ounter-exampleIn this setion we start the onstrution of the set of �bad data� B as in the statement ofTheorem 1.2. In other words, we want to onstrut B in suh a way that i) B is open in the S(R)topology and ii) for every initial datum in B the solution of the Cauhy problem develops in�nitelymany shoks in a ompat set. Loosely speaking, we will onstrut B as a ball (in a funtionalspae) entered at a partiular funtion. What we atually do in this setion is hene to onstrutan initial datum Ũ satisfying the following requirements: �rst, the solution of the Cauhy problemwith initial datum Ũ develops in�nitely many shoks. Seond, this behavior is robust with respetto su�iently small perturbations in the Sobolev spae W 1∞(R). As we will see in � 5.8, this is thekey step to establish Theorem 1.2. To onstrut Ũ we proeed aording to the following steps.� 4.1: we go over the onstrution of a wave pattern with in�nitely many shoks. This onstrutionis basially the same as in [5℄.� 4.2: we show that this wave pattern an be obtained from a Lipshitz ontinuous initial datum.However, this does not onlude the onstrution of Ũ . Indeed, at the beginning of � 4.3we explain that in priniple it it may happen that, if we take a very small perturbation ofthe initial datum, the solution of the Cauhy problem does no more develop in�nitely manyshoks. In other words, the wave pattern onstruted in � 4.1 and � 4.2 is not robust withrespet to perturbations.� 4.3: we modify the onstrution given in � 4.1 and in � 4.2 in order to make it robust with respetto perturbations. We eventually obtain an initial datum Ũ and Proposition 4.4 states thatthe solution of the Cauhy problem with initial datum Ũ develops in�nitely many shoksand that this behavior is robust with respet to su�iently small W 1∞ perturbations. Theproof of Proposition 4.4 is provided in � 5.In the rest of the present setion we always assume that the parameter η in (2.3) is su�ientlysmall to have that Lemma 3.1 applies.4.1. A wave pattern with in�nitely many shoks. In this paragraph we exhibit a wave patternontaining in�nitely many shoks. The onstrution is basially the same as in [5℄, however we reallit for the reader's onveniene .Lemma 4.1. Fix q > 0 and assume that UI , UII , UIII ∈ R3 satisfy the following properties:i) the state UI satis�es |UI | ≤ 1/8 and the solution of the Riemann problem between UI (onthe left) and UII (on the right) ontains 3 shoks and the strength of eah shok is smallerthan 1/64.ii) The solution of the Riemann problem between UII (on the left) and UIII (on the right)ontains 3 shoks and the strength of eah shok is smaller than 1/64.iii) The following hain of inequalities holds true: vI > vII > vIII .Then the admissible solution of the Cauhy problem obtained by oupling (2.6) with the initial datum(4.1) W (x) :=





UI x < −q

UII −q < x < q

UIII x > q.ontains in�nitely many shoks.
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q−qFigure 3. The solution of the Cauhy problem obtained by oupling system (2.6)with the initial datum (4.1)We refer to Figure 3 for a representation of the wave pattern ontained in the solution of theCauhy problem obtained by oupling (2.6) with the initial datum W .Proof. First, we observe that, owing to property (iii) in the statement of Lemma 4.1,(4.2) speed2[UI , UII ] = vI + vII > vII + vIII = speed2[UII , UIII ]In the previous expression, we denote by speed2[UI , UII ] the speed of the 2-shok in the solution ofthe Riemann problem between UI (on the left) and UII (on the right). In other words, the 2-shokthat is generated at the point (t, x) = (0,−q) is faster than the 2-shok that is reated at the point
(t, x) = (0, q) (see Figure 3).Next, we observe that the �rst interation that ours is the interation between the 3-shokgenerated at x = −q and the 1-shok generated at x = q, see again Figure 3. Owing to theanalysis in � 3.1, those two shoks essentially ross eah other and, most importantly, no 2-waveis generated. After this interation, the 1-shok generated at x = q interats with the 2-shokgenerated at x = −q. Owing to Lemma 3.1, this interation produes three outgoing shoks andthe speed of the outgoing 2-shok is the same as the speed of the inoming 2-shok, whih is the lefthand side of (4.2). Also, the new 1-shok generated at this interation will hit at some later timethe left 2-shok: owing to Lemma 3.1, this interation produes three outgoing shoks. The new3-shok will then interat with the right 2-shok, produing three outgoing shoks. This mehanismis repeated in�nitely many times between t = 0 and the time t = T̃ at whih the 2-shoks generatedat x = −q and x = q interat, namely(4.3) T̃ =

2q

vI − vIII
.Note that, in general, owing to the nonlinearity, it may also happen that for instane two 3-shoksinterat at some point on the right of the right 2-shok. However, owing to � 3.2, these two shokssimply merge and no 2- or 3-waves are generated. �



A COUNTER-EXAMPLE TO THE REGULARITY OF SYSTEMS 174.2. Shok reation analysis. This paragraph aims at showing that the wave pattern in Figure 3an be exhibited by a solution starting from a Lipshitz ontinuous initial datum. More preisely,we establish the following result.Lemma 4.2. There is a su�iently small onstant ε > 0 suh that the following holds. Fix q = 20,and UI ∈ R3 suh that |UI | < 1/2. Let ω ∈ R satisfy 0 < ω < ε and let UII and UIII be the statesde�ned as follows:(4.4a) UII := D3

[
ω,D2

[
− ω,D1[−ω,UI ]

]]and(4.4b) UIII := D3

[
ω,D2

[
− ω,D1[−ω,UII ]

]]Then the states UI , UII and UIII satisfy the hypotheses of Lemma 4.1. Also, there is a Lipshitzontinuous initial datum suh that the solution U of the Cauhy problem obtained by oupling (2.6)with this initial datum satis�es U(1, x) = W (x), where W is the same as in (4.1).The fat that the states UI , UII and UIII satisfy the hypotheses of Lemma 4.1 follows from theremarks after formula (2.12), so we are left to prove the seond part of the lemma. The proof isorganized as follows. Sine we will use the notion of ompression waves in � 4.2.1 we brie�y goover this notion for the reader's onveniene. In � 4.2.2 we give a tehnial lemma. In � 4.2.3 weeventually omplete the proof of Lemma 4.2.4.2.1. Compression waves. Consider a general, stritly hyperboli system of onservation laws (1.1).We term Ri[s, Ū ] the integral urve of ~ri passing through Ū , i.e. the solution of the Cauhy prob-lem (2.2). Assume that the i-th harateristi �eld is genuinely nonlinear, say ∇λi(U) · ~ri(U) > 0for every U . Let U := Ri[s, Ū ] for some negative s < 0 and observe that the funtion(4.5) Ucw(t, x) =





Ū x < λi(Ū )t

Ri[s, Ū ] x = λi(Ri[s, Ū ])t, s < s < 0

U x > λi(U )tis a smooth solution of the onservation law on ]−∞, 0[×R and at t = 0 it attains the values
U(0, x) =

{
Ū x < 0

U x > 0We term the funtion Ucw de�ned as in (4.5) a ompression wave. Loosely speaking, ompressionwaves an be regarded as the bakward in time analogous of rarefation waves.4.2.2. A tehnial lemma. First, we make a remark onerning the struture of the integral urves
R1, R2 and R3 of system (2.3). Owing to (2.10), we have the equalities(4.6) R1[σ, Ū ] = D1[σ, Ū ], R3[τ, Ū ] = D3[τ, Ū ].The proof of Lemma 4.2 is based on the following result.Lemma 4.3. Assume that the hypotheses of Lemma 4.2 are satis�ed and that UII and UIII arede�ned by (4.4). If the onstant ε in the statement of Lemma 4.2 is su�iently small, then(4.7a) UII := D1

[
σ,R2

[
s,D3[τ, UI ]

]]
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1

2
ω, s < −1

2
ω and σ < −1

2
ω. Also,(4.7b) UIII := D1

[
σ∗, R2

[
s∗,D3[τ

∗, UII ]
]]for some τ∗ >

1

2
ω, s∗ < −1

2
ω and σ∗ < −1

2
ω.Proof. We only give the proof of (4.7a), sine the proof of (4.7b) is entirely analogous.We basially proeed as in the proof of Lemma 3.3. First, we point out that (4.4) implies that

|UI − UII | ≤ Cω ≤ Cε. Here and in the rest of the proof C denotes some universal onstant. Itspreise value an vary from line to line.By using the Loal Invertibility Theorem, we infer that the values of τ , s and σ are uniquelydetermined by imposing (4.7a). Also, we have(4.8) |τ |+ |σ|+ |s| ≤ Cω.We are left to prove that τ >
1

2
ω, s < −1

2
ω and σ < −1

2
ω. We introdue some notation: we de�nethe states U ′ and U ′ by setting

U ′ := D1[ω,UI ], U ′ := D3[τ, UI ].By using (4.4) we infer
UII = D2[−ω,U ′] + ω~r3(vII)

= U ′ − ω~r2(U
′) +

{
D2[−ω,U ′]− U ′ + ω~r2(U

′)
}
+ ω~r3(vII)

= UI − ω~r1(vI)− ω~r2(U
′) +

{
D2[−ω,U ′]− U ′ + ω~r2(U

′)
}
+ ω~r3(vII)

= UI − ω~r1(vI)− ω~r2(UI) + ω~r3(vI)

+ ω
{
~r2(UI)− ~r2(U

′)
}
+

{
D2[−ω,U ′]− U ′ + ω~r2(U

′)
}
+ ω

{
~r3(vII)− ~r3(vI)

}
.

(4.9)
Note that(4.10) ω

∣∣∣~r2(UI)− ~r2(U
′)
∣∣∣+

∣∣∣D2[−ω,U ′]− U ′ + ω~r2(U
′)
∣∣∣+ ω

∣∣∣~r3(vII)− ~r3(vI)
∣∣∣ ≤ Cω2.By using (4.7a) and by arguing as before we obtain

UII = UI + τ~r3(vI) + s~r2(UI) + σ~r1(vI)

+ s
{
~r2(U

′)− ~r2(UI)
}
+

{
R2[s, U

′]− U ′ − s~r2(U
′)
}
+ σ

{
~r1(vII)− ~r1(vI)

}
,

(4.11)where, owing to (4.8),(4.12) ∣∣∣s
{
~r2(U

′)− ~r2(UI)
}∣∣∣+

∣∣∣R2[s, U
′]− U ′ − s~r2(U

′)
∣∣∣+

∣∣∣σ
{
~r1(vII)− ~r1(vI)

}∣∣∣ ≤ Cω2.By omparing (4.9) and (4.11) and realling (4.10) and (4.12) we obtain that
|τ − ω|+ |s+ ω|+ |σ + ω| ≤ Cω2.Sine ω > 0, this implies that τ >

1

2
ω, s < −1

2
ω and σ < −1

2
ω provided that ε (and hene ω) issu�iently small. �



A COUNTER-EXAMPLE TO THE REGULARITY OF SYSTEMS 194.2.3. Proof of Lemma 4.2. We are now ready to omplete the proof of Lemma 4.2.We �x ω > 0 and UI ∈ R3 , |UI | ≤ 1/2. We term UII and UIII the states satisfying (4.4).We determine the values σ, s, τ, σ∗, s∗, τ∗ by using (4.7a) and (4.7b), respetively. Owing toLemma 4.3, we have that σ < 0, s < 0 and τ > 0 and hene we an de�ne the funtion U(t, x) by�juxtaposing� six ompression waves like (4.5). More preisely, we introdue the following notation:(4.13) U ′ := D3[τ, UI ], U ′′ := R2[s, U
′], U∗ := D3[τ

∗, UII ], U∗∗ := R2[s
∗, U ∗]For t ∈ [0, 1) we de�ne the funtion U(t, x) by setting

(4.14) U(t, x) :=





UI x < −q + λ3(UI) · (t− 1)

D3[ς, UI ] if there is 0 < ς < τ : x = −q + λ3(D3[ς, UI ]) · (t− 1)

U ′ −q + λ3(U
′) · (t− 1) < x < −q + λ2(U

′) · (t− 1)

R2[ς, U
′] if there is s < ς < 0: x = −q + λ2(R2[ς, U

′]) · (t− 1)

U ′′ −q + λ2(U
′′) · (t− 1) < x < −q + λ1(U

′′) · (t− 1)

D1[ς, U
′′] if there is σ < ς < 0: x = −q + λ1(D1[ς, U

′′]) · (t− 1)

UII −q + λ1(UII) · (t− 1) < x < q + λ3(UII)(t− 1)

