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SCHAEFFER'S REGULARITY THEOREM FOR SCALAR CONSERVATIONLAWS DOES NOT EXTEND TO SYSTEMSLAURA CARAVENNA AND LAURA V. SPINOLOAbstra
t. S
hae�er's regularity theorem for s
alar 
onservation laws 
an be loosely speaking formu-lated as follows. Assume that the �ux is uniformly 
onvex, then for a generi
 smooth initial datum theadmissible solution is smooth outside a lo
ally �nite number of 
urves in the (t, x) plane. Here the term�generi
� is to be interpreted in a suitable sense, related to the Baire Category Theorem. Whereas otherregularity results valid for s
alar 
onservation laws with 
onvex �uxes have been extended to systemsof 
onservation laws with genuinely nonlinear 
hara
teristi
 �elds, in this work we exhibit an expli
it
ounterexample whi
h rules out the possibility of extending S
hae�er's Theorem. The analysis relies on
areful intera
tion estimates and uses �ne properties of the wave front-tra
king approximation.Keywords: 
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k formation, regularity, S
hae�er Theorem.MSC (2010): 35L65 Contents1. Introdu
tion 22. Overview of previous results 52.1. The wave front-tra
king approximation algorithm 52.2. The Baiti-Jenssen system 73. Preliminary results 
on
erning the Baiti-Jenssen system 93.1. Analysis of 1-3 intera
tions 93.2. Analysis of 1-1 and 3-3 intera
tions 103.3. Analysis of 1-2 and 2-3 intera
tions 103.4. Analysis of 2-2 intera
tions 113.5. The Riemann problem with well-prepared data 114. Constru
tion of the 
ounter-example 154.1. A wave pattern with in�nitely many sho
ks 154.2. Sho
k 
reation analysis 174.3. A more robust initial datum 195. Proof of the main results 235.1. Proof roadmap 235.2. Preliminary 
onsiderations 245.3. Wave front-tra
king approximation: initial datum 265.4. Wave front-tra
king approximation: qualitative intera
tion analysis 285.5. Wave front-tra
king approximation: quantitative intera
tion estimates 305.6. Wave front-tra
king approximation: sho
k generation analysis 335.7. Con
lusion of the proof 385.8. Proof of Theorem 1.2 42Notation 45Referen
es 461



2 L. CARAVENNA AND L. V. SPINOLO1. Introdu
tionWe are 
on
erned with mild regularity properties for systems of 
onservation laws in one spa
edimension, namely equations in the form(1.1) ∂tU + ∂x
[
G(U)

]
= 0.In the previous expression, the unknown U attains values in RN and depends on (t, x) ∈ [0,+∞[×R .The �ux fun
tion G : RN → RN is of 
lass C2. If N = 1, we 
all (1.1) s
alar 
onservation law, if

N > 1 we term it system of 
onservation laws. In 1973, S
hae�er [24℄ established a regularity result(see Theorem 1.1 below) that applies to s
alar 
onservation laws. This paper aims at showing thatthis result does not extend to the 
ase of systems.When N > 1, system (1.1) is 
alled stri
tly hyperboli
 if the Ja
obian matrix DG(U) admits Nreal and distin
t eigenvalues(1.2) λ1(U) < · · · < λN (U).We term ~r1(U), . . . , ~rN (U) the 
orresponding right eigenve
tors of DG(U) and we say that the i-th
hara
teristi
 �eld is genuinely nonlinear if(1.3) ∇λi(U) · ~ri(U) ≥ c > 0, for every U ∈ RNand for some suitable 
onstant c > 0. In the previous expression, · denotes the standard s
alarprodu
t in RN . If the left hand side of (1.3) is identi
ally zero, then the i-th 
hara
teristi
 �eld istermed linearly degenerate.In the present paper we deal with the Cau
hy problem posed by 
oupling (1.1) with the initialdatum(1.4) U(0, ·) = U0and we refer to the books by Dafermos [14℄ and Serre [25℄ for a 
omprehensive introdu
tion tosystems of 
onservation laws. In parti
ular, it is well-known that, even if U0 is smooth and (1.1) isa s
alar 
onservation law, the 
lassi
al solution of (1.1), (1.4) breaks down in �nite time owing tothe formation of dis
ontinuities. The Cau
hy problem (1.1), (1.4) 
an be interpreted in the sense ofdistributions, but in general distributional solutions fail to be unique. In the attempt at restoringuniqueness, various admissibility 
onditions have been introdu
ed: we refer again to [14, 25℄ for anoverview.In the following we brie�y go over some well-posedness and regularity results for systems of
onservation laws. We �rstly fo
us on the s
alar 
ase N = 1. The 
elebrated work by Kruºkov [19℄establishes global existen
e and uniqueness results in the 
lass of so-
alled entropy admissible solu-tions of the Cau
hy problem (1.1), (1.4) under the assumption that U0 ∈ L∞. Regularity propertiesof entropy admissible solutions have been investigated in several papers: here we only mention someof the main 
ontributions and we refer to [14, 25℄ for a more 
omplete dis
ussion. First, a famousresult by Ole��nik [22℄ establishes the following regularizing e�e
t: when the �ux G ∈ C2 is uniformly
onvex, for every t > 0 the solution U(t, ·) has bounded total variation, namely U(t, ·) ∈ BV (R),even if U0 is only in L∞. More re
ently, Ambrosio and De Lellis [2℄ improved Oleinik's result show-ing that, ex
ept at most 
ountably many times, the solution U(t, ·) is a
tually a spe
ial fun
tion ofbounded variation, namely U(t, ·) ∈ SBV (R); we refer to [3, � 4℄ for the de�nition of SBV (R). Thisis a regularizing e�e
t of the nonlinearity. A result due to S
hae�er [24℄, moreover, states that fora generi
 smooth initial datum the admissible solution of the Cau
hy problem is even better than



A COUNTER-EXAMPLE TO THE REGULARITY OF SYSTEMS 3this: it develops at most a lo
ally �nite number of dis
ontinuity 
urves, see Theorem 1.1 below.In the following statement, we denote by S(R) the S
hwartz spa
e of rapidly de
reasing fun
tions,endowed with the standard topology (see [23, p.133℄ for the pre
ise de�nition).Theorem 1.1 (S
hae�er). Assume that N = 1 and that the �ux G is smooth and uniformly 
onvex,namely G′′(U) ≥ c > 0 for some 
onstant c > 0 and for every U ∈ R.Then there is a set F ⊆ S(R) that enjoys the following properties:i) F is of the �rst 
ategory in S(R), namely(1.5) F =

∞⋃

k=1

Ck, Ck is 
losed and has empty interior, for every k.ii) For every U0 ∈ S(R) \F, the entropy admissible solution of the Cau
hy problem (1.1), (1.4)enjoys the following regularity. For every open bounded set Ω ⊆ [0,+∞[×R there is a �nitenumber of Lips
hitz 
ontinuous 
urves Γ1, . . . ,Γm ⊆ R2 su
h that
U ∈ C∞ (Ω \ ∪m

i=1Γi)The 
urves Γ1, . . . ,Γm are usually termed sho
ks. We brie�y 
omment the above result. First,the assumption that G is uniformly 
onvex 
an be relaxed, see for instan
e Dafermos [12℄. Seealso [27℄ for re
ent related results. Se
ond, a 
hara
terization of the set F 
an be found in a paperby Tadmor and Tassa [26℄. Third, the result is sharp in the sense that one 
annot hope that theregularity holds for every smooth initial datum. More pre
isely, even in the 
ase G(U) = U2/2several authors 
onstru
ted initial data in S(R) that develop in�nitely many sho
ks on 
ompa
tsets; see for instan
e the 
ounter-example exhibited by S
hae�er himself [24, � 5℄. Among re
entworks, we mention the 
onstru
tion by Adimurthi, Ghoshal and Veerappa Gowda [1℄.The present paper aims at dis
ussing whether or not S
hae�er's Theorem 1.1 extends to systems,i.e. to the 
ase when N > 1. Investigating whether or not the number of sho
ks is (generi
ally) �niteis motivated not only by intrinsi
 interest, but also by appli
ations. In parti
ular, knowing that thelimit solution admits at most �nitely many sho
ks simpli�es the study of several approximations
hemes. As an example, we re
all that the proof of the 
onvergen
e of the vanishing vis
osityapproximation in the 
ase when the limit solution has �nitely many, non intera
ting sho
ks wasprovided by Goodman and Xin [17℄ and it is 
onsiderably simpler than the proof in the general
ase, whi
h is due to Bian
hini and Bressan [6℄.We now re
all some well-posedness and regularity results for systems of 
onservation laws. Thepioneering work by Glimm [15℄ established existen
e of a global in time, distributional solutionsof the Cau
hy problem (1.1), (1.4) under the assumptions that the system is stri
tly hyperboli
,that ea
h 
hara
teristi
 �eld is either genuinely nonlinear or linearly degenerate and that thetotal variation of the initial datum U0 is su�
iently small. Uniqueness results were obtained ina series of papers by Bressan and several 
ollaborators: we refer to the book [8℄ for an overview.In the following, we 
all the solution 
onstru
ted by Glimm admissible solution of the Cau
hyproblem (1.1), (1.4). Note that this solution 
an be also re
overed as the limit of a wave front-tra
king approximation [8℄ and of a se
ond order approximation [6℄.Several regularity results that apply to s
alar 
onservation laws with 
onvex �uxes have beenextended to systems of 
onservation laws where every ve
tor �eld is genuinely nonlinear (i.e. 
on-dition (1.3) holds for every i = 1, . . . , N). See, for instan
e, the works by Glimm and Lax [16℄,Liu [21℄ and Bressan and Colombo [9℄ for possible extensions of the de
ay estimate by Ole��nik [22℄.