D3[ς, UII ] if there is 0 < ς < τ∗: x = q + λ3(D3[ς, UII ]) · (t− 1)

U∗ q + λ3(U
∗) · (t− 1) < x < q + λ2(U ·) · (t− 1)

R2[ς, U
∗] if there is s∗ < ς < 0: x = q + λ2(R2[ς, U

∗]) · (t− 1)

U∗∗ q + λ2(U
∗∗) · (t− 1) < x < q + λ1(U

∗∗) · (t− 1)

D1[ς, U
∗∗] if there is σ∗ < ς < 0: x = q + λ1(D1[ς, U

∗∗]) · (t− 1)

UIII x > q + λ1(UIII)) · (t− 1)Note that the above funtion is well de�ned beause
λ1(UII) · (t− 1)− q < λ3(UII)(t− 1) + q.Indeed, q = 20 > 12 by assumption and |λ1(UII)|, |λ3(UII)| < 6 owing to (2.9).Note furthermore that U(t, x) is a loally Lipshitz ontinuous funtion on [0, 1[×R and that

U(1, x) = W (x), where W is the same funtions as in (4.1). This onludes the proof of the lemma.4.3. A more robust initial datum. We �rstly introdue our analysis with some heuristis. Theanalysis in the previous paragraph shows that if the initial datum is given by the same Lipshitzontinuous funtion U(0, ·) as in (4.14), then the solution of the Cauhy problem exhibits a wavepattern like the one in Figure 3 and hene, in partiular, develops in�nitely many shoks. However,the above behavior is not robust with respet to perturbations of U(0, ·). The main obstrutionthat might prevent the formation of in�nitely many shoks is the following. We reall that thestrength of the shoks generated at time t = 1 at the points x = q and x = −q is small, morepreisely it is of the order ω < 1. By applying the seond interation estimate in (3.6), we onludethat the strength of the 1- and 3-shoks bouned bak and forth between the two 2-shoks is weakerand weaker as one approahes the intersetion point between the two 2-shoks, i.e. the tip of thetriangle in Figure 3. This means that, no matter how small a perturbation wave is, if it hits thetriangle at a point su�iently lose to the tip it might happen that the perturbation is bigger thanthe shoks it meets. This might prevent the formation of in�nitely many shoks beause it mighthappen that the perturbation annihilates the shok it meets.In order to make the initial datum more robust with respet to perturbations we add to U(0, ·)the funtion Ψ de�ned in � 4.3.2, whih is monotone in the diretion of the eigenvetors. Veryloosely speaking, the heuristi idea underpinning this onstrution is that in this way only shoks



20 L. CARAVENNA AND L. V. SPINOLOome into play, and no rarefations. This is made rigorous in � 5 by onsidering the wave-fronttraking approximation of the solution: we prove that the presene of the funtion Ψ implies thatat t = 0 the wave-front traking approximation ontains only shok waves. This will be the �rststep in the analysis that will allow us to onlude that the solution of the Cauhy problem developsin�nitely many shoks, and that this behavior is robust with respet to perturbations.We are left to make one last remark: by looking at the expliit expression of U we realize thatthere are three ompression waves that interat at the point (t, x) = (1,−q) and other three thatinterat at the point (t, x) = (1, q). In � 4.3.1 we modify the datum U(0, ·) by distaning theompression waves one from the other. Loosely speaking, this will imply that the orrespondingshoks will form at time t = 1 and then they will interat at some later time. This will simplify theperturbation analysis beause it will rule out the possibility that the ompression waves interatwith eah other before the orresponding shoks have formed.This paragraph is organized as follows:� 4.3.1: we modify U(0, ·) by distaning the ompression waves one from the other.� 4.3.2: we onstrut the funtion Ψ �monotone in the diretion of the eigenvetors� .� 4.3.3: we eventually de�ne the initial datum Ũ in suh a way that the solution of the Cauhyproblem develops in�nitely many shoks and that this behavior is robust with respet toperturbations. See Proposition 4.4.4.3.1. Compression waves separation: de�nition of V . We �rstly introdue some notation. We �xa su�iently large ρ > 0 (its preise value will be disussed in the following, see (4.20e)), we reallthat the parameter q = 20 is the same as in the statement of Lemmas 4.1 and 4.2 and we set(4.15a) q := q + 3, p := q − 3.We also introdue the following notation:
(4.15b)

Rℓ :=]− ρ,−q− λ3(UI)[, R3
ℓ :=]− q− λ3(UI),−q− λ3(U

′)[,R′
ℓ :=]− q− λ3(U

′),−q − λ2(U
′)[ R2

ℓ :=]− q − λ2(U
′),−q − λ2(U

′′)[,R′′
ℓ :=]− q − λ2(U

′′),−p− λ1(U
′′)[, R1

ℓ :=]− p− λ1(U
′′),−p − λ1(UII)[,Rm :=]− p− λ1(UII), p− λ3(UII)[, R3

r :=]p− λ3(UII), p− λ3(U
∗)[,R′

r :=]p− λ3(U
∗), q − λ2(U

∗)[ R2
r :=]q − λ2(U

∗), q − λ2(U
∗∗)[,R′′

r :=]q − λ2(U
∗∗), q − λ1(U

∗∗)[, R1
r :=]q− λ1(U

∗∗), q− λ1(UIII)[,Rr :=]q− λ1(UIII), ρ[We also de�ne the open sets Rc and Rw by setting(4.15) Rc = Rℓ ∪R′
ℓ ∪R′′

ℓ ∪Rm ∪Rr ∪R′
r ∪R′′

rand(4.15d) Rw = R3
ℓ ∪R2

ℓ ∪R1
ℓ ∪R3

r ∪R2
r ∪R1

r ,respetively. To give an heuristi interpretation of the above notation we point out that, if we hadq = p = q, then the intervals in (4.15) would be the same as in the right hand side of (4.14). In



A COUNTER-EXAMPLE TO THE REGULARITY OF SYSTEMS 21partiular, we would have that the funtion U(0, ·) is onstant on Rc and has a nonzero derivativeon Rw. R3
ℓ R1

rR3
r Rc

RwRℓ

ρ−ρ

R2
ℓ R2

r

q − λ2(U
∗∗)

q − λ2(U
∗)

R′
ℓ R′′

ℓ Rm

−q − λ2(U
′)

−q − λ2(U
′′)

R′
r R′′

r Rr

R1
ℓ

q− λ1(UIII)q− λ1(U
∗∗)

−q− λ3(UI)
−q− λ3(U

′)

−p− λ1(U
′′) p− λ3(U

∗)−p− λ1(UII) p− λ3(UII)Figure 4. Intervals de�ned in Equations (4.15)To onstrut the funtion V , we �x the parameters δ and ω and we set(4.16) UI := (δ, 0,−δ).We determine the values σ, s, τ, σ∗, s∗, τ∗ by using (4.7a) and (4.7b), respetively. Finally, wedetermine U ′, U ′′, U∗ and U∗∗ by using (4.13). We now de�ne the funtion V :] − ρ, ρ[→ R3 insuh a way that V is a 3-ompression wave on R3
ℓ ∪R3

r, a 2-ompression wave on R2
ℓ ∪R2

r and a1-ompression wave on R1
ℓ ∪R1

r . More preisely, we set
(4.17) V (x) :=





UI x ∈ Rℓ

D3[ς, UI ] if there is 0 < ς < τ : x = −q− λ3(D3[ς, UI ])

U ′ x ∈ R′
ℓ

R2[ς, U
′] if there is s < ς < 0: x = −q − λ2(R2[ς, U

′])

U ′′ x ∈ R′′
ℓ

D1[ς, U
′′] if there is σ < ς < 0: x = −p− λ1(D1[ς, U

′′])

UII x ∈ Rm

D3[ς, UII ] if there is 0 < ς < τ∗: x = p− λ3(D3[ς, UII ])

U∗ x ∈ R′
r

R2[ς, U
∗] if there is s∗ < ς < 0: x = q − λ2(R2[ς, U

∗])

U∗∗ x ∈ R′′
r

D1[ς, U
∗∗] if there is σ∗ < ς < 0: x = q− λ1(D1[ς, U

∗∗])

UIII x ∈ RrNote that if we had q = p = q, then V would oinide with the funtion U(0, ·) de�ned as in (4.14).4.3.2. Monotoniity in the diretion of the eigenvalues: de�nition of Ψ. We �x the parameters
ζc > 0 and ζw > 0 and we de�ne the funtion Ψ :]− ρ, ρ[→ R3 by requiring that Ψ(0) = ~0 and that

Ψ′(x) :=

{
−ζc~r1I − ζc~r2I + ζc~r3I if x ∈ Rc

−ζw~r1I − ζw~r2I + ζw~r3I if x ∈ Rw

(4.18)In the previous expression, we used the notation ~r1I = ~r1(UI), ~r2I = ~r2(UI) and ~r3I = ~r3(UI).
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RmR3
ℓ R′

ℓ R2
ℓ R′′

ℓ R1
ℓ R3

r R′
r R2

r R′′
r R1

rRℓ RrFigure 5. The solution of the Cauhy problem with initial datum the funtion Vde�ned as in (4.17)4.3.3. De�nition of the initial datum Ũ . We now de�ne the Lipshitz ontinuous funtion Ũ : R → R3by setting(4.19) Ũ(x) :=





Φ−(x) x < −ρ

V (x) + Ψ(x) −ρ < x < ρ

Φ+(x) x > ρ.In the above expression, the funtion V is as in (4.17), the funtion Ψ is de�ned in � 4.3.2 and thefuntions Φ−,Φ+ : R → R3 are Lipshitz ontinuous and de�ned in suh a way that the funtion Ũis ontinuous and ompatly supported. We also require that eah omponent of Φ−(x) and Φ+(x)is monotone.We an now state the main result of the present setion. Proposition 4.4 below states thati) the solution of the Cauhy problem obtained by oupling (2.6) with the initial datum
U(0, x) = Ũ has in�nitely many shoks;ii) this behavior is robust with respet to su�iently small perturbations of the initial datum.Proposition 4.4. Fix q = 20. Let 0 < ε < 1 and �x the parameters

δ := ε, ζw := ε/2,(4.20a)
η := ε2, ω := ε3,(4.20b)
ζc := ε9, r := ε10/2,(4.20)Note that by ombining the above hoies with (4.3) and (4.4) we get(4.20d) T̃ =

20

ε3



A COUNTER-EXAMPLE TO THE REGULARITY OF SYSTEMS 23We also require(4.20e) ρ := 12T̃ + 40 = 40

(
6

ε3
+ 1

)
.Consider the same funtion Ũ as in (4.19). If the onstant ε is su�iently small, then, for everyinitial datum U0 suh that(4.21) ‖U0 − Ũ‖W 1∞ < r,the admissible solution of the Cauhy problem obtained by oupling system (2.6) with the initialdatum U(0, ·) = U0 has in�nitely many shoks in the bounded set ]0, 2T̃ [×]− 2q, 2q[.The proof of Proposition 4.4 is the most tehnial part of the paper and it is given in � 5. Themain result of the present paper, namely Theorem 1.2, follows as a orollary from Proposition 4.4,see � 5.8. 5. Proof of the main resultsIn this setion we establish the proof of Theorem 1.2 and Proposition 4.4. More preisely, in� 5.8 we show that Theorem 1.2 follows as a orollary of Proposition 4.4. The rest of the presentsetion is devoted to the proof of Proposition 4.4. Sine the proof is fairly tehnial and artiulated,we provide a roadmap in � 5.1. The proof is established in the remaining paragraphs.5.1. Proof roadmap. In this paragraph we provide the proof outline and we disuss the basiideas underpinning the analysis in the following paragraphs.We start with some heuristi onsiderations. We reall that the funtion V : R → R is de�nedas in (4.17). The qualitative struture of solution of the Cauhy problem with initial datum Vis illustrated in Figure 5: by the time t = 1, six shoks have formed. More preisely, movingfrom the left to the right there are a 3-shok, a 2-shok, a 1-shok, a large interval where thesolution is onstant and then again a 3-shok, a 2-shok and a 1-shok. These shoks interat atsome later time and produe a wave pattern with in�nitely many shoks. The initial datum U0is obtained from V by adding the funtion Ψ and the perturbation U0 − Ũ , whih is W 1∞ small,see (4.19), (4.21). Loosely speaking, the goal of the following paragraphs is to show that adding Ψand U0− Ũ to the initial datum does not a�et too muh the qualitative struture of the solution ofthe Cauhy problem and, in partiular, does not jeopardize the formation of in�nitely many shoks.Sine omputing expliit solutions is prohibitive, we rely on the wave-front traking approximation.The proof of Proposition 4.4 is organized as follows:� 5.2: We make some preliminary remarks that will be used in the following paragraphs.� 5.3: We introdue the wave front traking approximation Uν (ν is the approximation parameter)of the solution of the Cauhy problem obtained by oupling the Baiti-Jenssen system (2.6)with the initial datum U(0, ·) = U0 satisfying (4.21). In partiular, we onstrut a pieewiseonstant approximation of the initial datum and we disuss the waves that are generatedat t = 0. A feature that will be very useful in the analysis at the following paragraphs isthat at t = 0 only shok waves are generated. This is the reason why we introdued thefuntion Ψ, monotone in the diretion of the eigenvetors, see (4.18), (4.19) and the analysisin � 5.3.2 and � 5.3.3.



24 L. CARAVENNA AND L. V. SPINOLO� 5.4: We arry on a qualitative analysis of the waves of the wave front-traking approximation
Uν . In partiular, we split the wave generated at t = 0 in two groups: group A omprisesthe waves that will ontribute to the formation of six �big shoks� like in the solution of theCauhy problem with initial datum V . Group B omprises all the other wave generatedat t = 0, whih in the following will be regarded as perturbation waves. In � 5.4 we alsointrodue groups of waves generated at interations ourring at times t > 0. They willalso be regarded as perturbation waves in the following. Note that perturbation waves areimportant, even if they are small, beause they ontribute to the formation of in�nitelymany shoks.� 5.5: We establish quantitative bounds on the total strength of the waves belonging to the variousgroups introdued in � 5.4.� 5.6: We eventually establish the results onerning the shok formation, see Lemmas 5.3 and 5.4.In partiular, we show that the wave front-traking approximation Uν ontains six �bigshoks� like the solution of the Cauhy problem with initial datum V , see the disussionin � 5.6.2.� 5.7: We eventually onlude the proof of Proposition 4.4. In partiular, we �rstly provide abound from below on the number of shok fronts in the wave front-traking approximation
Uν , see Lemma 5.5. Next, we pass to the limit ν → 0+ and we onlude that the numberof shoks of the limit solution is in�nite on a given ompat set. The limit analysis relieson �ne properties of the wave front-traking approximation established by Bressan andLeFloh [10℄.We onlude this paragraph with two tehnial remarks. First, as pointed out in � 2.1 in this paperwe use the version of the wave front-traking approximation disussed in the book by Bressan [8℄.This version involves the use of two kinds of proedures to solve wave interations: the aurateRiemann solver and the simpli�ed Riemann solver. Whether one or the other is used depends on theprodut of the strength of the inoming waves, see the disussion at the beginning of � 5.7.1 and theanalysis in [8, Chapter 7℄ for more detailed information. To simplify the exposition, in � 5.4, � 5.5and � 5.6 we pretend we always use the aurate Riemann solver. The fat that there are atuallytwo kinds of solvers is taken into aount in � 5.7.Seond, to simplify the notation in the following we denote by O(1) any quantity whih isuniformly bounded and bounded away from 0, namely there are universal onstants c, C > 0 thatsatisfy

0 < c ≤ O(1) ≤ C..5.2. Preliminary onsiderations. In this paragraph we ollet various remarks that we will usein the following. First, we �x ε > 0 su�iently small so that Lemmas 3.1, 3.2, 3.3, 3.4, 4.2, 4.3apply. Next, we reall formula (4.20):
vI − vIII = ω ρ = O(1)ω−1, T̃ = O(1)ω−1, ω = ε3, δ = ε,

ζw = ε/2, η = ε2, ζc = ε9, r = ε10/2.



A COUNTER-EXAMPLE TO THE REGULARITY OF SYSTEMS 25This in partiular implies
ζwω + ζcρ+ rρ < εω < ε3/4ζwη(5.1a)
r < εζc < εω < εζw(5.1b)We will use the above inequalities in the following.We reall that the intervalsRℓ, . . . ,Rr are as in (4.15) and that the funtion V is de�ned in (4.17).By onstrution, we have(5.2) TotVar V ≤ O(1)ωand(5.3) ‖V − UI‖C0 ≤ O(1)ω, ‖V ‖C0 ≤ O(1)(δ + ω).We an infer from estimates (2.11a), (4.7a), (4.7b),(4.13),(4.15) and (4.15d) that the length of Rwis O(1)ω beause the length of R3

ℓ ,R1
ℓ ,R3

r ,R1
r is O(1)ωη while the length of R2

ℓ ,R2
r is O(1)ω. Sine

Ψ(0) = ~0, from (4.18), (4.20a) and (5.1) we get that(5.4) ‖Ψ‖C0 ≤ TotVar Ψ ≤ O(1)ζwω +O(1)ζcρ < O(1)εω.Also, we reall that eah omponent of Φ− and Φ+ is monotone and that Φ− and Φ+ both attainthe value ~0. This implies that
‖Φ−‖C0 + ‖Φ+‖C0 ≤ TotVar Φ− +TotVar Φ+ ≤ |V (−ρ) + Ψ(−ρ)|+ |V (ρ) + Ψ(ρ)|

≤ |UI |+ |UIII |+O(1)(ζcρ+ ζwω)

≤ O(1)
[
δ + ω + ζcρ+ ζwω

]
.

(5.5)By realling (4.20), (5.2) and (5.4) we onlude that(5.6) TotVar Ũ ≤ O(1)ε.Owing to (4.21), we have(5.7) ‖U0 − Ũ‖C0 +TotVar(U0 − Ũ) ≤ O(1)rρIf U0 satis�es (4.21), whih means that U0 is a perturbation of Ũ , then(5.8) U0(x) = V (x) + Ψ(x) +
[
U0(x)− Ũ(x)

] for every x ∈]− ρ, ρ[.By the expliit expression of V and by (2.11) we infer that |V ′(x)| ≤ O(1)η−1 for every x ∈]−ρ, ρ[.By using (4.18), (4.21) and (5.8) we arrive at(5.9) |U ′
0(x)| ≤ O(1)η−1 for every x ∈]− ρ, ρ[.By taking into aount (5.3), (5.4), (4.21) and (5.1), we infer from (4.20) and (5.8) that

|U0(x)− UI | ≤ |U0(x)− Ũ(x)|+ |Ψ(x)|+ |V (x)− UI |(5.10)
≤ r +O(1)εω +O(1)ω ≤ O(1)ε3 for every x ∈]− ρ, ρ[.We point out that by estimates (4.20b), (5.1a), (5.2) (5.4) and (5.7) one has the bound(5.11) TotVarU0 ≤ O(1)ω ≤ O(1)ε3 on ]− ρ, ρ[Sine UI = (δ, 0,−δ), owing to (4.20a) we arrive at(5.12) |U0(x)| ≤ O(1)ε, for every x ∈]− ρ, ρ[.



26 L. CARAVENNA AND L. V. SPINOLORemark 5.1. We point out that the values attained on ]−2q, 2q[×]0, 2T̃ [ by the admissible solutionof the Cauhy problem are only determined by the behavior of the initial datum on ]− ρ, ρ[. Thisfollows by ombining our hoie (4.20e) of ρ with the �nite propagation speed, more preiselywith (2.9). Indeed, we have
ρ− 2q ≥ 12T̃ ≥ max

|U |≤1,i=1,2,3
|λi(U)| · 2T̃ .In the following, we will only be onerned with the behavior of the initial datum on the interval

]− ρ, ρ[. This is justi�ed by the previous onsiderations and by the fat that we are only interestedin the behavior of the solution on ]− 2q, 2q[×]0, 2T̃ [.5.3. Wave front-traking approximation: initial datum. In this paragraph we disuss thewave-front traking approximation of the initial datum. We reall that the intervals Rℓ, . . . ,Rr arede�ned in (4.15).5.3.1. Mesh de�nition. We �x an approximation parameter ν > 0 and a mesh size hν > 0. Werequire that hν → 0+ when ν → 0+. We hoose xν0 < xν1 < · · · < xνmν
in ]− ρ, ρ[ so that(5.13a) (1− ε)hν ≤ xνi+1 − xνi ≤ hν for every i = 0, . . . ,mν − 1.If hν is su�iently small, one an as well assume that the extrema of the intervals Rℓ, . . . ,Rr areall ontained in the set {xν0 , . . . , xνmν

}. De�ne the wave-front traking approximation of the initialdatum by setting(5.13b) Uν
0 (x) := U0(x

ν
i ) for x ∈]xνi , xνi+1[ and i = 0, . . . ,mν − 1.We now desribe the waves generated at the grid points xν0 , . . . , xνmν

by separately onsidering theregions Rℓ, . . . ,Rr.5.3.2. Waves generated in Rc = Rℓ ∪R′
ℓ ∪R′′

ℓ ∪Rm ∪R′
r ∪R′′

r ∪Rr. We only fous on the analysisof the interval Rℓ beause the analysis of the other intervals is entirely similar.We �x xνi ∈ Rℓ and we onsider the Riemann problem between the states
U− := lim

x↑(xν
i )

−

Uν
0 (x) = U0(x

ν
i−1) (on the left), U+ := lim

x↓(xν
i )

+
Uν
0 (x) = U0(x

ν
i ) (on the right).Claim. If (5.1a) and (5.1b) hold, then the states U−, U+, UI := UI satisfy the hypotheses ofLemma 3.3 with the hoie b = ζc(x

ν
i − xνi−1)Proof. Hypothesis (3.9) in the statement of Lemma 3.3 follows by (5.10). Next, we fous onhypothesis (3.10). We use (5.8) and we reall that V is onstant on eah onneted omponent ofRc, while Ψ′ = ζc(−~r1I − ~r2I + ~r3I). This implies that, if b = ζc(x

ν
i − xνi−1), then

|U+ − U− + b~r1I + b~r2I − b~r2I | = |(U0 − Ũ)(xνi )− (U0 − Ũ)(xνi−1)|
(4.21)
≤ r(xνi − xνi−1),whih owing to (5.1b) gives inequality (3.10). �Conlusion: By using Lemma 3.3, we onlude that the only waves reated in the open setRc are 1-, 2- and 3-shoks. In partiular, no rarefation waves are generated. Moreover, owingto (3.11) the total variation of all these waves is bounded by O(1)ζcρ.



A COUNTER-EXAMPLE TO THE REGULARITY OF SYSTEMS 275.3.3. Waves generated in Rw = R3
ℓ ∪R3

r ∪R2
ℓ ∪R2

r ∪R1
ℓ ∪R1

r. We only fous on the analysis ofthe interval R3
ℓ sine the analysis of the other intervals is entirely similar. We �x xνi ∈ R3

ℓ and weonsider the Riemann problem between the states
U− := lim

x↑xν
i

Uν
0 (x) = U0(x

ν
i−1) (on the left), U+ := lim

x↓xν
i

Uν
0 (x) = U0(x

ν
i ) (on the right).Claim. Assume that U−, U+ are as at the previous line and that V − := V (xνi−1). Let ξ > 0 be thestrength of the 3-shok between V − (on the left) and V (xνi ) (on the right), namely

V (xνi ) = D3[ξ, V
−].If b = ζw(x

ν
i − xνi−1), then all the hypotheses of Lemma 3.4 are satis�ed.Proof. Hypothesis (3.9) in the statement of Lemma 3.3 follows by (5.10). Next, we point out thatthe ondition 0 < b < ε is satis�ed provided that ν is su�iently small. Indeed, b ≤ O(1)ζwhν and

hν → 0+ when ν → 0+.To hek the other hypotheses, we �rst reall that xνi ∈ R3
ℓ . By ombining the expliit expressionof V (4.17) with (2.11a) and (2.11b) we infer that the derivative of V satis�es V ′(x) = O(1)η−1.This implies that ξ = O(1)(xνi − xνi−1)η

−1 and hene that
√
ε
b

ξ
= O(1)

√
εζwη.Next, we plug (5.4) and (5.7) into (5.8) and we get that the �rst ondition in (3.20) is satis�ed:

|V − − U−| = |Ψ(xνi−1) + U0(x
ν
i−1)− Ũ(xνi−1)| ≤ O(1)

(
ζwω + ζcρ+ r

)

≤ O(1)εζwη <
√
ε
b

ξ
.