4 L. CARAVENNA AND L. V. SPINOLOMoreover, the SBV regularity result by Ambrosio and De Lellis [2℄ has been extended to the 
aseof systems, see Dafermos [13℄ for self-similar solutions, An
ona and Nguyen [4℄ for Temple systemsand Bian
hini and Caravenna [7℄ for general systems where every 
hara
teristi
 �eld is genuinelynonlinear.The main result of the present paper states that S
hae�er's Theorem 1.1 does not extend tosystems, even those where every 
hara
teristi
 �eld is genuinely nonlinear.Theorem 1.2. There are a �ux fun
tion G : R3 → R3 , a 
ompa
t set K ⊆ [0,+∞[×R and a setB ⊆ S(R) that enjoy the following properties:i) system (1.1) is stri
tly hyperboli
 and every 
hara
teristi
 �eld is genuinely nonlinear,namely (1.2) holds and moreover property (1.3) is satis�ed for every i = 1, 2, 3.ii) The set B is non empty and open in S(R).iii) For every U0 ∈ B the admissible solution of the Cau
hy problem (1.1), (1.4) has in�nitelymany sho
ks in the 
ompa
t set KSome remarks are in order:
• in the statement of the above theorem by sho
k we mean a Lips
hitz 
ontinuous 
urve
x = Γ(t) at whi
h U is dis
ontinuous.

• The Baire Theorem implies that any set of the �rst 
ategory (1.5) has empty interior. Sin
ethe set of �bad data� B is open and non empty, it 
annot be of the �rst 
ategory and hen
eTheorem 1.2 provides a 
ounter-example to the possibility of extending S
hae�er's Theoremto the 
ase of systems.
• By looking at the expli
it 
onstru
tion one 
an infer that B satis�es the following furtherrequirement. For every U0 ∈ B, the total variation of U0 is su�
iently small to apply theexisten
e and uniqueness results in [8, 15℄. This means that the 
ounter-example providedby Theorem 1.2 belongs to the same 
lass where we have well-posedness.
• Our 
onstru
tion is expli
it, in the sense that we provide an expli
it formula for the fun
tion
G, the 
ompa
t K and the set B, see (2.3), (5.51) and the 
onstru
tion in � 4.

• Our 
onstru
tion shows, as a byprodu
t, that a �nite total variation wave-pattern 
ontainingin�nitely many sho
ks 
an be robust with respe
t to suitable perturbations of the initialdata.
• Our 
ounter-example requires 3 dimensions, namely N = 3. It is known that 2× 2 systemsare usually mu
h better behaved than higher dimension systems, see for instan
e the dis-
ussion in [14, � XII℄. An interesting question is whether or not S
he�er's Theorem extendsto (suitable 
lasses of) 2×2 systems 1. We plan to address this question in a separate study.To 
on
lude, we brie�y outline the proof of Theorem 1.2. The set B will be basi
ally obtained by
onsidering small W 1,∞ perturbations of a 
ertain fun
tion Ũ . The main point in the proof is then
onstru
ting G and Ũ in su
h a way thati) when U0 = Ũ the admissible solution of the Cau
hy problem (1.1)-(1.4) develops in�nitelymany sho
ks, andii) the same happens when U0 is a small perturbation of Ũ .We 
hoose as �ux fun
tion G a parti
ular representative of a family of �uxes introdu
ed by Baiti andJenssen [5℄. Note that in [5℄ the authors exhibit a wave-pattern 
ontaining in�nitely many sho
ks.1We thank Alberto Bressan for this remark.



A COUNTER-EXAMPLE TO THE REGULARITY OF SYSTEMS 5A
tually, the original wave-pattern in [5℄ 
ontains large amplitude waves, but the 
onstru
tion 
anbe adapted to obtain a wave-pattern with small total variation. Although we use several resultsestablished in [5℄, our analysis is quite di�erent from the one in [5℄. More pre
isely, there are threemain 
hallenges in adapting the 
onstru
tion in [5℄ for our goals:
• we need to show that the wave-pattern in [5℄ 
an be exhibited by a solution with smoothinitial datum: this issue is ta
kled by relying on the notion of 
ompression wave, see � 4.2.1.
• A mu
h more severe obstru
tion is the fa
t that the wave-pattern we obtain by mimi
kingthe 
onstru
tion in [5℄ is a priori not robust with respe
t to perturbations. We refer tothe dis
ussion at the beginning of � 4.3 for a more detailed explanation, but very looselyspeaking the problem is the following. By following the 
onstru
tion in [5℄ we obtain awave-pattern with in�nitely many sho
ks, but, owing to the fa
t that we require that thetotal variation of the solution is bounded, most of the sho
ks we 
onstru
t are very weak,and 
ould be in prin
iple 
an
eled by an arbitrary small perturbation of the initial data.Owing to this la
k of robustness, we have to introdu
e a di�erent and more 
ompli
ated
onstru
tion than the original one in [5℄. Even in the 
ase when there is no perturbation,the stru
ture of the admissible solution is mu
h more 
omplex than the one 
onsideredin [5℄.
• The analysis in [5℄ relies on the 
onstru
tion of expli
it solutions. In our 
ase, 
omputingexpli
it solutions is prohibitive and hen
e we argue by introdu
ing a wave front-tra
kingapproximation. We perform 
areful intera
tion estimates to gain pre
ise information on thestru
ture of the approximate solution and we eventually pass to the limit by using �ne prop-erties of the wave front-tra
king approximation established by Bressan and LeFlo
h [10℄.The paper is organized as follows. In � 2 for the reader's 
onvenien
e we go over some previousresults. More pre
isely, in � 2.1 we re
all some of the main properties of the wave front-tra
kingapproximation, while in � 2.2 we introdu
e the Baiti-Jenssen system and re
all some of the mainproperties. In � 3 we establish preliminary estimates on admissible solutions of the Baiti-Jenssensystem. In � 4 we 
onstru
t the fun
tion Ũ . In � 5 we establish the proof of Theorem 1.2.In parti
ular, we show that the solution of the Cau
hy problem with initial datum Ũ developsin�nitely many sho
ks and that this behavior is robust with respe
t to perturbations of Ũ .For the reader's 
onvenien
e, we 
olle
t the notation of this paper at Page 45.2. Overview of previous resultsFor the reader's 
onvenien
e, in this se
tion we go over some previous results that we will needin the following. More pre
isely, we pro
eed as follows:� 2.1: we qui
kly summarize the wave front-tra
king algorithm [8℄ and we �x some notation.� 2.2: we introdu
e the Baiti-Jenssen system and we dis
uss some of its properties.2.1. The wave front-tra
king approximation algorithm. In this paragraph we brie�y goover the version of the wave front-tra
king algorithm dis
ussed in [8℄ (see in parti
ular Chapter 7 inthere). We refer to [8℄ and to the books by Dafermos [14, � 14.13℄ and by Holden and Risebro [18℄for a more extended dis
ussion and for a 
omprehensive list of referen
es. Also, in the followingdis
ussion we assume that ea
h 
hara
teristi
 �eld is genuinely nonlinear (i.e., that (1.3) holds true)be
ause this hypothesis is satis�ed by our system.



6 L. CARAVENNA AND L. V. SPINOLOWe �rst introdu
e some notation. We re
all that the i-wave fan 
urve through Ū is(2.1) Di[s, Ū ] :=

{
Ri[s, Ū ] s ≥ 0

Si[s, Ū ] s < 0.In the previous expression, Ri is the integral 
urve of ~ri passing through Ū , namely the solution ofthe Cau
hy problem(2.2) 



dRi

ds
= ~ri(U),

Ri[0, Ū ] = Ū .Also, we denote by Si the i-Hugoniot lo
us, i.e. the set of states that 
an be joined to Ū by asho
k of the i-family, namely by a i-sho
k. The speed of the sho
k 
an be 
omputed by using theRankine-Hugoniot 
onditions. We 
all the absolute value |s| strength of the sho
k between Ū and
Si[s, Ū ].We are now ready to outline the the 
onstru
tion of the wave front-tra
king approximation. We�x a small parameter ν > 0 and we denote by Uν the wave front-tra
king approximation. The�nal goal is to show that when ν → 0+ the family Uν 
onverges to the admissible solution of theCau
hy problem (1.1)-(1.4). The main steps to 
onstru
t Uν are the following (we refer to [8, � 7℄for a detailed dis
ussion):i) we 
onstru
t Uν

0 , a pie
ewise 
onstant approximation of the initial datum U0.ii) At ea
h dis
ontinuity of Uν
0 we solve the Riemann problem between the left and the rightstate by relying on the Lax Theorem [20℄. We want to de�ne Uν in su
h a way that Uν(t, ·)is pie
ewise 
onstant for almost every t > 0. Hen
e, we repla
e the rarefa
tion wavesin the Lax solution of the Riemann problem with a suitably de�ned pie
ewise 
onstantapproximation. The resulting approximate solution is 
alled a

urate Riemann solver.iii) We repeat the above pro
edure at ea
h dis
ontinuity point of Uν

0 and we de�ne Uν byjuxtaposing the approximate solution of ea
h Riemann problem. In this way, Uν is pie
ewise
onstant and has a �nite number of dis
ontinuity lines. By a slight abuse of notation, we
all rarefa
tion waves the dis
ontinuity lines 
orresponding to rarefa
tions. We 
an alsointrodu
e a notion of strength for the rarefa
tion wave (see [8, Chapter 7℄ for the te
hni
aldetails).iv) Let us 
onsider the point at whi
h two waves (i.e., dis
ontinuity lines) intera
t (i.e. 
rossea
h other). The intera
tion determines a new Riemann problem, whi
h is solved by usingthe same pro
edure as in step 2. above. In this way we 
an extend the wave front-tra
kingapproximation Uν after the �rst intera
tion o

urs.v) In prin
iple, it may happen that the number of dis
ontinuity lines of Uν blows up in �nitetime: this would prevent us from de�ning Uν globally in time. The number of dis
ontinuities
an blow up if for instan
e Uν 
ontains a wave pattern like the one illustrated in Figure 3.vi) To prevent the number of dis
ontinuities from blowing up, we introdu
e the so-
alled nonphysi
al waves. The exa
t de�nition is quite te
hni
al and it is given in [8, �7.2℄, but thebasi
 idea is the following. We introdu
e a threshold µν and we 
onsider an intera
tionpoint. If the produ
t between the strengths of the in
oming waves is bigger than µν , thenwe use the a

urate Riemann solver de�ned at step 2. If it is smaller, we use a so-
alledsimpli�ed Riemann solver. The simpli�ed Riemann solver involves a minimum number of
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ally, all the new waves are pa
ked together in a single non physi
alwave, whi
h travels at a faster speed than any other wave.vii) The analysis in [8, �7℄ shows that, by relying on a suitable 
hoi
e of the approximate and ofthe simpli�ed Riemann solver, of the approximate initial datum Uν
0 and of the threshold µν ,one 
an prove that the approximate wave front-tra
king solutions Uν 
onverge as ν → 0+to the unique admissible solution of the Cau
hy problem (1.1), (1.4).2.2. The Baiti-Jenssen system. In this paragraph we re
all some results from [5℄. More pre-
isely, we pro
eed as follows.� 2.2.1: we introdu
e the expli
it expression of the Baiti-Jenssen system and we 
omment on it.� 2.2.2: we re
all the expli
it expression of the eigenvalues and we go over the stru
ture of the wavefan 
urves.2.2.1. The system. We introdu
e the Baiti-Jenssen system. We �x η ∈ ]0, 1[ and we de�ne thefun
tion Fη : R3 → R3 by setting(2.3) Fη(U) :=




4
[
(v − 1)u− w

]
+ ηp1(U)

v2

4
{
v(v − 2)u− (v − 1)w

}
+ ηp3(U)


In the above expression, u, v and w denote the 
omponents of U , namely U = (u, v, w). Thefun
tions p1 and p3 are given by

p1(U) =
1

2

{
[w − (v − 2)u]2 − [w − vu]2

]}
= 2uw − 2u2(v − 1),(2.4)

p3(U) =
1

2

{
v[w − (v − 2)u]2 − (v − 2)[w − vu]2

}
= w2 − u2(v − 2)v.(2.5)In the following we are 
on
erned with the system of 
onservation laws(2.6) ∂t U + ∂x

[
Fη(U)

]
= 0,whi
h we term Baiti-Jenssen system. Two remarks are here in order. First, (2.3) is exa
tly system(3.11) in [5℄ provided that we 
hoose ε = η, g(v) = v2, a(v) = v, b(v) = v − 2, c = 4. The reasonwhy we only 
onsider a parti
ular representative of the 
lass of systems 
onsidered in [5℄ is be
ausewe want to simplify the analysis and the exposition. Indeed, some parts of the proof of Theorem 1.2are already fairly te
hni
al and we have de
ided to keep the rest as simple as possible. However,we are 
on�dent that our argument 
an be extended to mu
h more general 
lasses of systems.Se
ond, the 
elebrated existen
e and uniqueness results [15, 8℄ mentioned in the introdu
tionimply that there are 
onstants C > 0 and δ > 0 su
h that, if U0 is a 
ompa
tly supported fun
tionsatisfying

TotVar U0 ≤ δ,then the Cau
hy problem obtained by 
oupling (2.6) with the 
ondition U(0, ·) = U0 has a unique,global in time admissible solution whi
h satis�es
TotVar U(t, ·) ≤ C TotVar U0, for every t > 0.In prin
iple, both δ and C depend on η. However, by looking at the proof of the 
onvergen
e ofthe wave front-tra
king approximation one realizes that C and δ only depend on bounds on Fη andits derivatives of various orders. Sin
e all these fun
tions are uniformly bounded in η ∈]0, 1[, then



8 L. CARAVENNA AND L. V. SPINOLOwe 
an 
hoose C and δ in su
h a way that they do not depend on η. In the following, we will let ηvary but we will always assume that the fun
tion U attains values in the unit ball, namely |U | < 1.This will be a posteriori justi�ed be
ause we will 
hoose a 
ompa
tly supported initial datum withsu�
iently small total variation.2.2.2. Eigenvalues and wave fan 
urves. We now re
all some features of system (2.3) and we referto [5, pp. 841-843℄ for the proof. First, the eigenvalues of the Ja
obian matrix DFη(U) are
λ1(U) = 2η

[
w − (v − 2)u

]
− 4 < λ2(U) = 2v < λ3(U) = 2η

[
w − vu

]
+ 4.(2.7)Note that(2.8) − 6 < λ1(U) < −5

2
< −2 < λ2(U) < 2 < 3 < λ3(U) < 5 if |U | < 1 and 0 ≤ η <

1

4and hen
e in parti
ular(2.9) |λ1(U)|, |λ2(U)|, |λ3(U)| < 6 if |U | < 1 and 0 < η <
1

4
.Note that (2.8) implies that the system is stri
tly hyperboli
 if |U | < 1 and 0 ≤ η < 1/4. Notefurthermore that 2 is a Lips
hitz 
onstant of ea
h eigenvalue if |U | < 1 and 0 ≤ η < 1/4. The �rstand the third right eigenve
tors are(2.10) ~r1(U) =



1

0

v


 and ~r3(U) =




1

0

v − 2


 ,respe
tively. The expli
it expression of the se
ond eigenve
tor is not relevant here. Note howeverthat the assumption of genuine nonlinearity is satis�ed sin
e(2.11a) ∇λ1(U) · ~r1(U) = 4η > 0, ∇λ2(U) · ~r2(U) = 2 > 0and(2.11b) ∇λ3(U) · ~r3(U) = −4η < 0.Note that (2.11b) implies (1.3) provided that we 
hange the orientation of ~r3. Owing to (2.10),the 1- and the 3-wave fan 
urve through Ū = (ū, v̄, w̄) are straight lines in the planes v = v̄. Morepre
isely,

D1[σ; Ū ] =




σ + ū

v̄

v̄σ + w̄


 = Ū + σ~r1(Ū) = Ū + σ~r1(v̄),(2.12a)

D3[τ ; Ū ] =




τ + ū

v̄

(v̄ − 2)τ + w̄


 = Ū + τ~r3(Ū) = Ū + τ~r3(v̄).(2.12b)Owing to (2.11), we have that

• if σ < 0, then Ū and D1[σ; (ū, v̄, w̄)] are 
onne
ted by a 1-sho
k. If σ > 0, then Ū and
D1[σ; (ū, v̄, w̄)] are 
onne
ted by a 1-rarefa
tion wave.

• if τ < 0, then Ū and D3[σ; (ū, v̄, w̄)] are 
onne
ted by a 3-rarefa
tion wave. If τ > 0, then
Ū and D3[σ; (ū, v̄, w̄)] are 
onne
ted by a 3-sho
k.To understand the stru
ture of the se
ond wave fan 
urve through Ū we use the following simpleobservation, whi
h for future referen
e we state as a lemma.



A COUNTER-EXAMPLE TO THE REGULARITY OF SYSTEMS 9Lemma 2.1. Assume that U = (u, v, w) is an admissible solution of the system of 
onservationlaws (2.6). Then the se
ond 
omponent v is an entropy admissible solution of the s
alar 
onservationlaw(2.13) ∂t v + ∂x
[
v2
]
= 0.Proof. Lemma 2.1 was used in [5℄, but we provide the proof for the sake of 
ompleteness. Owingto the analysis in [6℄ (see in parti
ular Theorem 1 and � 15 in there), the admissible solution U 
anbe re
overed as the unique limit ε → 0+ of the se
ond order approximation

∂t Uε + ∂x
[
Fη(Uε)

]
= ε ∂2

xxUε.We then 
on
lude by 
onsidering the se
ond 
omponent and re
alling that the entropy admissiblesolution of a s
alar 
onservation law is the unique limit of the vanishing vis
osity approximation(see [14, � 6.3℄). �By 
ombining (2.11) with Lemma 2.1 and by re
alling that the �ux in (2.13) is 
onvex we
on
lude tha we 
an 
hoose the parametrization of D2 in su
h a way that
• if s < 0, then Ū and D2[s, Ū ] are 
onne
ted by a 2-sho
k and the se
ond 
omponent of
D2[s, Ū ] is v̄ + s < v̄

• if s > 0, then Ū and D2[s, Ū ] are 
onne
ted by a 2-rarefa
tion wave and the se
ond 
om-ponent of D2[s, Ū ] is v̄ + s > v̄.3. Preliminary results 
on
erning the Baiti-Jenssen systemThis se
tion 
on
erns the Baiti-Jenssen system (2.6). It is divided into two parts:
• In � 3.1, � 3.2, � 3.3 and � 3.4 we dis
uss intera
tion estimates for the Baiti-Jenssen system.More pre
isely, in � 3.1, � 3.2 we re
all some analysis from [5℄. In � 3.3 we state a newversion of a result established in [5℄. The proof is provided in the 
ompanion paper [11℄. In� 3.4 we go over a new intera
tion estimate established in [11℄.
• In � 3.5 we dis
uss new results 
on
erning the solution of the Riemann problem in the 
asewhen the left and the right states satisfy suitable stru
tural assumptions.Both parts will be used in � 5 in the analysis of the wave-front tra
king approximation of a general
lass of Cau
hy problems.3.1. Analysis of 1-3 intera
tions. In this paragraph we 
onsider the intera
tion between a sho
kof the �rst family, i.e. a 1-sho
k, and a 3-sho
k. More pre
isely, we term Uℓ, Um and Ur the left,middle and right state before the intera
tion, respe
tively (see Figure 1, left part). In other words,(3.1) Um = D3[τ, Uℓ], Ur = D1[σ,Um]for some τ > 0, σ < 0, where D1[·] and D3[·] are given in (2.12).We now want to solve the Riemann problem between Uℓ (on the left) and Ur (on the right). Were
all that the 1- and the 3-wave fan 
urves are just straight lines in planes where the v 
omponentis 
onstant, see (2.12). The slope of the lines only depends on v. This implies that the 1- and the3-wave fan 
urves 
ommute and the solution of the Riemann problem between Uℓ (on the left) and

Ur (on the right) 
ontains no 2-wave. In other words, the following holds. We denote by U ′
m themiddle state after the intera
tion (see again Figure 1, left part). From (3.1) we get(3.2) U ′

m = D1[σ,Uℓ], Ur = D3[τ, U
′
m].
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τ