(5.14)To establish the last inequality we used (5.1a). The ondition ξ2 < εb is satis�ed beause
ξ2 = O(1)(xνi − xνi−1)

2η−2 = O(1)h2νη
−2 < b = O(1)εζwhνprovided that hν is su�iently small. Finally, we hek that (3.21) holds. We use again (5.8) andwe reall that Ψ′ = ζw(−~r1I − ~r2I + ~r3I) on Rw. By using (4.21) and (5.1b), this implies

|U+ − U− −D3[ξ, V
−] + V − + b~r1I + b~r2I − b~r3I |

= |U0(x
ν
i )− U0(x

ν
i−1)− V (xνi ) + V (xνi−1)−Ψ(xνi ) + Ψ(xνi−1)|

= |(U0 − Ũ)(xνi )− (U0 − Ũ)(xνi−1)|≤r(xνi − xνi−1) < εbAll the hypotheses of Lemma 3.4 are therefore satis�ed. This onludes the proof of the laim. �By applying Lemma 3.4 and using (3.22) we arrive at the following onlusion.Conlusion: By Lemma 3.4, the only waves reated in the intervals R3
ℓ , R3

r, R2
ℓ , R2

r R1
ℓ and R1

rare 1-, 2- and 3-shoks. In partiular, no rarefation waves are generated.The total variation of all the 3-shoks generated in the intervals R3
ℓ , R3

r is O(1)ω and the totalvariation of all the 1 and 2-shoks generated in the intervals R3
ℓ , R3

r is bounded by O(1)ζwωη.The total variation of all the 2-shoks generated in the intervals R2
ℓ , R2

r is O(1)ω and the totalvariation of all the 1 and 3-shoks generated in the intervals R2
ℓ , R2

r is O(1)ζwω.The total variation of all the 1-shoks generated in the intervals R1
ℓ , R1

r is O(1)ω and the totalvariation of all the 2 and 3-shoks generated in the intervals R1
ℓ , R1

r is O(1)ζwωη.



28 L. CARAVENNA AND L. V. SPINOLO5.4. Wave front-traking approximation: qualitative interation analysis. In this para-graph we split the waves of the wave front-traking approximation Uν into several groups, thatare de�ned in the following. As we will see in � 5.6 and as we pointed out in the proof roadmapin � 5.1, the waves of group A are the waves that will ontribute to the formation of a wave patternsimilar to the one of the solution with initial datum V (see Figure 5). The waves of groups B anbe heuristially speaking regarded as perturbation waves.We now de�ne the groups A, B, C1, . . . , Cm. In � 5.3 we disussed the waves that are generatedat t = 0. In partiular, we proved that only shoks are generated at t = 0. We split these wavesinto two groups:
• Shoks of group A: group A omprises� the 3-shoks generated in the intervals R3

ℓ and R3
r and their right extreme;� the 2-shoks generated in the intervals R2

ℓ and R2
r and their right extreme;� the 1-shoks generated in the intervals R1

ℓ and R1
r and their right extreme.We �x a shok i ∈ A. Let Vi be its strength, whih is de�ned as in � 2.1. Due to theonlusions at the end of � 5.3.3, the total strength of all the shoks of group A is O(1)ω,namely(5.15) ∑

i∈A

Vi = O(1)ω

• Shoks of group B: group B omprises all the shoks generated at t = 0 in the interval
]− ρ, ρ[ whih are not omprised in group A. In other words, group B omprises� the 1, 2 and 3-shoks generated in the open interval Rc;� the 1 and 2-shoks generated in the intervals R3

ℓ and R3
r ;� the 1 and 3-shoks generated in the intervals R2

ℓ and R2
r ;� the 2 and 3-shoks generated in the intervals R1

ℓ and R1
r .Owing to the onlusions at the end of � 5.3.2 and of � 5.3.3, the total strength of all theseshoks an be bounded by(5.16) ∑

i∈B

Vi ≤ O(1)
(
ρζc + ωζw

)
.We now want to trak the evolution of the shoks of groups A and B by disussing their interations.For the time being, we do not take into aount the fat that in some ases we have to use a simpli�edRiemann solver (see � 2.1). We will take into aount the presene of non-physial waves in � 5.7.We separately onsider the following ases:i) We �x two shoks, i and j, and we assume that i is either a 1 or a 3-shok and j is a 2-shok.Just to �x the ideas, let us assume that i is a 3-shok. In this step, we do not are whether iand j belong to group A or B. Let Vi and Vj be their strengths and we assume that i and jinterat at some point. By Lemma 3.1 all the outgoing waves are shoks. By de�nition, westill all i the outgoing 3-shok and we still all j the outgoing 2-shok. Also, the outgoing

i belongs to the same group (A or B) as the inoming i, and the same happens for j. Wesay that the outgoing 1-shok is the new shok whih is reated at the interation. Thisnew shok belongs neither to A nor to B: we de�ne a new group C1 in the following.We onlude by realling some interation estimates: let V ′
i and V ′

j be the strengths of iand j after the interation. By Lemma 3.1, V ′
j = Vj . Also, we reall [8, formula (7.31) p.



A COUNTER-EXAMPLE TO THE REGULARITY OF SYSTEMS 29133℄, whih states that(5.17) |V ′
i − Vi| ≤ O(1)ViVj.Also, [8, formula (7.31) p. 133℄ implies that the strength of the new shok generated at theinteration is bounded by O(1)ViVj .ii) We �x two shoks, i and j, and we assume that i is a 3-shok and j is a 1-shok. Owingto the analysis in � 3.1, the outgoing waves are a 3-shok and a 1-shok. By de�nition,we still all i the outgoing 3-shok j the outgoing 1-shok. We say that the outgoing ibelongs to the same group as the inoming i. The same holds for j. Finally, we reall somequantitative interation estimates: we term Vi and Vj , V ′

i and V ′
j the strengths of i and jbefore and after the interation, respetively. Owing to the analysis in � 3.1,(5.18) V ′

i = Vi, V ′
j = Vjiii) We �x two shoks i and j and we assume that they are both 2-shoks. We term Vi and Vjtheir strengths and we assume that they interat at some point. We set

a := δ, U ♯ := UI = (δ, 0,−δ), s1 = −Vi, s2 = −Vjand we laim that the hypotheses of Lemma 3.2 are satis�ed. The hypothesis
• |Uℓ − U ♯| ≤ εa holds owing to (5.10) and to the fat that a = δ = ε (see (4.20a)).
• 0 ≤ η ≤ εa is satis�ed beause η = ε2 owing to (4.20b).
• |s1|, |s2| ≤ ε are satis�ed. Indeed, owing to Lemma 2.1 the maximal strength of a 2-shok is bounded by the total variation of the v omponent. The total variation of the
v omponent at t = 0 satis�es TotVar v0 ≤ O(1)ε3 by (5.11). Sine the total variationof a salar onservation law is a monotone non inreasing funtion with respet totime [19℄, we an onlude that |s1|, |s2| ≤ ε.Lemma 3.2 states then that the outgoing waves at the interation point are three shoks.We now separately onsider the following ases:

• if i belongs to A and j belongs to B, then we term i the outgoing 2-shok and wepresribe that it still belongs to A. Note that the strength of i after the interation is
V ′
i = Vi + Vj . We set V ′

j = 0, in suh a way that(5.19) V ′
i + V ′

j = Vi + Vj.

• if i and j both belong to either A or B, then we proeed as follow. Just to �x the ideas,assume that i is the fastest shok among the two, namely i is on the left of j before theinteration. By de�nition, we still all i the outgoing 2-shok and we presribe that itbelongs to the same group (A or B) as the inoming shoks. We also set V ′
j = 0, insuh a way that (5.19) holds.In both ases, we say that the outgoing 1 and 3-shok are new shoks generated at theinteration. Note again that these new shoks belong neither to A nor to B: they willbelong to the group C1 de�ned in the following.iv) We �x two shoks, i and j, and we assume that they belong to same family, whih an beeither 1 or 3. Just to �x the ideas, let us assume that they are both 3-shoks. Owing to theanalysis in � 3.2, the only outgoing wave is a 3-shok. We separately onsider the followingases:
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• if i belongs to A and j belongs to B, then we term i the outgoing 3-shok and wepresribe that it still belongs to A. Note that the strength of i after the interation is
V ′
i = Vi + Vj . We set V ′

j = 0 in suh a way that (5.19) holds.
• if i and j both belong to either A or B, then we proeed as in ase iii). Just to �x theideas, assume that i is the fastest shok among the two, namely i is on the left of jbefore the interation. By de�nition, we still all i the outgoing 3-shok and we saythat it belongs to the same group as the inoming shoks. We also set V ′

j = 0, in suha way that (5.19) holds.We expliitly stress three properties following from the analysis of ases i)�iv) above. First, theoutgoing waves are always shoks. Seond, new shoks are only reated when the interationinvolves at least one 2-shok. Third, the new shoks reated at the interation are either 1- or3-shoks, namely no new 2-shoks are reated.We now fous on the new shoks reated at interation points. They an only be 1- and 3-shoks,sine by Lemma 2.1 and by the de�nitions in i) and iii) above no new 2-shok an arise. We nowollet them into a sequene of groups Cm de�ned by reursion on m ∈ N.
• Group C1: we term C1 the group of new shoks that are generated at the followinginterations:� between a shok i and a shok j both belonging to group A.� between a shok i belonging to group A and a shok j belonging to group B.� between a shok i and a shok j both belonging to group B.As mentioned before, C1 only omprises 1- and 3-shoks. It follows from the analysis in � 3.1that if two shoks of group C1 interat then either they basially ross eah other or theymerge: to label the outgoing waves at the interation, we proeed as in ase iv) above. Notefurthermore that, if a shok i ∈ C1 merges with a shok j ∈ A ∪ B of the same family, weterm j the outgoing shok and we set V ′

i = 0, V ′
j = Vi + Vj . Hene, the only possibility forthe generation of new waves is the one disussed at the next item.

• Group Cm+1: we term Cm+1 the group of new shoks that are generated at interationsbetween a shok i belonging to group Cm and a 2-shok j belonging to either group A or B.As mentioned before, Cm only omprises 1- and 3-shoks. At interations among shoks inCm+1 the shoks an basially either basially ross eah other or they an merge. In anyase, no new shok is reated: to label the outgoing waves at interation points, we proeedas in ase iv) above. Also, if a shok i ∈ Cm+1 merges with a shok j ∈ Cm ∪A ∪ B of thesame family, we denote by j the outgoing shok and we set V ′
i = 0: in this way equality(5.19) is satis�ed.In this way we have lassi�ed all the shoks of the wave-front traking approximation Uν .5.5. Wave front-traking approximation: quantitative interation estimates. This para-graph aims at establishing Lemma 5.2 below. In the statement, Vi denotes as usual the strengthof the shok i.



A COUNTER-EXAMPLE TO THE REGULARITY OF SYSTEMS 31Lemma 5.2. There is a onstant K > 0 suh that, if the onstant ε in the statement of Proposi-tion 4.4 is su�iently small, then we have the following estimates: for every t > 0
∑

iA∈A

ViA(t
+) ≤ Kω,(5.20a)

∑

iB∈B

ViB (t
+) ≤ Kωε,(5.20b)

∑

i∈Cm

Vi(t
+) ≤ (2Kω)m+1.(5.20)Proof. We point out that owing to (5.15) and (5.16) ombined with (5.1a) we an hoose K in suha way that we have the inequalities(5.21) ∑

iA∈A

ViA(t = 0) ≤ 1

2
Kω,

∑

iB∈B

ViB(t = 0) ≤ 1

2
K(ωζw + ρζc) ≤

1

2
Kωε.The shoks of groups Cm, m ∈ N, do not exist at t = 0, but we an adopt the notation that theirstrength is 0, in suh a way that (5.20) is formally satis�ed. The proof of the lemma is basedon the following argument: we assume that estimates (5.20a), (5.20b) and (5.20) are satis�ed forevery t < t̄ and we show that they are satis�ed for t = t̄. The tehnial details are organized in thefollowing four steps.� Step 1: we make some preliminary onsiderations.. We �rst introdue a new notation: wedenote by D the group(5.22) D := B ∪

∞⋃

m=1

Cm.In the above expression, the groups B and Cm are as in � 5.4. Note furthermore that here an inthe following we term groups the sets A, B, Cm, D, while we use the term family as a shorthandfor harateristi family.Note that by ombining all the inequalities in (5.20) and (4.20b) we get that, if ε is su�ientlysmall, then
∑

i∈D

Vi(t
+) ≤ Kωε+

∞∑

m=1

(2Kω)m+1 ≤ 2Kωε for every t < t̄(5.23a)
∑

i∈A∪D

Vi(t
+) ≤ Kω + 2Kωε ≤ 2Kω for every t < t̄(5.23b)Note furthermore that the quantities at the left hand side of (5.20), (5.23a) an only hange atinteration times.� Step 2: we establish the bound on ∑

iA∈A ViA . Note that the only ways ∑iA∈A ViA an hangeare the following interations:i) Interations where a shok i ∈ A with strength Vi merges with a shok j with strength Vj ofthe same family and of the same group A. In this ase (5.19) ensures that ∑iA∈A ViA doesnot hange at this interation. For this reason, in the following we neglet these interations.ii) Interations where a shok iA ∈A with strength ViA merges with a shok jD of the samefamily but of group D. In this ase V ′
iA

= ViA + VjD . Eah shok jD of group D may haveat most one of these interations: let J iA
D be the subset of shoks of group D that mergewith iA.