Ur

Um

σ
τ

Uℓ

σ U ′
m

Uℓ

τℓ + τr

Um

Ur

τr

τℓFigure 1. A 1-3 intera
tion (left) and a 3-3 intera
tion (right). The value of v is
onstant a
ross ea
h intera
tion3.2. Analysis of 1-1 and 3-3 intera
tions. Owing to the parti
ular stru
ture (2.12) of the 1-and 3-wave fan 
urves, the in
oming sho
ks in 1-1 intera
tions and 3-3 intera
tions simply merge.In parti
ular, no new wave is produ
ed. More pre
isely, we have the following: we fo
us on 3-3intera
tions and we refer to Figure 1 for a representation. We term Uℓ, Um and Ur the left, middleand right state before the intera
tion, respe
tively. In other words,
Um = D3[τℓ, Uℓ], Ur = D3[τr, Um]for some τℓ, τr > 0. Owing to (2.12), we have Ur = D3[τℓ + τr, Uℓ] and hen
e the only outgoingwave is a 3-wave. The analysis of 1-1 intera
tions is 
ompletely analogous.3.3. Analysis of 1-2 and 2-3 intera
tions. In this paragraph we expli
itly dis
uss the intera
tionof a 1-sho
k with a 2-sho
k. The analysis of the intera
tion of a 2-sho
k with a 3-sho
k is 
ompletelyanalogous. Lemma 3.1 below 
an be loosely speaking formulated as follows: if η and the strength ofthe in
oming sho
ks are su�
iently small, then the outgoing waves are three sho
ks (and hen
e, inparti
ular, no outgoing wave is a rarefa
tion). Also, we have a bound from below and from aboveon the strength of the outgoing sho
ks. Note that a result similar to Lemma 3.1 is establishedin [5℄: the novelty of Lemma 3.1 is that we have a more pre
ise estimate on the strength of theoutgoing 3-sho
k, 
ompare the left part of (3.6) with [5, eq. (5.9)℄. Also, in the 
ase of Lemma 3.1we restri
t to data with small total variation. The proof of Lemma 3.1 is provided in [11℄ and isbased on perturbation argument: one �rstly establishes Lemma 3.1 in the 
ase when η = 0 andthen 
onsiders the 
ase η > 0.To give the formal statement of Lemma 3.1 we introdu
e some notation. We term Uℓ, Um and

Ur the left, middle and right state before the intera
tion, respe
tively. See Figure 2, left part, fora representation. In other words,(3.3) Um = D2[s, Uℓ], Ur = D1[σ,Um] for some s < 0, σ < 0.Also, we denote by U ′
m and U ′′

m the new intermediate states after the intera
tion, namely(3.4) U ′
m = D1[σ

′, Uℓ], U ′′
m = D2[s

′, U ′
m], Ur = D3[τ, U

′′
m]for some σ′, s′ and τ ∈ R. Here is the formal statement of our result.
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Uℓ

U ′′
m τ

Ur

σ
Um

s

Uℓ

U ′
mσ′ s′

σ

s1
Um

s2

Ur

τ
U ′′
m

s1 + s2U ′
m

Figure 2. A 1-2 intera
tion (left) and a 2-2 intera
tion (right).Lemma 3.1. Assume that (3.3) and (3.4) hold. Then(3.5) s′ = s.Also, there is ε > 0 su
h that the following holds. If |Uℓ|, |s|, |σ| ≤ 1/4 and 0 ≤ η < ε, then(3.6) − 2|σ| < σ′ < −|σ|
2

and 1

100
sσ < τ < 10sσ.3.4. Analysis of 2-2 intera
tions. In this paragraph we state a result from [11℄ 
on
erning theintera
tion between two 2-sho
ks. As usual, we term Uℓ, Um and Ur the left, middle and right statebefore the intera
tion. We refer to Figure 2, right part, for a representation. Lemma 3.2 
an beloosely speaking formulated as follows. Fix a 
onstant a > 0 and assume that Uℓ, Um and Ur areall su�
iently 
lose to some state (a, 0,−a). Then the outgoing waves are three sho
ks.The proof of Lemma 3.2 is given in [11℄ and it is divided into two parts: we �rstly establish theresult in the 
ase η = 0 by relying on the expli
it expression of the 2-wave fan 
urve. We thenextend it to the 
ase η > 0 by using a perturbation argument.Here is the formal statement.Lemma 3.2. There is a su�
iently small 
onstant ε > 0 su
h that the following holds. Fix a
onstant a su
h that 0 < a < 1/2 and set U ♯ := (a, 0,−a). Assume that

|Uℓ − U ♯| ≤ εa, s1, s2 < 0, |s1|, |s2| < εa, 0 ≤ η ≤ εa .Assume furthermore that
Ur = D2

[
s2,D2[s1, Uℓ]

]
.Then there are σ < 0 and τ > 0 su
h that(3.7) Ur = D3

[
τ,D2

[
s1 + s2,D1[σ,Uℓ]

]]
.3.5. The Riemann problem with well-prepared data. In this paragraph we dis
uss the stru
-ture of the solution of Riemann problems with �well-prepared� data. The main and most generalresult of this se
tion is stated in Lemma 3.4 below: under suitable and general stru
tural assump-tions on the 
onstant states U− and U+, whi
h we express in the form of averages, the solution ofthe Riemann problem is obtained by juxtaposing three sho
ks and hen
e, in parti
ular, it 
ontainsno rarefa
tion wave. Sin
e the statement of Lemma 3.4 is a bit 
umbersome, we �rst deal withparti
ular and simpler 
ases in Lemmas 3.3 and 3.4 below. In � 5.3 we will use all these results to
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uss the wave-front tra
king approximation of the initial datum for a general 
lass of Cau
hyproblems.Lemma 3.3. There is 0 < ε < 1 su
h that the following holds. Fix UI ∈ R3 su
h that |UI | ≤ 1/2.Let ~r1I , ~r2I and ~r3I be the ve
tors(3.8) ~r1I := ~r1(UI), ~r2I := ~r2(UI), ~r2I := ~r3(UI).If U−, U+ ∈ R3 satisfy(3.9) |U− − UI | < εand
|U+ − U− + b~r1I + b~r2I − b~r3I | < εb(3.10)for some 0 < b < ε, then the following holds. There are τ, σ and s su
h that(3.11) 0 < τ < 2b, −2b < σ < 0, −2b < s < 0and(3.12) U+ = D3

[
τ,D2

[
s,D1[σ,U

−]
]]
.Proof. First, we point out that, if ε is su�
iently small, then (3.10) implies that(3.13) U+ − U− = −b1~r1I − b2~r2I + b3~r3Ifor some b1, b2, b3 satisfying(3.14) 1

2
b < b1, b2, b3 <

3

2
b.Next, we use the Lo
al Invertibility Theorem and we determine τ, s and σ satisfying (3.12). Owingto the regularity of the inverse map, we 
an infer from (3.13) and (3.14) that(3.15) |σ|+ |s|+ |τ | < Cb.Here and in the rest of the proof, C denotes a universal 
onstant. The pre
ise value of C 
an varyfrom line to line. Next, we re
all that the wave fan 
urve D1 satis�es (2.12) and we introdu
e thenotation(3.16) U ′

m = D1[σ,U
−] = U− + σ~r1(U

−) = U− + σ~r1I + σ
[
~r1(U

−)− ~r1I

]
.Also, we term(3.17) U ′′

m := D2[s, U
′
m] = U ′

m + s~r2I + s
[
~r2(U

′
m)− ~r2I

]
+

[
D2[s, U

′
m]− U ′

m − s~r2(U
′
m)

]By using (3.12) and the expli
it expression of the wave fan 
urve D3 (see (2.12)) we arrive at
U+ = U− + σ~r1I + s~r2I + τ~r3I

+ σ
[
~r1(U

−)− ~r1I

]
+ s

[
~r2(U

′
m)− ~r2I

]
+

[
D2[s, U

′
m]− U ′

m − s~r2(U
′
m)

]
+ τ

[
~r3(U

′′
m)− ~r3I

]

︸ ︷︷ ︸
R(σ, s, τ, U−)

(3.18)
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all that ~r2(U ′
m) is the derivative dD2[s, U

′
m]/ds 
omputed at s = 0. By using (3.9), (3.15),we obtain that the rest term R 
an be 
ontrolled as follows:

|R(σ, s, τ, U−)| ≤ Cb(ε+ ε) + Cb2 + Cbε

≤ Cbε.
(3.19)To establish the last inequality, we use the assumption that b < ε. Next, we 
ompare (3.18)with (3.13) and by using (3.19) we dedu
e that

|b1 + σ|+ |b2 + s|+ |b3 − τ | < Cεb.Owing to (3.14), this implies (3.11) provided that ε is su�
iently small. The proof of the lemmais 
omplete. �We only sket
h the proof of the following lemma be
ause it is similar to Lemma 3.3. Note,furthermore, that Lemma 3.3 
an be re
overed from Lemma 3.4 by taking the limit ξ → 0+.However, we de
ided the give the 
omplete statement and proof of Lemma 3.3 to highlight thebasi
 ideas underpinning Lemmas 3.4 and 3.5.Lemma 3.4. There is 0 < ε < 1 su
h that the following holds. Fix UI ∈ R3 su
h that |UI | < 1/2.Let ~r1I , ~r2I and ~r3I be the same ve
tors as in (3.8). Assume that UI , U
−, V −, U+ ∈ R3 , and b, ξ ∈ Rsatisfy the following 
onditions: formula (3.9) holds and moreover(3.20) |V − − U−| <

√
ε
b

ξ
, 0 < b < ε, 0 < ξ <

√
εb.Assume furthermore thateither |U+ − U− −D1[−ξ, V −] + V − + b~r1I + b~r2I − b~r3I | < b/4(3.21a) or |U+ − U− −D2[−ξ, V −] + V − + b~r1I + b~r2I − b~r3I | < b/4(3.21b) or |U+ − U− −D3[ξ, V

−] + V − + b~r1I + b~r2I − b~r3I | < b/4.(3.21
)Then (3.12) holds for some τ, σ, s su
h that
0 < τ < 2b, −2b < s < 0, −2b− ξ < σ < −ξ if (3.21a) holds(3.22a)
0 < τ < 2b, −2b− ξ < s < −ξ, −2b < σ < 0 if (3.21b) holds(3.22b)
ξ < τ < ξ + 2b, −2b < s < 0, −2b < σ < 0 if (3.21
) holds.(3.22
)Proof. We only 
onsider the 
ase when (3.21b) holds sin
e the analysis of the other 
ases is analo-gous, but simpler. We �rst rewrite (3.21b) as(3.23) ∣∣∣U+ − U− + b~r1(U

−) + (b+ ξ)~r2(U
−)− b~r3(U

−) +R1(ξ, UI , U
−, V −)

∣∣∣ ≤ b/4,where the term R1 is de�ned by setting
R1(b, ξ, UI , U

−, V −) :=b
[
~r2I − ~r2(U

−)
]
+ b

[
~r1I − ~r1(U

−)
]
+ b

[
~r3I − ~r3(U

−)
]

−
[
D2[−ξ, V −]− V − + ξ~r2(V

−)
]
+ ξ

[
~r2(V

−)− ~r2(U
−)

]
.