32 L. CARAVENNA AND L. V. SPINOLOiii) Interations where a shok iA ∈A with strength ViA interats with a shok j of a di�erentfamily. In this ase by the interation estimate (5.17) one has
V ′
iA ≤ ViA +O(1)ViAVj = ViA

(
1 +O(1)Vj

)
.Eah shok j may interat at most one with a given shok iA of a di�erent family.We reall that all shoks in group A are generated at time t = 0 and we trak the evolution of a givenshok iA ∈A between time t = 0 and t = t̄. If the shok iA only interats with shoks j ∈ J iA

D ⊆Dand with waves j1, . . . , jk of di�erent families then by ii), iii) above one has the inequality
ViA(t̄

+) ≤


ViA(t = 0) +

∑

j∈J
iA
D

Vj




∏

j∈A∪D

(
1 +O(1)Vj

)
.Note that the last fator in the above expression does not depend on iA. Also, by using theinequality ex ≥ 1 + x we get

∏

j∈A∪D

(
1 +O(1)Vj

)
≤ eO(1)

P
j∈A∪D Vj .We now sum over all the shoks iA ∈A and be obtain

∑

iA∈A

ViA(t̄
+) ≤




∑

iA∈A

ViA(t = 0) +
∑

iA∈A

∑

j∈J
iA
D

Vj




∏

j∈A∪D

(
1 +O(1)Vj

)

≤




∑

iA∈A

ViA(t = 0) +
∑

jD∈D

Vj


 exp


O(1)

∑

j∈A∪D

Vj


The last inequality holds beause two sets J iA

D and J
i′A
D are disjoint subsets of D (keep in mindthat we are negleting the fat two shoks iA ∈A and i′A ∈A an merge). We now plug the aboveinequality into (5.21) and we reall that by assumption at time t < t̄ estimates (5.20) hold. Owingto (5.23) we obtain

∑

iA∈A

ViA(t̄
+) ≤

(
1

2
Kω + 2Kωε

)
exp (O(1)Kω) < Kω(5.24)provided that ε is su�iently small, sine owing to (4.20b) ω = ε3. Note that (5.24) impliesthat (5.20a) holds for t = t̄ provided that (5.20b) and (5.20) hold for t < t̄ and (5.21) holds at

t = 0.� Step 3: we ontrol ∑iB∈B ViB . The only ways ∑iB∈B ViB an inrease are the following:i) If a a shok iB ∈B merges with a shok j ∈A∪B of the same family. In this ase ∑iB∈B ViBdoes not inrease owing to (5.19).ii) If a shok iB ∈B with strength ViB merges with a shok j ∈ ∪m∈NCm of the same family.iii) If a shok iB ∈B with strength ViB interats with a shok j of a di�erent family.



A COUNTER-EXAMPLE TO THE REGULARITY OF SYSTEMS 33By repeating the same argument we used in Step 2 we onlude that, if the initial estimate (5.21)holds and moreover (5.20) holds for t < t̄, then by (5.23)
∑

iB∈B

ViB(t̄
+) ≤




∑

iB∈B

ViB(t = 0) +

∞∑

m=1

∑

i∈Cm

Vi


 exp


O(1)

∑

j∈A∪D

Vj




≤
(1
2
Kωε+

(2Kω)2

1− 2Kω

)
exp (O(1)Kω) ≤ Kωε

(5.25)provided that ε is su�iently small, due to (4.20b). Inequality (5.25) implies that (5.20b) holds for
t = t̄ provided that (5.20) hold for t < t̄ and (5.21) holds at t = 0.� Step 4: we onlude the proof. To ontrol ∑i∈C1

V i we �rstly reall that a shok of groupC1 an be generated when a shok j1 belonging to either group A or B interats with a shok j2belonging to either group A or B. As pointed out before, the strength of the outgoing new shok isbounded by O(1)Vj1Vj2 . We denote by V0
i the strength of the shok i ∈ C1 at the time when theshok i is generated. We then have

∑

i∈C1

V0
i ≤

∑

j1∈A

∑

j2∈A

O(1)Vj1Vj2 +
∑

j1∈A

∑

j2∈B

O(1)Vj1Vj2 +
∑

j1∈B

∑

j2∈B

O(1)Vj1Vj2

≤ K2
(
ω2 + ω2ε+ (ωε)2

)
≤ 2K2ω2.Next, reall that ∑i∈C1

Vi(t) an inrease not only when a new shok is generated, but also:i) if a shok i ∈C1 with strength Vi merges with a shok j ∈ Cm, m > 1 of the same family.ii) if a shok i ∈C1 with strength Vi interats with a shok j of a di�erent family.By arguing as in Step 2, we �nd that if (5.20) holds for t < t̄ and (5.21) holds at t = 0, then
∑

i∈C1

Vi(t̄+) ≤




∑

i∈C1

V0
i +

∞∑

m=2

∑

i∈Cm

Vi


 exp


O(1)

∑

j∈A∪D

Vj




≤
(
2K2ω2 +

(2Kω)3

1− 2Kω

)
exp (O(1)Kω) ≤ (2Kω)2provided that ε is su�iently small, sine owing to (4.20b) ω = ε3. We have thus established (5.20)for all t > 0 when m = 1. The ase when m > 1 an be handled in an entirely similar way. Thisonludes the proof of Lemma 5.2. �5.6. Wave front-traking approximation: shok generation analysis. In this paragraph we�nally show that the in wave-front traking approximation one an reognize a wave pattern likethe one of the solution of the Cauhy problem with initial datum V , see Figure 5. In partiular, in� 5.6.1 we establish the generation of six �big shoks�: Lemma 5.3 establishes the formation of two1-shoks and two 3-shoks, while Lemma 5.4 established the formation of two 2-shoks, whih aremoreover approahing. In � 5.6.2 we onlude the analysis of the wave pattern generation.5.6.1. Shok formation: small times. We reall that the interval R3

ℓ is de�ned by formula (4.15)and we establish the following lemma.Lemma 5.3. By the time t = 6/5, some of (or all of) the 3-shoks of group A generated at time
t = 0 in the interval R3

ℓ merge into a single 3-shok with strength greater than ω
√
ε/2.



34 L. CARAVENNA AND L. V. SPINOLOProof. We �rst desribe the idea underpinning our argument. We term jℓ and jr the 3-shoks thatare generated at t = 0 at the left and the right extrema of the interval R3
ℓ , respetively. In Step 3below we show that at t = 0 these two 3-shoks are approahing. We then trak the the evolutionof jℓ and jr on the time interval ]0, 6/5[ and we point out that there are only two possibilities:

• The strength of both jℓ and jr remains smaller than ω
√
ε. In this ase we show in Step 5below that jℓ and jr keep approahing and they merge by time t = 6/5. We also show thatthis implies the reation of a 3-shok with strength at least O(1)ω.

• The strength of either jℓ or jr surpasses ω√ε at some time t̄ ∈]0, 6/5[: just to �x the ideas,let us assume that it is the strength of jℓ. In Step 6 below we show that this implies thatthe strength of the jℓ remains bigger than ω
√
ε/2 on the whole interval ]t̄, 6/5].The tehnial details are organized as follows.� Step 1: we point out that in the time interval ]0, 6/5[ the waves of group A generated in R3

ℓan only interat among themselves and with the waves of group D (see (5.22) for the de�nition ofgroup D). In other words, they annot interat with shoks of group A generated in other intervals.To see this, we proeed as follows. We reall de�nition (4.15) and that the shoks of group Aare only generated in the intervals R3
ℓ , R2

ℓ , R1
ℓ , R3

r , R2
r and R1

r . The losest interval to R3
ℓ is R2

ℓand the distane between the right extreme of R3
ℓ and the left extreme of R2

ℓ is(5.26) − q + q− λ2(U
′) + λ3(U

′) ≥ 3− λ2(U
′) + λ3(U

′) ≥ 6.To establish the last inequality, we used (5.12) and the expliit expression of the eigenvalues,see (2.7). This implies that, if the onstant ε in the statement of Proposition 4.4 is su�ientlysmall, then in the time interval ]0, 6/5[ the 3-shoks generated at t = 0 in R3
ℓ annot interat withthe 2-shoks generated at t = 0 in R2

ℓ .� Step 2: we fous on the time t = 0 and we introdue some notation. Let xℓ and xr be the rightand left extrema of R3
ℓ , namely xℓ = −q − λ3(UI) and xr = −q − λ3(U

′). We reall that by themesh de�nition disussed in � 5.3.1 xℓ and xr are both points of disontinuity for Uν
0 . Next, wede�ne the states U−

ℓ (0), U+
ℓ (0), U−

r (0), U+
r (0) by setting

U−
ℓ (0) := lim

x↑xℓ

Uν
0 (x), U+

ℓ (0) := lim
x↓xℓ

Uν
0 (x)(5.27a)

U−
r (0) := lim

x↑xr

Uν
0 (x), U+

r (0) := lim
x↓xr

Uν
0 (x)(5.27b)We denote by jℓ and jr the 3-shoks of group A generated at t = 0 at xℓ and xr, respetively. Wealso denote by speedjℓ(0) and speedjr(0) their speed at t = 0.� Step 3: we ontrol from below the initial di�erene in speed of jℓ and jr. More preisely, weestablish the following estimate:(5.28) speedjℓ(0)− speedjr(0) ≥

11

12
length(R3

ℓ ) =
11

12

(
λ3(UI)− λ3(U

′)
)
.To this end, we point out that owing to (5.9),

|U−
ℓ (0)− U+

ℓ (0)| ≤ O(1)
hν
η
, |U−

r (0)− U+
r (0)| ≤ O(1)

hν
η
.The expliit expression (2.7) of λ3 implies that |∇λ3| ≤ O(1)η and hene by using the aboveinequalities we arrive at(5.29) ∣∣speedjℓ(0) − λ3

(
U−
ℓ (0)

)∣∣ ≤ O(1)hν ,
∣∣speedjr(0)− λ3

(
U+
r (0)

)∣∣ ≤ O(1)hν .



A COUNTER-EXAMPLE TO THE REGULARITY OF SYSTEMS 35Next, we use (4.21), (5.4), (5.8), (5.13b) and the equalities V (xℓ) = UI and V (xr) = U ′ to get(5.30) |U−
ℓ (0)− UI | ≤ O(1)

(
εω + r +

hν
η

)
, |U+

r (0)− U ′| ≤ O(1)
(
εω + r

)
.Exploiting again the equality |∇λ3| ≤ O(1)η, we get that (5.30) implies

∣∣λ3

(
U−
ℓ (0)

)
− λ3(UI)

∣∣ ≤ O(1) (εωη + rη + hν)
∣∣λ3

(
U+
r (0)

)
− λ3(U

′)
∣∣ ≤ O(1) (εωη + rη) .By plugging the above estimate into (5.29) we arrive at(5.31) speedjℓ(0)− speedjr(0) ≥ λ3(UI)− λ3(U

′)−O(1) (εωη + rη + hν)Next, we point out that the equality |∇λ3| = O(1)η implies that(5.32) λ3(UI)− λ3(U
′) = O(1)ωη,beause by Lemma 4.3 the parameter τ in (4.13) is of order ω. We eventually obtain (5.28) byobserving that terms in the last parenthesis in (5.31) are of lower order than ωη: this follows byrealling (5.1b), and the fat that hν ↓ 0 when ν ↓ 0.� Step 4: we onsider the evolution of the shoks jℓ and jr in the time interval ]0, 6/5[. Let U+

ℓ (t)and U−
ℓ (t), U+

r (t) and U−
r (t) be the left and right state at time t of jℓ and jr, respetively. Notethat the above funtions are pieewise onstant: to de�ne their pointwise values, in the followingwe hoose their right ontinuous representative. One of the following two ases must our:i) we have(5.33) |U+

ℓ (t)− U−
ℓ (t)| < ω

√
ε, |U+

r (t)− U−
r (t)| < ω

√
ε for every t ∈]0, 6/5[.We handle this ase in Step 5 below.ii) There is t̄ ∈]0, 6/5[ suh that(5.34) either |U+