(3.24)Owing to (3.9) and (3.20), it satis�es(3.25) |R1(b, ξ, UI , U
−, V −)| ≤ Cεb+ Cξ2 + Cξ|V − − U−| ≤ C

√
εb



14 L. CARAVENNA AND L. V. SPINOLOHere and in the rest of the proof, C denotes a universal 
onstant. Its pre
ise value 
an vary fromline to line. Next, we use the Lo
al Invertibility Theorem to determine τ, s and σ satisfying (3.12).Owing to the regularity of the inverse map, we have(3.26) |σ|+ |s|+ |τ | < C(b+ ξ).We de�ne U ′
m and U ′′

m as (3.16) and (3.17) and by arguing as in the proof of Lemma 3.3 we 
on
ludethat (3.12) implies
U+ = U− + σ~r1(U

−) + s~r2(U
−) + τ~r3(U

−)

+ s
[
~r2(U

′
m)− ~r2(U

−)
]
+

[
D2[s, U

′
m]− U ′

m − s~r2(U
′
m)

]
+ τ

[
~r3(U

′′
m)− ~r3(U

−)
]

︸ ︷︷ ︸
R2(σ, s, τ, U

−)

(3.27)By using (3.26) we obtain(3.28) |R2(σ, s, τ, U
−)| ≤ C(b+ ξ)2Finally, we 
ompare (3.23) and (3.27) and we use (3.25) and (3.28) and we obtain(3.29) |σ + b|+ |s+ b+ ξ|+ |τ − b| ≤ b/4 + C

√
εb+ C(b+ ξ)2.By using the inequality ξ2 ≤ εb, we eventually arrive at (3.22b). �By arguing as in the proof of Lemma 3.4, we establish the following result. Note that Lemmas 3.3and 3.4 
an be both re
overed as parti
ular 
ases of Lemma 3.5.Lemma 3.5. There is 0 < ε < 1 su
h that the following holds. Let m be a Borel probability measureon R. Fix UI ∈ R3 su
h that |UI | < 1/2. Let ~r1I , ~r2I and ~r3I be the same ve
tors as in (3.8). Fix

U−, U+ ∈ R3 and assume that(3.30) |U− − UI | < ε.Assume, furthermore, that the the fun
tions
Ṽ − : R → R3 , b̃, ξ̃1, ξ̃2, ξ̃3 : R → [0,+∞[.satisfy the following 
onditions for m-a.e. z ∈ R:

0 ≤ b̃(z) < ε, 0 ≤ ξ̃i(z) <

√
ε̃b(z) for i = 1, 2, 3,(3.31a)

[
ξ̃1(z) + ξ̃2(z) + ξ̃3(z)

]
|Ṽ −(z)− U−| <

√
ε b̃(z).(3.31b)Finally, set

b =

∫R b̃(z)dm(z), ξ1 =

∫R ξ̃1(z)dm(z), ξ2 =

∫R ξ̃2(z)dm(z), ξ3 =

∫R ξ̃3(z)dm(z).(3.31
)and assume that∣∣∣∣U
+ − U− −

∫R {D3

[
ξ̃3(z),D2

[
− ξ̃2(z),D1[−ξ̃1(z), Ṽ

−(z)]
]]

− Ṽ −(z)
}
dm(z)

+ b~r1I + b~r2I − b~r3I

∣∣∣ < b/4.

(3.31d)Then (3.12) holds for some τ, σ, s su
h that
− 2b− ξ1 ≤ σ ≤ −ξ1, − 2b− ξ2 ≤ s ≤ −ξ2, ξ3 ≤ τ ≤ ξ3 + 2b.(3.32)
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tion of the 
ounter-exampleIn this se
tion we start the 
onstru
tion of the set of �bad data� B as in the statement ofTheorem 1.2. In other words, we want to 
onstru
t B in su
h a way that i) B is open in the S(R)topology and ii) for every initial datum in B the solution of the Cau
hy problem develops in�nitelymany sho
ks in a 
ompa
t set. Loosely speaking, we will 
onstru
t B as a ball (in a fun
tionalspa
e) 
entered at a parti
ular fun
tion. What we a
tually do in this se
tion is hen
e to 
onstru
tan initial datum Ũ satisfying the following requirements: �rst, the solution of the Cau
hy problemwith initial datum Ũ develops in�nitely many sho
ks. Se
ond, this behavior is robust with respe
tto su�
iently small perturbations in the Sobolev spa
e W 1∞(R). As we will see in � 5.8, this is thekey step to establish Theorem 1.2. To 
onstru
t Ũ we pro
eed a

ording to the following steps.� 4.1: we go over the 
onstru
tion of a wave pattern with in�nitely many sho
ks. This 
onstru
tionis basi
ally the same as in [5℄.� 4.2: we show that this wave pattern 
an be obtained from a Lips
hitz 
ontinuous initial datum.However, this does not 
on
lude the 
onstru
tion of Ũ . Indeed, at the beginning of � 4.3we explain that in prin
iple it it may happen that, if we take a very small perturbation ofthe initial datum, the solution of the Cau
hy problem does no more develop in�nitely manysho
ks. In other words, the wave pattern 
onstru
ted in � 4.1 and � 4.2 is not robust withrespe
t to perturbations.� 4.3: we modify the 
onstru
tion given in � 4.1 and in � 4.2 in order to make it robust with respe
tto perturbations. We eventually obtain an initial datum Ũ and Proposition 4.4 states thatthe solution of the Cau
hy problem with initial datum Ũ develops in�nitely many sho
ksand that this behavior is robust with respe
t to su�
iently small W 1∞ perturbations. Theproof of Proposition 4.4 is provided in � 5.In the rest of the present se
tion we always assume that the parameter η in (2.3) is su�
ientlysmall to have that Lemma 3.1 applies.4.1. A wave pattern with in�nitely many sho
ks. In this paragraph we exhibit a wave pattern
ontaining in�nitely many sho
ks. The 
onstru
tion is basi
ally the same as in [5℄, however we re
allit for the reader's 
onvenien
e .Lemma 4.1. Fix q > 0 and assume that UI , UII , UIII ∈ R3 satisfy the following properties:i) the state UI satis�es |UI | ≤ 1/8 and the solution of the Riemann problem between UI (onthe left) and UII (on the right) 
ontains 3 sho
ks and the strength of ea
h sho
k is smallerthan 1/64.ii) The solution of the Riemann problem between UII (on the left) and UIII (on the right)
ontains 3 sho
ks and the strength of ea
h sho
k is smaller than 1/64.iii) The following 
hain of inequalities holds true: vI > vII > vIII .Then the admissible solution of the Cau
hy problem obtained by 
oupling (2.6) with the initial datum(4.1) W (x) :=





UI x < −q

UII −q < x < q

UIII x > q.
ontains in�nitely many sho
ks.
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q−qFigure 3. The solution of the Cau
hy problem obtained by 
oupling system (2.6)with the initial datum (4.1)We refer to Figure 3 for a representation of the wave pattern 
ontained in the solution of theCau
hy problem obtained by 
oupling (2.6) with the initial datum W .Proof. First, we observe that, owing to property (iii) in the statement of Lemma 4.1,(4.2) speed2[UI , UII ] = vI + vII > vII + vIII = speed2[UII , UIII ]In the previous expression, we denote by speed2[UI , UII ] the speed of the 2-sho
k in the solution ofthe Riemann problem between UI (on the left) and UII (on the right). In other words, the 2-sho
kthat is generated at the point (t, x) = (0,−q) is faster than the 2-sho
k that is 
reated at the point
(t, x) = (0, q) (see Figure 3).Next, we observe that the �rst intera
tion that o

urs is the intera
tion between the 3-sho
kgenerated at x = −q and the 1-sho
k generated at x = q, see again Figure 3. Owing to theanalysis in � 3.1, those two sho
ks essentially 
ross ea
h other and, most importantly, no 2-waveis generated. After this intera
tion, the 1-sho
k generated at x = q intera
ts with the 2-sho
kgenerated at x = −q. Owing to Lemma 3.1, this intera
tion produ
es three outgoing sho
ks andthe speed of the outgoing 2-sho
k is the same as the speed of the in
oming 2-sho
k, whi
h is the lefthand side of (4.2). Also, the new 1-sho
k generated at this intera
tion will hit at some later timethe left 2-sho
k: owing to Lemma 3.1, this intera
tion produ
es three outgoing sho
ks. The new3-sho
k will then intera
t with the right 2-sho
k, produ
ing three outgoing sho
ks. This me
hanismis repeated in�nitely many times between t = 0 and the time t = T̃ at whi
h the 2-sho
ks generatedat x = −q and x = q intera
t, namely(4.3) T̃ =

2q

vI − vIII
.Note that, in general, owing to the nonlinearity, it may also happen that for instan
e two 3-sho
ksintera
t at some point on the right of the right 2-sho
k. However, owing to � 3.2, these two sho
kssimply merge and no 2- or 3-waves are generated. �
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k 
reation analysis. This paragraph aims at showing that the wave pattern in Figure 3
an be exhibited by a solution starting from a Lips
hitz 
ontinuous initial datum. More pre
isely,we establish the following result.Lemma 4.2. There is a su�
iently small 
onstant ε > 0 su
h that the following holds. Fix q = 20,and UI ∈ R3 su
h that |UI | < 1/2. Let ω ∈ R satisfy 0 < ω < ε and let UII and UIII be the statesde�ned as follows:(4.4a) UII := D3

[
ω,D2

[
− ω,D1[−ω,UI ]

]]and(4.4b) UIII := D3

[
ω,D2

[
− ω,D1[−ω,UII ]