ℓ (t̄)− U−
ℓ (t̄)| ≥ ω

√
ε or |U+

r (t̄)− U−
r (t̄)| ≥ ω

√
ε.We handle this ase in Step 5 below.� Step 5: we onlude the proof of the lemma under the assumption that (5.33) holds.We reall from Step 1 that in the time interval t ∈]0, 6/5[ both jℓ and jr an either merge withother 3-shoks of group A or interat with 1-, 2- and 3-shoks of group D (5.22), but they annotinterat with other 1- or 2-shoks of group A. This implies that U−

ℓ (t) and U+
r (t) an only hangeowing to the interation with some shok of group D: we reall (5.23a) and we onlude that(5.35) |U−

ℓ (t)− U−
ℓ (0)| + |U+

r (t)− U+
r (0)| ≤ O(1)ωε.Next, we proeed as in Step 3 and by ombining (5.33) with (5.35) we onlude that(5.36) speedjℓ(t)− speedjr(t) ≥

5

6
length(R3

ℓ ) =
5

6

(
λ3(UI)− λ3(U

′)
) for every t ∈]0, 6/5[provided that ε (and hene ω, owing to (4.20b)) are su�iently small. In the previous expression,we denote by speedjℓ(t) and speedjr(t) the speed of jℓ and jr at time t. Note that (5.36) impliesthat by the time t = 6/5 the shoks jℓ and jr merge. By onstrution, this implies that all the3-shoks of group A generated at t = 0 in R3

ℓ merge by time t = 6/5. In the following, we denote



36 L. CARAVENNA AND L. V. SPINOLOby A3
ℓ the group of the 3-shoks of group A generated at t = 0 in R3

ℓ . We follow the same argumentas in Step 2 of Lemma 5.2 and we use the inequality
∏

j∈A∪D

(
1−O(1)Vj

)
≥ 1−O(1)

∑

j∈A∪D

Vj,whih is a onsequene of the elementary inequality (1 − x)(1 − y) ≥ 1 − (x + y) if x, y ≥ 0. Weonlude that the total strength of the shoks in A3
ℓ an bounded from below, more preisely byrealling (5.23a) and the analysis in � 5.3.3 we have

∑

i∈A3
ℓ

Vi(t) ≥
(
1−O(1)

∑

i∈D

Vi

) ∑

i∈A3
ℓ

Vi(t = 0) ≥ O(1)ω.We eventually obtain that by time t = 6/5 the shoks of group A3
ℓ merge into a single shok withstrength O(1)ω.� Step 6: we onlude the proof of the lemma under the assumption that (5.34) holds.First, we point out that (5.34) implies that at t = t̄ part of the waves of group A3

ℓ have merged intoa shok of strength ω
√
ε. Hene, we are left to prove that this shok �survives� with a su�ientlylarge strength up to time t = 3/2. To this end, we point out that for t > t̄ this shok an mergewith other 3-shoks of group A3

ℓ and hene inrease its strength. Also, it an interat with othershoks of group D: however, by following the same argument as in Step 2 of Lemma 5.2 and byrealling (5.23a) the strength of the shok is bounded from below by
(
1−O(1)

∑

i∈D

Vi

)
ω
√
ε ≥ ω

√
ε/2,provided that ε is su�iently small. This onludes the proof of Lemma 5.3. �Note that by repeating the above proof we obtain the an analogous of Lemma 5.3 holds forthe 3-shoks of group A generated at time t = 0 in the interval R3

r and the 1-shoks of group Agenerated at time t = 0 in the intervals R1
ℓ and R1

r . In the ase of 2-shoks we have a strongerresult.Lemma 5.4. Let T̃ be the same onstant as in (4.3). The following onlusions hold true:i) By the time t = 6/5, all the 2-shoks of group A generated at time t = 0 in the intervalR2
ℓ merge into a single 2-shok J2

ℓ having strength greater or equal than O(1)ω. The sameholds for the 2-shoks of group A generated at time t = 0 in the interval R2
r, let J2

r be theresulting shok.ii) The 2-shoks J2
ℓ and J2

r are approahing and they merge by the time t = 2T̃ .Proof. The proof of i) is organized in two steps. We only disuss the 2-shoks of group A generatedat time t = 0 in the interval R2
ℓ , the argument for the 2-shoks generated in R2

r is ompletelyanalogous.� Step 1: we disuss the situation at time t = 0. We reall that, owing to Lemma 2.1, the speedof a 2-shok j between U− and U+ is(5.37) speedj = v− + v+.Next, we �x xνi , xνi+1 ∈ R2
ℓ . We denote by ji and ji+i the 2-shoks generated at t = 0 at the points

x = xνi and xνi+1, respetively, and by speedji(0) their speed at t = 0. Let v′U0
, v′V be the �rst



A COUNTER-EXAMPLE TO THE REGULARITY OF SYSTEMS 37derivative of the seond omponents of U0 and V , respetively. By ombining (4.17), (4.18), (4.21)and (5.8) we have
∣∣∣∣v

′
U0
(x) +

1

2

∣∣∣∣ =
∣∣v′U0

(x)− v′V
∣∣ ≤ O(1)ζw +O(1)r, for every x ∈ R2

ℓBy using the relations ζw = ε, r < ε2, (5.13a) and (5.37), we get that, when ε is small enough, thelast inequality brings us to
speedji(0)− speedji+1

(0) ≥
(
1

2
−O(1)ε

)
(xνi−1 − xνi+1) ≥

(
1

2
−O(1)ε

)
2(1 − ε)hν

≥ 5

6
(xνi − xνi+1).

(5.38)� Step 2: we show that the shoks ji and ji+1 merge in the time interval ]0, 6/5[. By thearbitrariness of xνi and xνi+1 this establishes i).We reall that the speed of a 2-shok does not hange at the interation with a 1- or a 3-shok.Hene, the speed of ji and ji+1 an only hange when they merge with a 2-shok. Three ases anour:
• the shoks ji and ji+1 merge: this proves the laim of the present step.
• ji merges with a 2-shok ℓ on the left of ji: this implies that the speed of ji inreases.
• ji+1 merges with a 2-shok ℓ on the right of ji+1: this implies that the speed of ji+1dereases.If only the last two ases our, by realling (5.38) we onlude that

speedji(t)− speedji+1
(t) ≥ speedji(0)− speedji+1

(0) >
5

6
(xνi − xνi+1) for every t ∈]0, 6/5[.This implies that by the time 6/5 the shoks ji and ji+1 merge, and hene onludes the proof ofi).� Step 3: We are now left with establishing ii), namely proving that the shoks J2

ℓ and J2
r(de�ned as in the statement of Lemma 5.4) merge by the time 2T̃ . To this end, we reall theexpliit expression of R2

ℓ and R2
r (4.15):R2

ℓ :=]− q − λ2(U
′),−q − λ2(U

′′)[, R3
r :=]q − λ2(U

∗), q − λ2(U
∗∗)[.We also introdue the following notation: we term

• v−ℓ (t) the seond omponent of the left state of the 2-shok reated at t = 0 at the leftextreme of R2
ℓ ,

• v+ℓ (t) the seond omponent of the right state of the 2-shok reated at t = 0 at the rightextreme of R2
r,

• speedℓ(t) the speed of the 2-shok arising at t = 0 at the left extreme of R2
ℓ .The funtions v−r (t), v+r (t) and speedr(t) are similarly de�ned by onsidering R2

r. Note that v−ℓ (t)and v+ℓ (t) are the left, right state and speed of J2
r for t > 6/5, beause by (i) all the 2-shoksgenerated at t = 0 in R2

ℓ merge by the time t = 6/5. By using an analogous argument we provethat v−r (t), v+r (t) and speedr(t) are the left state, the right state and the speed of J2
r , respetively.By ombining (4.17), (4.21), (5.4) and (5.8) with (5.1a) and (5.13b) we infer that(5.39) ∣∣∣

{
[v−ℓ (0) + v+ℓ (0)] − [v−r (0) + v+r (0)]

}
− [vI − vIII ]

∣∣∣ ≤ O(1)(ωε + hν).



38 L. CARAVENNA AND L. V. SPINOLONext, we point out that v−ℓ v+ℓ v−r v+r an only vary with respet to t owing to the interationswith 2-shoks of group B. Owing to (5.20b), this implies that(5.40) |v−ℓ (t)− v−ℓ (0)|+ |v+ℓ (t)− v+ℓ (0)| + |v−r (t)− v−r (0)| + |v+r (t)− v+r (0)| ≤ O(1)ωε.By ombining (5.39) and (5.40) we infer
speedℓ(t)− speedr(t) ≥ [v−ℓ (t) + v+ℓ (t)]− [v−r (t) + v+r (t)]

≥ [vI − vIII ]−O(1)(ωε + hν).
(5.41)By using (5.41) and the de�nitions (4.3), (4.15) of T̃ and R2

r, we realize that the shoks J2
ℓ and J2

rmerge by time
t ≤ [q − λ2(U

∗∗)]− [−q − λ2(U
′)]

supt[speedℓ(t)− speedr(t)]
≤ 2q +O(1)ω

vI − vIII −O(1)(εω + hν)
=

2q +O(1)ω

2q/T̃ −O(1)(εω + hν)

=
1 +O(1)ω

1−O(1)(ε + T̃ hν)
· T̃ .To get the last equality we have used the equalities T̃ = O(1)ω−1 and q = 20. Sine hν → 0+,this implies that, if ω = ε3 is su�iently small, then J2

ℓ and J2
r merge by the time t = 2T̃ . Thisonludes the proof of Lemma 5.4. �5.6.2. Shok formation: wave pattern generation. By relying on the analysis at the previous para-graph, at t = 6/5 the wave-front traking approximation Uν(t, ·) ontains at least six �big shoks�.Going from the left to the right, i.e. as x inreases, we enounter: a 3-shok with strength at least

ω
√
ε/2 (see Lemma 5.3), a 2-shok with strength greater or equal than O(1)ω, a 1-shok withstrength greater or equal than ω

√
ε/2, and then again 3-shok with strength at least ω

√
ε/2, a2-shok with strength greater or equal than O(1)ω, a 1-shok with strength greater or equal than

ω
√
ε/2. Note that the two 2-shoks are approahing and they meet by time t = 2T̃ . Also, the sixbig shoks do not interat on the time interval ]0, 6/5[ beause the generation regions R3

ℓ , R2
ℓ , R1

ℓ ,R3
r , R2

r , R1
r are su�iently separated, see (4.15a) and (4.15). Besides those six �big shoks� thereare in general other waves, whih however are all shoks by the analysis in � 5.4.5.7. Conlusion of the proof. In this paragraph we onlude the proof of Proposition 4.4.In � 5.7.1 we take into aount the presene of non-physial waves in the wave-front traking ap-proximation. In � 5.7.2 we establish a bound from below on the number of shoks in the wave-fronttraking approximation. Finally, in � 5.7.3 we omplete the proof of Proposition 4.4.5.7.1. Non-physial waves. In this paragraph we take into aount the presene of non-physialwaves. We �rstly reall some fats about the simpli�ed Riemann solver and we refer to [8, �7.2℄for a omplete disussion.First, one hooses a threshold parameter µν > 0. We disuss the hoie of µν later in thisparagraph, however we point out that µν → 0+ as ν → 0+. The aurate Riemann solver is usedto solve the interation of a wave α of strength Vα with a wave β of strength Vβ in the wavefront-traking approximation if the produt of the strengths of the inoming waves satis�es(5.42) Vα · Vβ ≥ µν .If the above ondition is violated, we use the simpli�ed Riemann solver, whih is de�ned at [8,p.131℄ and involves the introdution of so-alled non-physial waves. Non-physial waves travel ata speed faster than any other wave and the simpli�ed Riemann solver is de�ned in suh a way that



A COUNTER-EXAMPLE TO THE REGULARITY OF SYSTEMS 39their interation with the other waves has a minimal e�et. To simplify the exposition, here wedo not reall all the tehnial details and we only disuss the properties of the simpli�ed Riemannsolver for the Baiti-Jenssen system (2.3) that we need in the following. These properties are eithera diret onsequenes of the de�nition of simpli�ed Riemann solver or an be straightforwardlyreovered by ombining the de�nition with the features of the Baiti-Jenssen system disussed in� 2.2.i) If the inoming waves are a 1-shok and a 3-shok, then the simpli�ed Riemann solveroinides with the aurate Riemann solver.ii) If we use the simpli�ed Riemann solver to solve the interation between a 2-shok and a 1-shok (respetively a 3-shok), then the outgoing waves are a 2-shok, a 1-shok (respetivelya 3-shok) and a non-physial wave. The value of the v omponent is onstant aross thenon-physial wave.iii) If the inoming waves are both 1-shoks then the simpli�ed Riemann solver oinides withthe aurate Riemann solver. The same happens if the inoming waves are both 3-shoks.iv) If the inoming waves are both 2-shoks, then the speed of the outgoing shok is the samein the simpli�ed and in the aurate Riemann solver. Also, the value of the v omponentis onstant aross the outgoing non-physial wave.v) By ombing all the above features we onlude that the strength of the v omponent isalways onstant aross non-physial waves.vi) If a non-physial wave interat with a 2-shok, then the speed of the 2-shok does nothange.vii) The strength of eah non-physial wave is at most µν . Also, owing to the analysis in [8,p.142℄ we an hoose µν in suh a way that the total strength of non-physial waves satis�es(5.43) total strength non physial waves ≤ ν,where ν is our approximation parameter. Owing again to the analysis in [8, p.142℄, this isonsistent with the requirement that µν → 0+ as ν → 0+.We now disuss how the presene of the non-physial waves a�et the analysis at the previousparagraphs. First, we point out that it does not a�et at all the disussion on the initial datumin � 5.3 beause by de�nition the simpli�ed Riemann solver is only used at time t > 0. Next, wepoint out that the use of the simpli�ed Riemann solver fores the total number of waves to be �nite.In partiular, there atually are fewer waves of groups C1, . . . , Cm than those onsidered in � 5.4.Lemma 5.2 does not hange if we take into aount the presene of non-physial waves, providedthat we say that if a group Cm is empty, then the the total strength of its waves is 0. The reason whyLemma 5.2 does not hange is beause the proof is based on interation estimates on the strengthof waves and by de�nition the interation with a non-physial wave does not hange the strength ofa shok. Also Lemma 5.3 does not hange: indeed, the proof is based on the quantitative estimatesgiven by Lemma 5.2, whih are still valid. The further perturbation provided by the non-physialwaves is arbitrarily small owing to (5.43) and hene does not a�et the proof. Finally, Lemma 5.4does not hange beause the proof is based on estimates that, as a matter of fat, involve only theseond omponent (i.e., the omponent v) of the wave front- traking approximation. Owing toproperties ii), iv), v) and vi) of the non-physial waves of the Baiti-Jenseen systems, non-physialwaves have basially no e�et on the v omponent of the wave front-traking approximation andhene the proof of Lemma 5.4 is still valid if we take into aount non-physial waves.



40 L. CARAVENNA AND L. V. SPINOLO5.7.2. A bound from below on the number of shoks. This paragraph aims at establishing Lemma 5.5below. In the statement, J2
ℓ and J2

r are the same as in the statement of Lemma 5.4 and we denoteby [·] the entire part. Also, µν is the threshold to determine whether we use the aurate or thesimpli�ed Riemann solver, see (5.42).Lemma 5.5. Fix a threshold θ > µν/ω
2. In the bounded set (t, x) ∈]− ρ, ρ[×]0, 2T̃ [, the wave-fronttraking approximation Uν admits at least(5.44) nθ :=

[
logω/2

(O(1)θ√
ε

)]shoks j suh that strength Vj of j satis�es(5.45) Vj ≥ θ.Proof. If there were only the six �big shoks� mentioned in � 5.6.2, then the wave pattern wouldbe qualitatively like the one represented in Figure 5. To understand the impat of the other wavesand to establish (5.44) we trak the evolution of the left 3-�big shok� J3
ℓ , whih has strength atleast ω√ε/4 when it interats with the left 2-�big shok� J2

ℓ . We reall that the strength of J2
ℓ is

O(1)ω and we use estimate (7.31) in [8, p.133℄: we onlude that after this interation the strengthof J3
ℓ is at least

ω
√
ε

4
−O(1)

√
εω2 ≥ ω

√
ε

8
.After this interation, the shok J3

ℓ moves towards the right 2-�big shok� J2
r . Before interatingwith J2

r , however, J3
ℓ an interat with 1- and 3-shoks and with 2-shoks di�erent than J2

ℓ and
J2
r . The interation with a 3-shok inreases the strength of J3

ℓ beause the shok merges with
J3
ℓ . The interation with a 1-shok does not a�et the strength of J3

ℓ . We are left to onsider theinterations with 2-shoks di�erent than J2
ℓ and J2

r . We reall that 2-shoks are only generated at
t = 0 and that, owing to Lemma 5.4, all the 2-shoks generated at t = 0 in R2

ℓ and R2
r have mergedby the time t = 3/2 to generate J2

ℓ and J2
r , respetively. Hene, what we are left to onsider arethe interations of J3

ℓ with the 2-shoks that are not generated at t = 0 in R2
ℓ ∪ R2

r . Note thatall these 2-shoks belong to group B. We reall (5.20b) and the interation estimate (7.31) in [8,p.133℄ and we infer that after the interation with all these 2-shoks the strength of J3
ℓ is at least(5.46) ω

√
ε

8
−O(1)

ω
√
ε

8

∑

iB∈B

ViB ≥ ω
√
ε

8
−O(1)ω2ε3/2 ≥ ω

√
ε

16
.Owing to Lemma 3.1, when J3

ℓ interats with J2
r , then a 1-shok is reated: by ombining (5.46)with the fat that the strength of J2

r is O(1)ω, we get that the strength of this 1-shok is atleast O(1)
√
εω2/16. Also, this 1-shok moves towards J2

ℓ , but before reahing J2
ℓ may interatwith 1-, 2- and 3-shoks. By arguing as before, we infer that when it reahes J2
ℓ its strengthis at least O(1)

√
εω2/32. When this 1-shok interats with J2

ℓ , a 3-shok with strength at least
O(1)

√
εω3/32 is reated. We repeat this argument as long as the strength of the re�eted 1- or3-shok j satis�es (5.45), namely we an repeat it a number nθ of times, where nθ satis�es

O(1)
√
εω

(ω
2

)nθ ≥ θ,This implies (5.44). We are left to justify the fat that we used the aurate and not the simpli�edRiemann solver. Note that, owing to the inequality θ ≥ µν/ω
2 and sine the strengths VJ2

r
of J2

r
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ℓ
of J2

ℓ are equal to O(1)ω, if (5.45) holds then
Vj ·max

{
VJ2

r
, VJ2

ℓ

}
≥ O(1)θω ≥ O(1)

µν

ω
≥ µνprovided that ω is su�iently small. This implies that we must use the aurate and not thesimpli�ed Riemann solver and it onludes the proof of Lemma 5.5. �5.7.3. The limit solution has in�nitely many shoks. We are eventually ready to onlude the proofof Proposition 4.4. First, we rely on the analysis in [8, Chapter 7℄ and we onlude that when

ν → 0+ the wave front-traking approximation Uν(t, ·) onverges strongly in L1lo(R) to a limitfuntion U(t, ·) for every t > 0. Also, the funtion U is the admissible solution of the Cauhyproblem obtained by oupling (2.6) with the initial datum U(0, ·) = U0.We are left to prove that U admits in�nitely many shoks in ] − ρ, ρ[×]0, 2T̃ [. We rely onLemma 5.5 and on �ne properties of the wave front-traking approximation established in [10℄(see also [8, �10.3℄ for an introdutory exposition).More preisely, we �rstly point out that the funtion nθ de�ned as in (5.44) satis�es(5.47) lim
θ→0+

nθ = +∞sine ω < 1. Next, we refer to the de�nition of maximal θ-shok front given in [8, p.219℄: looselyspeaking, a maximal θ-shok front is a polygonal line made by onseutive shoks of the samefamily where the strength of eah shok is greater or equal than θ/2 and there is at least one shokhaving strength greater or equal than θ.Also, we onsider the �big� 2-shoks J2
ℓ and J2

r given by the statement of Lemma 5.4. We term
(t∗ν , x

∗
ν) their intersetion point and we remark that by onstrution x∗ν ∈ [−2q, 2q]. Note that bylooking at the proof of Lemma 5.5 we realize that, if θ > µν/ω

2, then there are at least nθ shokswith strength bigger or equal than θ and that ross the part of the plane between J2
ℓ and J2

r ,namely they interset the vertial line x = x∗ν at some time t < t∗ν .We now argue indutively as follows. We �x a threshold θ1 > 0 suh that nθ1 ≥ 1, namely thereis at least one shok j1ν suh that the strength of j1ν is at a some point greater or equal than θ1. Inpartiular, j1ν is a maximal θ1-shok front.Next, we �x θ2 suh that nθ2 − nθ1/2 > 1: this implies that, for very ν su�iently small, Uν hasat least a shok j2ν satisfying(5.48) θ2 ≤ strenght j2ν <
θ1
2
.By arguing as in [8, p. 220℄ we infer that when ν → 0+ the shok urves j1ν and j2ν onvergeuniformly (up to subsequenes) to two shoks of the limit funtion U : we term them j1∞ and j2∞.Also, the value x∗ν onverges (up to subsequenes) to some limit value x∗. Note that the limitshoks j1∞ and j2∞ both interset the vertial line x = x∗ and, moreover, the strength of j1∞ isgreater or equal than θ1 and the strength of j2∞ is omprised between θ2 and θ1/2. This impliesthat j1∞ and j2∞ are two distint shok urves and, hene, the limit solution has at least 2 shokswith strength greater or equal than θ2.Owing to (5.47), we an iterate the above argument: for every natural number k, there is θk > 0suh that the limit U has at least k distint shoks with strength greater or equal than θk. Thisimplies that U has in�nitely many shoks and onludes the proof of Proposition 4.4.



42 L. CARAVENNA AND L. V. SPINOLO5.8. Proof of Theorem 1.2. This paragraph aims at establishing the proof of Theorem 1.2. Beforeentering the tehnial details, we make some preliminary heuristi onsiderations. To establishTheorem 1.2 we need to onstrut a set B ⊆ S(R) that satis�es ondition ii) and iii) in thestatement of the theorem. Proposition 4.4 states that, if Ũ is the same as in (4.19), then theadmissible solution of the Cauhy problem with initial datum Ũ develops in�nitely many shoksand this behavior is stable with respet to W 1∞-perturbations. Note, however, that both Ũ and its
W 1∞-perturbations have disontinuous �rst order derivatives and hene they do not belong to S(R).To onstrut B, we mollify Ũ to obtain a smooth funtion and we onsider W 1∞-perturbations ofthe molli�ed funtion.We now provide the tehnial details: we �rst introdue the notation. We �x a onvolutionkernel φ, namely a smooth funtion(5.49) φ : R → [0,+∞[,

∫R φ(x)dx = 1, φ(x) = 0 if |x| ≥ 1.We �x ς > 0 and we de�ne the molli�ed funtion Ũς : R → R3 by setting(5.50) Ũς(x) :=

∫ 1

−1
Ũ(x+ ςz)φ(z)dz,where Ũ is the same funtion as in (4.19). Note that Ũς ∈ S(R) sine

• Ũς is ompatly supported beause so it is Ũ .
• Ũς is smooth by the lassial properties of onvolution.Theorem 1.2 is a diret orollary of the following result.Proposition 5.6. There is a su�iently small onstant ε > 0 suh that the following holds. Assumethat q = 20 and that δ, ζw, ζc, η, ω, r and ρ are as in the statement of Proposition 4.4. Assumefurthermore that ς < ε2ηζc. Let Ũς be the same funtion as in (5.50) and set(5.51) B := S(R) ∩ {

U0 ∈ W 1∞(R) : ‖U0 − Ũς‖W 1∞ < r
}
.Then ondition i), ii) and iii) in the statement of Theorem 1.2 are satis�ed.The proof of Proposition 5.6 is divided into two parts: in � 5.8.1 we establish a tehnial lemmawhih loosely speaking says that Lemma 3.5 applies to the Riemann problems obtained from thepieewise onstant approximation of U0 ∈ B. In � 5.8.2 we onlude the proof of Proposition 5.6and hene of Theorem 1.2.5.8.1. Analysis of the Riemann problems arising at initial time. This paragraph is devoted to theproof of Lemma 5.7.We assume that the hypotheses of Proposition 5.6 are satis�ed and we reall that the set Bis de�ned as in (5.51). We also reall the mesh de�nition in � 5.3.1: we �x ν > 0, hν > 0 and

xν0 < xν1 < · · · < xνmν
in ]− ρ, ρ[ in suh a way that (5.13a) holds.Lemma 5.7. Assume that the same hypotheses as in the statement of Proposition 5.6 hold true.Fix xνi ∈]− ρ+ ε, ρ− ε[ and set(5.52) U− := lim

x↑xν
i

Uν
0 (x) = U0(x

ν
i−1), U+ := lim

x↓xν
i

Uν
0 (x) = U0(x

ν
i )and

Ṽ −(z) := V
(
xνi−1 + ςz

)
,



A COUNTER-EXAMPLE TO THE REGULARITY OF SYSTEMS 43where V is the same funtion as in (4.17). Also, let Ψ be the same funtion as in (4.18) andonsider the funtions b̃, ξ̃1, ξ̃2, ξ̃3 : [−1, 1] → R whih are de�ned for every z ∈ [−1, 1] by theequalities
− b̃(z)~r1I − b̃(z)~r2I + b̃(z)~r3I = Ψ(xνi + ςz)−Ψ