]]Then the states UI , UII and UIII satisfy the hypotheses of Lemma 4.1. Also, there is a Lips
hitz
ontinuous initial datum su
h that the solution U of the Cau
hy problem obtained by 
oupling (2.6)with this initial datum satis�es U(1, x) = W (x), where W is the same as in (4.1).The fa
t that the states UI , UII and UIII satisfy the hypotheses of Lemma 4.1 follows from theremarks after formula (2.12), so we are left to prove the se
ond part of the lemma. The proof isorganized as follows. Sin
e we will use the notion of 
ompression waves in � 4.2.1 we brie�y goover this notion for the reader's 
onvenien
e. In � 4.2.2 we give a te
hni
al lemma. In � 4.2.3 weeventually 
omplete the proof of Lemma 4.2.4.2.1. Compression waves. Consider a general, stri
tly hyperboli
 system of 
onservation laws (1.1).We term Ri[s, Ū ] the integral 
urve of ~ri passing through Ū , i.e. the solution of the Cau
hy prob-lem (2.2). Assume that the i-th 
hara
teristi
 �eld is genuinely nonlinear, say ∇λi(U) · ~ri(U) > 0for every U . Let U := Ri[s, Ū ] for some negative s < 0 and observe that the fun
tion(4.5) Ucw(t, x) =





Ū x < λi(Ū )t

Ri[s, Ū ] x = λi(Ri[s, Ū ])t, s < s < 0

U x > λi(U )tis a smooth solution of the 
onservation law on ]−∞, 0[×R and at t = 0 it attains the values
U(0, x) =

{
Ū x < 0

U x > 0We term the fun
tion Ucw de�ned as in (4.5) a 
ompression wave. Loosely speaking, 
ompressionwaves 
an be regarded as the ba
kward in time analogous of rarefa
tion waves.4.2.2. A te
hni
al lemma. First, we make a remark 
on
erning the stru
ture of the integral 
urves
R1, R2 and R3 of system (2.3). Owing to (2.10), we have the equalities(4.6) R1[σ, Ū ] = D1[σ, Ū ], R3[τ, Ū ] = D3[τ, Ū ].The proof of Lemma 4.2 is based on the following result.Lemma 4.3. Assume that the hypotheses of Lemma 4.2 are satis�ed and that UII and UIII arede�ned by (4.4). If the 
onstant ε in the statement of Lemma 4.2 is su�
iently small, then(4.7a) UII := D1

[
σ,R2

[
s,D3[τ, UI ]

]]
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1

2
ω, s < −1

2
ω and σ < −1

2
ω. Also,(4.7b) UIII := D1

[
σ∗, R2

[
s∗,D3[τ

∗, UII ]
]]for some τ∗ >

1

2
ω, s∗ < −1

2
ω and σ∗ < −1

2
ω.Proof. We only give the proof of (4.7a), sin
e the proof of (4.7b) is entirely analogous.We basi
ally pro
eed as in the proof of Lemma 3.3. First, we point out that (4.4) implies that

|UI − UII | ≤ Cω ≤ Cε. Here and in the rest of the proof C denotes some universal 
onstant. Itspre
ise value 
an vary from line to line.By using the Lo
al Invertibility Theorem, we infer that the values of τ , s and σ are uniquelydetermined by imposing (4.7a). Also, we have(4.8) |τ |+ |σ|+ |s| ≤ Cω.We are left to prove that τ >
1

2
ω, s < −1

2
ω and σ < −1

2
ω. We introdu
e some notation: we de�nethe states U ′ and U ′ by setting

U ′ := D1[ω,UI ], U ′ := D3[τ, UI ].By using (4.4) we infer
UII = D2[−ω,U ′] + ω~r3(vII)

= U ′ − ω~r2(U
′) +

{
D2[−ω,U ′]− U ′ + ω~r2(U

′)
}
+ ω~r3(vII)

= UI − ω~r1(vI)− ω~r2(U
′) +

{
D2[−ω,U ′]− U ′ + ω~r2(U

′)
}
+ ω~r3(vII)

= UI − ω~r1(vI)− ω~r2(UI) + ω~r3(vI)

+ ω
{
~r2(UI)− ~r2(U

′)
}
+

{
D2[−ω,U ′]− U ′ + ω~r2(U

′)
}
+ ω

{
~r3(vII)− ~r3(vI)

}
.

(4.9)
Note that(4.10) ω

∣∣∣~r2(UI)− ~r2(U
′)
∣∣∣+

∣∣∣D2[−ω,U ′]− U ′ + ω~r2(U
′)
∣∣∣+ ω

∣∣∣~r3(vII)− ~r3(vI)
∣∣∣ ≤ Cω2.By using (4.7a) and by arguing as before we obtain

UII = UI + τ~r3(vI) + s~r2(UI) + σ~r1(vI)

+ s
{
~r2(U

′)− ~r2(UI)
}
+

{
R2[s, U

′]− U ′ − s~r2(U
′)
}
+ σ

{
~r1(vII)− ~r1(vI)

}
,

(4.11)where, owing to (4.8),(4.12) ∣∣∣s
{
~r2(U

′)− ~r2(UI)
}∣∣∣+

∣∣∣R2[s, U
′]− U ′ − s~r2(U

′)
∣∣∣+

∣∣∣σ
{
~r1(vII)− ~r1(vI)

}∣∣∣ ≤ Cω2.By 
omparing (4.9) and (4.11) and re
alling (4.10) and (4.12) we obtain that
|τ − ω|+ |s+ ω|+ |σ + ω| ≤ Cω2.Sin
e ω > 0, this implies that τ >

1

2
ω, s < −1

2
ω and σ < −1

2
ω provided that ε (and hen
e ω) issu�
iently small. �
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omplete the proof of Lemma 4.2.We �x ω > 0 and UI ∈ R3 , |UI | ≤ 1/2. We term UII and UIII the states satisfying (4.4).We determine the values σ, s, τ, σ∗, s∗, τ∗ by using (4.7a) and (4.7b), respe
tively. Owing toLemma 4.3, we have that σ < 0, s < 0 and τ > 0 and hen
e we 
an de�ne the fun
tion U(t, x) by�juxtaposing� six 
ompression waves like (4.5). More pre
isely, we introdu
e the following notation:(4.13) U ′ := D3[τ, UI ], U ′′ := R2[s, U
′], U∗ := D3[τ

∗, UII ], U∗∗ := R2[s
∗, U ∗]For t ∈ [0, 1) we de�ne the fun
tion U(t, x) by setting

(4.14) U(t, x) :=





UI x < −q + λ3(UI) · (t− 1)

D3[ς, UI ] if there is 0 < ς < τ : x = −q + λ3(D3[ς, UI ]) · (t− 1)

U ′ −q + λ3(U
′) · (t− 1) < x < −q + λ2(U

′) · (t− 1)

R2[ς, U
′] if there is s < ς < 0: x = −q + λ2(R2[ς, U

′]) · (t− 1)

U ′′ −q + λ2(U
′′) · (t− 1) < x < −q + λ1(U

′′) · (t− 1)

D1[ς, U
′′] if there is σ < ς < 0: x = −q + λ1(D1[ς, U

′′]) · (t− 1)

UII −q + λ1(UII) · (t− 1) < x < q + λ3(UII)(t− 1)

D3[ς, UII ] if there is 0 < ς < τ∗: x = q + λ3(D3[ς, UII ]) · (t− 1)

U∗ q + λ3(U
∗) · (t− 1) < x < q + λ2(U ·) · (t− 1)

R2[ς, U
∗] if there is s∗ < ς < 0: x = q + λ2(R2[ς, U

∗]) · (t− 1)

U∗∗ q + λ2(U
∗∗) · (t− 1) < x < q + λ1(U

∗∗) · (t− 1)

D1[ς, U
∗∗] if there is σ∗ < ς < 0: x = q + λ1(D1[ς, U

∗∗]) · (t− 1)

UIII x > q + λ1(UIII)) · (t− 1)Note that the above fun
tion is well de�ned be
ause
λ1(UII) · (t− 1)− q < λ3(UII)(t− 1) + q.Indeed, q = 20 > 12 by assumption and |λ1(UII)|, |λ3(UII)| < 6 owing to (2.9).Note furthermore that U(t, x) is a lo
ally Lips
hitz 
ontinuous fun
tion on [0, 1[×R and that

U(1, x) = W (x), where W is the same fun
tions as in (4.1). This 
on
ludes the proof of the lemma.4.3. A more robust initial datum. We �rstly introdu
e our analysis with some heuristi
s. Theanalysis in the previous paragraph shows that if the initial datum is given by the same Lips
hitz
ontinuous fun
tion U(0, ·) as in (4.14), then the solution of the Cau
hy problem exhibits a wavepattern like the one in Figure 3 and hen
e, in parti
ular, develops in�nitely many sho
ks. However,the above behavior is not robust with respe
t to perturbations of U(0, ·). The main obstru
tionthat might prevent the formation of in�nitely many sho
ks is the following. We re
all that thestrength of the sho
ks generated at time t = 1 at the points x = q and x = −q is small, morepre
isely it is of the order ω < 1. By applying the se
ond intera
tion estimate in (3.6), we 
on
ludethat the strength of the 1- and 3-sho
ks boun
ed ba
k and forth between the two 2-sho
ks is weakerand weaker as one approa
hes the interse
tion point between the two 2-sho
ks, i.e. the tip of thetriangle in Figure 3. This means that, no matter how small a perturbation wave is, if it hits thetriangle at a point su�
iently 
lose to the tip it might happen that the perturbation is bigger thanthe sho
ks it meets. This might prevent the formation of in�nitely many sho
ks be
ause it mighthappen that the perturbation annihilates the sho
k it meets.In order to make the initial datum more robust with respe
t to perturbations we add to U(0, ·)the fun
tion Ψ de�ned in � 4.3.2, whi
h is monotone in the dire
tion of the eigenve
tors. Veryloosely speaking, the heuristi
 idea underpinning this 
onstru
tion is that in this way only sho
ks
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ome into play, and no rarefa
tions. This is made rigorous in � 5 by 
onsidering the wave-fronttra
king approximation of the solution: we prove that the presen
e of the fun
tion Ψ implies thatat t = 0 the wave-front tra
king approximation 
ontains only sho
k waves. This will be the �rststep in the analysis that will allow us to 
on
lude that the solution of the Cau
hy problem developsin�nitely many sho
ks, and that this behavior is robust with respe
t to perturbations.We are left to make one last remark: by looking at the expli
it expression of U we realize thatthere are three 
ompression waves that intera
t at the point (t, x) = (1,−q) and other three thatintera
t at the point (t, x) = (1, q). In � 4.3.1 we modify the datum U(0, ·) by distan
ing the
ompression waves one from the other. Loosely speaking, this will imply that the 
orrespondingsho
ks will form at time t = 1 and then they will intera
t at some later time. This will simplify theperturbation analysis be
ause it will rule out the possibility that the 
ompression waves intera
twith ea
h other before the 
orresponding sho
ks have formed.This paragraph is organized as follows:� 4.3.1: we modify U(0, ·) by distan
ing the 
ompression waves one from the other.� 4.3.2: we 
onstru
t the fun
tion Ψ �monotone in the dire
tion of the eigenve
tors� .� 4.3.3: we eventually de�ne the initial datum Ũ in su
h a way that the solution of the Cau
hyproblem develops in�nitely many sho
ks and that this behavior is robust with respe
t toperturbations. See Proposition 4.4.4.3.1. Compression waves separation: de�nition of V . We �rstly introdu
e some notation. We �xa su�
iently large ρ > 0 (its pre
ise value will be dis
ussed in the following, see (4.20e)), we re
allthat the parameter q = 20 is the same as in the statement of Lemmas 4.1 and 4.2 and we set(4.15a) q := q + 3, p := q − 3.We also introdu
e the following notation:
(4.15b)