(
xνi−1 + ςz

)

V (xνi + ςz) = D3

[
ξ̃3(z),D2

[
−ξ̃2(z),D1

[
−ξ̃1(z), Ṽ

−(z)
]]]

.
(5.53)Finally, let φ be the same funtion as in (5.49) and m the L1-absolutely ontinuous measure de�nedby setting(5.54) m(E) :=

∫

E
φ(x)dx for every L1-measurable set E.Then all the hypotheses of the Lemma 3.5 are satis�ed provided that ν is small enough.Observe that (5.49) and (5.54) yield that the measure m is onentrated on [−1, 1]. The funtion

b̃ is therefore de�ned for m-a.e. z ∈ R, even if the funtion Ψ is only de�ned in ]− ρ, ρ[.Proof. We proeed aording to the following steps.� Step 1: we establish (3.30). We �rst point out that, by ombining (5.10), (5.49) and (5.50), wean onlude that the following estimate holds for every x ∈ R:
|Ũς(x)− UI | =

∣∣∣∣Ũς(x)− UI

∫R φ(z)dz∣∣∣∣ = ∣∣∣∣
∫R[Ũ(x+ ςz)− UI ]φ(z)dz

∣∣∣∣ ≤ O(1)ε3.This implies that, if U0 ∈ B, then, sine r < ε3 owing to (4.20), we have
|U0(x)− UI | ≤ |U0(x)− Ũς(x)|+ |Ũς(x)− UI | ≤ r +O(1)ε3 ≤ ε,namely (3.30) holds true.� Step 2: we establish the �rst inequality in (3.31a). We �x z ∈ [−1, 1] and we �rst point outthat, owing to the expliit expression (4.18) of Ψ, we have(5.55) b̃(z) ≥ min{ζc, ζw} · (xνi − xνi−1) = ζc · (xνi − xνi−1) > 0owing to (4.20). Also, for every z ∈ [−1, 1], we have that, owing to (5.13a),

b̃(z) ≤ (xi − xi−1)ζw ≤ hνζw ≤ εprovided that ν is su�iently small beause hν → 0+ when ν → 0+. This onludes the proof ofthe �rst inequality in (3.31a).� Step 3: we establish the seond inequality in (3.31a). We ombine the expliit expression (4.17)of V with the inequality |V ′| ≤ O(1)η−1 (see � 5.2) and we obtain that
0 ≤ ξ̃i(z) ≤ O(1)(xνi − xνi−1)η

−1 ≤ O(1)η−1hν , for i = 1, 2, 3 and z ∈ [−1, 1]and this, jointly with (5.13a) and (5.55), implies the seond inequality in (3.31a) provided that νis su�iently small.� Step 4: we establish (3.31d). We �rst point out that, owing to (4.19) and (5.53),
Ũ (xνi + ςz)− Ũ

(
xνi−1 + ςz

)
=

[
V (xνi + ςz) − V

(
xνi−1 + ςz

)]
+

[
Ψ(xνi + ςz)−Ψ

(
xνi−1 + ςz

)]

= −b̃(z)~r1I − b̃(z)~r2I + b̃(z)~r3I

+D3

[
ξ̃3(z),D2

[
−ξ̃2(z),D1

[
−ξ̃1(z), Ṽ

−(z)
]]]

− Ṽ −(z)



44 L. CARAVENNA AND L. V. SPINOLOBy integrating the above equality with respet to the measure m and by realling (3.31) and (5.50)we onlude that
Ũς (x

ν
i )−Ũς

(
xνi−1

)
= −b~r1I − b~r2I + b~r3I

+

∫R {D3

[
ξ̃3(z),D2

[
−ξ̃2(z),D1

[
−ξ̃1(z), Ṽ

−(z)
]]]

− Ṽ −(z)
}
dm(z).(5.56)Next, we reall (5.52) and we infer that(5.57) U+−U− = U0(x

ν
i−1)−U0(x

ν
i ) = Ũς(x

ν
i−1)−Ũς (x

ν
i )−Ũς (x

ν
i−1)+U0(x

ν
i−1)−U0(x

ν
i )+Ũς (x

ν
i ).Owing to (5.51), if U0 ∈ B, then

∣∣∣U0(x
ν
i−1)− Ũς(x

ν
i−1)−

[
U0(x

ν
i )− Ũς(x

ν
i )
]∣∣∣ ≤ r(xνi − xν−1

i ).By realling (5.57) with (5.51) and (5.56) we onlude that, if U0 ∈B, then
∣∣U+ − U− + b~r1I + b~r2I − b~r3I −

∫R {D3

[
ξ̃3(z),D2

[
−ξ̃2(z),D1

[
−ξ̃1(z), Ṽ

−(z)
]]]

− Ṽ −(z)
}
dm(z)∣∣∣∣

≤ r(xνi − xν−1
i ) ≤ 1

4
ζc(x

ν
i − xν−1

i ) ≤ b

4
.To ahieve the last two equalities we have used (4.20) and (5.55). This establishes (3.31d).� Step 5: we establish (3.31b). We �rst reall that the �rst derivative of V satis�es |V ′| ≤ O(1)η−1and we infer that the same bound holds for |Ũ ′|. By realling (5.50), (5.49) and the inequality

ς < ε2ηζc we onlude that
|Ũ (xνi−1)− Ũς(x

ν
i−1)| =

∣∣∣∣
∫ 1

−1

[
U(xνi−1)− U(xνi−1 + ςz)

]
φ(z)dz

∣∣∣∣

≤
∫ 1

−1
O(1)η−1ςφ(z)dz ≤ O(1)ε2ζc.By using again the inequality |V ′| ≤ O(1)η−1, we infer that, for every U0 ∈ B and every z suhthat |z| ≤ 1 we have

|Ṽ −(z)− U−| ≤|V
(
xνi−1 + ςz

)
− V

(
xνi−1

)
|+ |V

(
xνi−1

)
− Ũ

(
xνi−1

)
|

+ |Ũ
(
xνi−1

)
− Ũς

(
xνi−1

)
|+ |Ũς

(
xνi−1

)
− U0

(
xνi−1

)
|

≤O(1)η−1ς|z| +O(1)εζwη +O(1)ε2ζc + r ≤ O(1)ε2η.

(5.58)To establish the last inequality we have used (4.20), (5.14) and the inequality ς < ε2ηζc. Next, wereall the expliit expression (4.17) of V and (5.53) and we onlude that(5.59) 0 ≤ ξ1(z) + ξ2(z) + ξ3(z) ≤ O(1)η−1L1
( [

xνi−1 + ςz, xνi + ςz
]
∩Rw

)
.By using the expliit expression (4.18) of Ψ we infer that, for every z suh that |z| ≤ 1,

b(z) = ζc L1
( [

xνi−1 + ςz, xνi + ςz
]
∩Rc

)
+ ζw L1

( [
xνi−1 + ςz, xνi + ςz

]
∩Rw

)

≥ ζw L1
( [

xνi−1 + ςz, xνi + ςz
]
∩Rw

)
.By ombining the above formula with (5.58) and (5.59) we eventually arrive at (3.31b). Thisonludes the proof of the lemma. �



A COUNTER-EXAMPLE TO THE REGULARITY OF SYSTEMS 455.8.2. Proof of Proposition 5.6: onlusion. In this paragraph we omplete the proof of Proposi-tion 5.6, whih has Theorem 1.2 as a diret orollary.We onsider the Baiti-Jenssen system (2.6) and the set B de�ned as in (5.51). We have to showthat onditions i), ii) and iii) in the statement of Theorem 1.2 are satis�ed. Condition i) is satis�edowing to the onsiderations in � 2.2.1. Condition ii) is satis�ed: indeed
• B is nonempty sine it ontains Uς , beause Uς ∈ S(R). Also,
• B is open in the topology of S(R), whih is stronger than the strong W 1,∞ topology.We are left to show that ondition iii) is also satis�ed. The reason why ondition ondition iii) issatis�ed is beause the proof Proposition 4.4 ontinues to work if we replae the funtion Ũ withthe funtion Ũς , provided that ς < ε2ηζc. To see this, we �rst �x U0 ∈ B and we introdue itswave front-traking approximation by arguing as in � 5.3.1. Next, we point out that, owing toLemma 5.7, we an apply Lemma 3.5. This implies that the same onlusions as at the end of� 5.3.2 and � 5.3.3 hold true. This in turn implies that all the analysis in � 5.4-� 5.7 applies. Wean infer that Proposition 4.4 holds true if we replae Ũ with Ũς and hene we onlude the proofof Proposition 5.6 and Theorem 1.2. NotationGeneral mathematial symbols

LN : the Lebesgue measure on RN

O(1): any funtion satisfying 0 < c ≤ O(1) ≤ C for suitable onstants c, C > 0. The preise valueof C and c an vary from line to line
S(R): the Shwartz spae of rapidly dereasing funtions, endowed with the standard topology (seefor instane [23, p.133℄ for the preise de�nition)
‖·‖W 1∞ : the standard norm in the Sobolev spae W 1∞

TotVarU : the total variation of the funtion U : R → RN , see [3, � 3.2℄ for the preise de�nition
~z1 · ~z2 : the Eulidian salar produt between the vetors ~z1, ~z2 ∈ RN

Di[σ, Ū ]: the i-wave fan urve through Ū See (2.1)
F ′: the �rst derivative of the di�erentiable funtion F : R → RN

F (x±): the left and right limit of the funtion F at x (whenever they exist)
Ri[s, Ū ]: the i-rarefation urve through Ū See (2.2)
Si[s, Ū ]: the i-shok urve through Ū See � 2.1
W 1,∞: the spae of Lipshitz ontinuous funtionsa.e. (t, x): for L2-almost every (t, x)a.e. x: for L1-almost every xSymbols introdued in the present paper
δ: a stritly positive parameter See (4.16), (4.20a)
η: the perturbation parameter in the �ux funtion Fη See (2.3), (4.20b)
λi(U): the i-th eigenvalue of the Jaobian matrix JFη See (2.7)q, p: stritly positive parameters See (4.16), (4.20a)Rℓ, . . . ,Rr: open subsets of R See (4.15)
µν : the threshold for using the aurate Riemann solver See � 2.1
ν, hν : parameter and mesh size for the wave front-traking approximation See � 5.3.1
ω: a stritly positive parameter See (4.4), (4.20b)
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Ψ: the funtion Ψ : R → R3 See �� 4.3.2, 4.3.3
ρ: the stritly positive parameter in (4.20e) See � 4.3.3, Remark 5.1
U ′, U ′′, U∗ and U∗∗: �xed states in R3 See (4.13)
Vi: the strength of a shok i See Page 6
ε: a stritly positive, su�iently small parameter See Proposition (4.4)
~ri(U): the i-th right eigenvetor of the Jaobian matrix JFη See � 2.2.2
T̃ : the stritly positive interation time See (4.3), (4.20d)
Ũ , Ũς : the funtion Ũ : R → R3 and its molli�ation See � 4.3.3, (5.50), (5.51)
ζc: a stritly positive parameter See (4.18), (4.20), (5.1a)
ζw: a stritly positive parameter See (4.18), (4.20a), (5.1a)
q: a stritly positive parameter that we �x equal to 20 See Lemma 4.1, Remark 5.1
r: a stritly positive parameter See (4.20), (5.1), (4.21)
u,w, v: the �rst, seond and third omponent of the vetor-valued funtion U See � 2.2.1
Uν : wave front-traking approximation of the admissible solution U See � 2.1
Uν
0 : wave front-traking approximation of the initial datum U0 See � 2.1

V : the Lipshitz ontinuous funtion V : R → R3 See (4.17)
W : the pieewise onstant funtion W : R → R3 See (4.1)
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