Rℓ :=]− ρ,−q− λ3(UI)[, R3
ℓ :=]− q− λ3(UI),−q− λ3(U

′)[,R′
ℓ :=]− q− λ3(U

′),−q − λ2(U
′)[ R2

ℓ :=]− q − λ2(U
′),−q − λ2(U

′′)[,R′′
ℓ :=]− q − λ2(U

′′),−p− λ1(U
′′)[, R1

ℓ :=]− p− λ1(U
′′),−p − λ1(UII)[,Rm :=]− p− λ1(UII), p− λ3(UII)[, R3

r :=]p− λ3(UII), p− λ3(U
∗)[,R′

r :=]p− λ3(U
∗), q − λ2(U

∗)[ R2
r :=]q − λ2(U

∗), q − λ2(U
∗∗)[,R′′

r :=]q − λ2(U
∗∗), q − λ1(U

∗∗)[, R1
r :=]q− λ1(U

∗∗), q− λ1(UIII)[,Rr :=]q− λ1(UIII), ρ[We also de�ne the open sets Rc and Rw by setting(4.15
) Rc = Rℓ ∪R′
ℓ ∪R′′

ℓ ∪Rm ∪Rr ∪R′
r ∪R′′

rand(4.15d) Rw = R3
ℓ ∪R2

ℓ ∪R1
ℓ ∪R3

r ∪R2
r ∪R1

r ,respe
tively. To give an heuristi
 interpretation of the above notation we point out that, if we hadq = p = q, then the intervals in (4.15) would be the same as in the right hand side of (4.14). In
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ular, we would have that the fun
tion U(0, ·) is 
onstant on Rc and has a nonzero derivativeon Rw. R3
ℓ R1

rR3
r Rc

RwRℓ

ρ−ρ

R2
ℓ R2

r

q − λ2(U
∗∗)

q − λ2(U
∗)

R′
ℓ R′′

ℓ Rm

−q − λ2(U
′)

−q − λ2(U
′′)

R′
r R′′

r Rr

R1
ℓ

q− λ1(UIII)q− λ1(U
∗∗)

−q− λ3(UI)
−q− λ3(U

′)

−p− λ1(U
′′) p− λ3(U

∗)−p− λ1(UII) p− λ3(UII)Figure 4. Intervals de�ned in Equations (4.15)To 
onstru
t the fun
tion V , we �x the parameters δ and ω and we set(4.16) UI := (δ, 0,−δ).We determine the values σ, s, τ, σ∗, s∗, τ∗ by using (4.7a) and (4.7b), respe
tively. Finally, wedetermine U ′, U ′′, U∗ and U∗∗ by using (4.13). We now de�ne the fun
tion V :] − ρ, ρ[→ R3 insu
h a way that V is a 3-
ompression wave on R3
ℓ ∪R3

r, a 2-
ompression wave on R2
ℓ ∪R2

r and a1-
ompression wave on R1
ℓ ∪R1

r . More pre
isely, we set
(4.17) V (x) :=





UI x ∈ Rℓ

D3[ς, UI ] if there is 0 < ς < τ : x = −q− λ3(D3[ς, UI ])

U ′ x ∈ R′
ℓ

R2[ς, U
′] if there is s < ς < 0: x = −q − λ2(R2[ς, U

′])

U ′′ x ∈ R′′
ℓ

D1[ς, U
′′] if there is σ < ς < 0: x = −p− λ1(D1[ς, U

′′])

UII x ∈ Rm

D3[ς, UII ] if there is 0 < ς < τ∗: x = p− λ3(D3[ς, UII ])

U∗ x ∈ R′
r

R2[ς, U
∗] if there is s∗ < ς < 0: x = q − λ2(R2[ς, U

∗])

U∗∗ x ∈ R′′
r

D1[ς, U
∗∗] if there is σ∗ < ς < 0: x = q− λ1(D1[ς, U

∗∗])

UIII x ∈ RrNote that if we had q = p = q, then V would 
oin
ide with the fun
tion U(0, ·) de�ned as in (4.14).4.3.2. Monotoni
ity in the dire
tion of the eigenvalues: de�nition of Ψ. We �x the parameters
ζc > 0 and ζw > 0 and we de�ne the fun
tion Ψ :]− ρ, ρ[→ R3 by requiring that Ψ(0) = ~0 and that

Ψ′(x) :=

{
−ζc~r1I − ζc~r2I + ζc~r3I if x ∈ Rc

−ζw~r1I − ζw~r2I + ζw~r3I if x ∈ Rw

(4.18)In the previous expression, we used the notation ~r1I = ~r1(UI), ~r2I = ~r2(UI) and ~r3I = ~r3(UI).
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RmR3
ℓ R′

ℓ R2
ℓ R′′

ℓ R1
ℓ R3

r R′
r R2

r R′′
r R1

rRℓ RrFigure 5. The solution of the Cau
hy problem with initial datum the fun
tion Vde�ned as in (4.17)4.3.3. De�nition of the initial datum Ũ . We now de�ne the Lips
hitz 
ontinuous fun
tion Ũ : R → R3by setting(4.19) Ũ(x) :=





Φ−(x) x < −ρ

V (x) + Ψ(x) −ρ < x < ρ

Φ+(x) x > ρ.In the above expression, the fun
tion V is as in (4.17), the fun
tion Ψ is de�ned in � 4.3.2 and thefun
tions Φ−,Φ+ : R → R3 are Lips
hitz 
ontinuous and de�ned in su
h a way that the fun
tion Ũis 
ontinuous and 
ompa
tly supported. We also require that ea
h 
omponent of Φ−(x) and Φ+(x)is monotone.We 
an now state the main result of the present se
tion. Proposition 4.4 below states thati) the solution of the Cau
hy problem obtained by 
oupling (2.6) with the initial datum
U(0, x) = Ũ has in�nitely many sho
ks;ii) this behavior is robust with respe
t to su�
iently small perturbations of the initial datum.Proposition 4.4. Fix q = 20. Let 0 < ε < 1 and �x the parameters

δ := ε, ζw := ε/2,(4.20a)
η := ε2, ω := ε3,(4.20b)
ζc := ε9, r := ε10/2,(4.20
)Note that by 
ombining the above 
hoi
es with (4.3) and (4.4) we get(4.20d) T̃ =

20

ε3
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(
6

ε3
+ 1

)
.Consider the same fun
tion Ũ as in (4.19). If the 
onstant ε is su�
iently small, then, for everyinitial datum U0 su
h that(4.21) ‖U0 − Ũ‖W 1∞ < r,the admissible solution of the Cau
hy problem obtained by 
oupling system (2.6) with the initialdatum U(0, ·) = U0 has in�nitely many sho
ks in the bounded set ]0, 2T̃ [×]− 2q, 2q[.The proof of Proposition 4.4 is the most te
hni
al part of the paper and it is given in � 5. Themain result of the present paper, namely Theorem 1.2, follows as a 
orollary from Proposition 4.4,see � 5.8. 5. Proof of the main resultsIn this se
tion we establish the proof of Theorem 1.2 and Proposition 4.4. More pre
isely, in� 5.8 we show that Theorem 1.2 follows as a 
orollary of Proposition 4.4. The rest of the presentse
tion is devoted to the proof of Proposition 4.4. Sin
e the proof is fairly te
hni
al and arti
ulated,we provide a roadmap in � 5.1. The proof is established in the remaining paragraphs.5.1. Proof roadmap. In this paragraph we provide the proof outline and we dis
uss the basi
ideas underpinning the analysis in the following paragraphs.We start with some heuristi
 
onsiderations. We re
all that the fun
tion V : R → R is de�nedas in (4.17). The qualitative stru
ture of solution of the Cau
hy problem with initial datum Vis illustrated in Figure 5: by the time t = 1, six sho
ks have formed. More pre
isely, movingfrom the left to the right there are a 3-sho
k, a 2-sho
k, a 1-sho
k, a large interval where thesolution is 
onstant and then again a 3-sho
k, a 2-sho
k and a 1-sho
k. These sho
ks intera
t atsome later time and produ
e a wave pattern with in�nitely many sho
ks. The initial datum U0is obtained from V by adding the fun
tion Ψ and the perturbation U0 − Ũ , whi
h is W 1∞ small,see (4.19), (4.21). Loosely speaking, the goal of the following paragraphs is to show that adding Ψand U0− Ũ to the initial datum does not a�e
t too mu
h the qualitative stru
ture of the solution ofthe Cau
hy problem and, in parti
ular, does not jeopardize the formation of in�nitely many sho
ks.Sin
e 
omputing expli
it solutions is prohibitive, we rely on the wave-front tra
king approximation.The proof of Proposition 4.4 is organized as follows:� 5.2: We make some preliminary remarks that will be used in the following paragraphs.� 5.3: We introdu
e the wave front tra
king approximation Uν (ν is the approximation parameter)of the solution of the Cau
hy problem obtained by 
oupling the Baiti-Jenssen system (2.6)with the initial datum U(0, ·) = U0 satisfying (4.21). In parti
ular, we 
onstru
t a pie
ewise
onstant approximation of the initial datum and we dis
uss the waves that are generatedat t = 0. A feature that will be very useful in the analysis at the following paragraphs isthat at t = 0 only sho
k waves are generated. This is the reason why we introdu
ed thefun
tion Ψ, monotone in the dire
tion of the eigenve
tors, see (4.18), (4.19) and the analysisin � 5.3.2 and � 5.3.3.
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arry on a qualitative analysis of the waves of the wave front-tra
king approximation
Uν . In parti
ular, we split the wave generated at t = 0 in two groups: group A 
omprisesthe waves that will 
ontribute to the formation of six �big sho
ks� like in the solution of theCau
hy problem with initial datum V . Group B 
omprises all the other wave generatedat t = 0, whi
h in the following will be regarded as perturbation waves. In � 5.4 we alsointrodu
e groups of waves generated at intera
tions o

urring at times t > 0. They willalso be regarded as perturbation waves in the following. Note that perturbation waves areimportant, even if they are small, be
ause they 
ontribute to the formation of in�nitelymany sho
ks.� 5.5: We establish quantitative bounds on the total strength of the waves belonging to the variousgroups introdu
ed in � 5.4.� 5.6: We eventually establish the results 
on
erning the sho
k formation, see Lemmas 5.3 and 5.4.In parti
ular, we show that the wave front-tra
king approximation Uν 
ontains six �bigsho
ks� like the solution of the Cau
hy problem with initial datum V , see the dis
ussionin � 5.6.2.� 5.7: We eventually 
on
lude the proof of Proposition 4.4. In parti
ular, we �rstly provide abound from below on the number of sho
k fronts in the wave front-tra
king approximation
Uν , see Lemma 5.5. Next, we pass to the limit ν → 0+ and we 
on
lude that the numberof sho
ks of the limit solution is in�nite on a given 
ompa
t set. The limit analysis relieson �ne properties of the wave front-tra
king approximation established by Bressan andLeFlo
h [10℄.We 
on
lude this paragraph with two te
hni
al remarks. First, as pointed out in � 2.1 in this paperwe use the version of the wave front-tra
king approximation dis
ussed in the book by Bressan [8℄.This version involves the use of two kinds of pro
edures to solve wave intera
tions: the a

urateRiemann solver and the simpli�ed Riemann solver. Whether one or the other is used depends on theprodu
t of the strength of the in
oming waves, see the dis
ussion at the beginning of � 5.7.1 and theanalysis in [8, Chapter 7℄ for more detailed information. To simplify the exposition, in � 5.4, � 5.5and � 5.6 we pretend we always use the a

urate Riemann solver. The fa
t that there are a
tuallytwo kinds of solvers is taken into a

ount in � 5.7.Se
ond, to simplify the notation in the following we denote by O(1) any quantity whi
h isuniformly bounded and bounded away from 0, namely there are universal 
onstants c, C > 0 thatsatisfy

0 < c ≤ O(1) ≤ C..5.2. Preliminary 
onsiderations. In this paragraph we 
olle
t various remarks that we will usein the following. First, we �x ε > 0 su�
iently small so that Lemmas 3.1, 3.2, 3.3, 3.4, 4.2, 4.3apply. Next, we re
all formula (4.20):
vI − vIII = ω ρ = O(1)ω−1, T̃ = O(1)ω−1, ω = ε3, δ = ε,

ζw = ε/2, η = ε2, ζc = ε9, r = ε10/2.
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ular implies
ζwω + ζcρ+ rρ < εω < ε3/4ζwη(5.1a)
r < εζc < εω < εζw(5.1b)We will use the above inequalities in the following.We re
all that the intervalsRℓ, . . . ,Rr are as in (4.15) and that the fun
tion V is de�ned in (4.17).By 
onstru
tion, we have(5.2) TotVar V ≤ O(1)ωand(5.3) ‖V − UI‖C0 ≤ O(1)ω, ‖V ‖C0 ≤ O(1)(δ + ω).We 
an infer from estimates (2.11a), (4.7a), (4.7b),(4.13),(4.15) and (4.15d) that the length of Rwis O(1)ω be
ause the length of R3

ℓ ,R1
ℓ ,R3

r ,R1
r is O(1)ωη while the length of R2

ℓ ,R2
r is O(1)ω. Sin
e

Ψ(0) = ~0, from (4.18), (4.20a) and (5.1) we get that(5.4) ‖Ψ‖C0 ≤ TotVar Ψ ≤ O(1)ζwω +O(1)ζcρ < O(1)εω.Also, we re
all that ea
h 
omponent of Φ− and Φ+ is monotone and that Φ− and Φ+ both attainthe value ~0. This implies that
‖Φ−‖C0 + ‖Φ+‖C0 ≤ TotVar Φ− +TotVar Φ+ ≤ |V (−ρ) + Ψ(−ρ)|+ |V (ρ) + Ψ(ρ)|

≤ |UI |+ |UIII |+O(1)(ζcρ+ ζwω)

≤ O(1)
[
δ + ω + ζcρ+ ζwω

]
.

(5.5)By re
alling (4.20), (5.2) and (5.4) we 
on
lude that(5.6) TotVar Ũ ≤ O(1)ε.Owing to (4.21), we have(5.7) ‖U0 − Ũ‖C0 +TotVar(U0 − Ũ) ≤ O(1)rρIf U0 satis�es (4.21), whi
h means that U0 is a perturbation of Ũ , then(5.8) U0(x) = V (x) + Ψ(x) +
[
U0(x)− Ũ(x)

] for every x ∈]− ρ, ρ[.By the expli
it expression of V and by (2.11) we infer that |V ′(x)| ≤ O(1)η−1 for every x ∈]−ρ, ρ[.By using (4.18), (4.21) and (5.8) we arrive at(5.9) |U ′
0(x)| ≤ O(1)η−1 for every x ∈]− ρ, ρ[.By taking into a

ount (5.3), (5.4), (4.21) and (5.1), we infer from (4.20) and (5.8) that

|U0(x)− UI | ≤ |U0(x)− Ũ(x)|+ |Ψ(x)|+ |V (x)− UI |(5.10)
≤ r +O(1)εω +O(1)ω ≤ O(1)ε3 for every x ∈]− ρ, ρ[.We point out that by estimates (4.20b), (5.1a), (5.2) (5.4) and (5.7) one has the bound(5.11) TotVarU0 ≤ O(1)ω ≤ O(1)ε3 on ]− ρ, ρ[Sin
e UI = (δ, 0,−δ), owing to (4.20a) we arrive at(5.12) |U0(x)| ≤ O(1)ε, for every x ∈]− ρ, ρ[.



26 L. CARAVENNA AND L. V. SPINOLORemark 5.1. We point out that the values attained on ]−2q, 2q[×]0, 2T̃ [ by the admissible solutionof the Cau
hy problem are only determined by the behavior of the initial datum on ]− ρ, ρ[. Thisfollows by 
ombining our 
hoi
e (4.20e) of ρ with the �nite propagation speed, more pre
iselywith (2.9). Indeed, we have
ρ− 2q ≥ 12T̃ ≥ max

|U |≤1,i=1,2,3
|λi(U)| · 2T̃ .In the following, we will only be 
on
erned with the behavior of the initial datum on the interval

]− ρ, ρ[. This is justi�ed by the previous 
onsiderations and by the fa
t that we are only interestedin the behavior of the solution on ]− 2q, 2q[×]0, 2T̃ [.5.3. Wave front-tra
king approximation: initial datum. In this paragraph we dis
uss thewave-front tra
king approximation of the initial datum. We re
all that the intervals Rℓ, . . . ,Rr arede�ned in (4.15).5.3.1. Mesh de�nition. We �x an approximation parameter ν > 0 and a mesh size hν > 0. Werequire that hν → 0+ when ν → 0+. We 
hoose xν0 < xν1 < · · · < xνmν
in ]− ρ, ρ[ so that(5.13a) (1− ε)hν ≤ xνi+1 − xνi ≤ hν for every i = 0, . . . ,mν − 1.If hν is su�
iently small, one 
an as well assume that the extrema of the intervals Rℓ, . . . ,Rr areall 
ontained in the set {xν0 , . . . , xνmν

}. De�ne the wave-front tra
king approximation of the initialdatum by setting(5.13b) Uν
0 (x) := U0(x

ν
i ) for x ∈]xνi , xνi+1[ and i = 0, . . . ,mν − 1.We now des
ribe the waves generated at the grid points xν0 , . . . , xνmν

by separately 
onsidering theregions Rℓ, . . . ,Rr.5.3.2. Waves generated in Rc = Rℓ ∪R′
ℓ ∪R′′

ℓ ∪Rm ∪R′
r ∪R′′

r ∪Rr. We only fo
us on the analysisof the interval Rℓ be
ause the analysis of the other intervals is entirely similar.We �x xνi ∈ Rℓ and we 
onsider the Riemann problem between the states
U− := lim

x↑(xν
i )

−

Uν
0 (x) = U0(x

ν
i−1) (on the left), U+ := lim

x↓(xν
i )

+
Uν
0 (x) = U0(x

ν
i ) (on the right).Claim. If (5.1a) and (5.1b) hold, then the states U−, U+, UI := UI satisfy the hypotheses ofLemma 3.3 with the 
hoi
e b = ζc(x

ν
i − xνi−1)Proof. Hypothesis (3.9) in the statement of Lemma 3.3 follows by (5.10). Next, we fo
us onhypothesis (3.10). We use (5.8) and we re
all that V is 
onstant on ea
h 
onne
ted 
omponent ofRc, while Ψ′ = ζc(−~r1I − ~r2I + ~r3I). This implies that, if b = ζc(x

ν
i − xνi−1), then

|U+ − U− + b~r1I + b~r2I − b~r2I | = |(U0 − Ũ)(xνi )− (U0 − Ũ)(xνi−1)|
(4.21)
≤ r(xνi − xνi−1),whi
h owing to (5.1b) gives inequality (3.10). �Con
lusion: By using Lemma 3.3, we 
on
lude that the only waves 
reated in the open setRc are 1-, 2- and 3-sho
ks. In parti
ular, no rarefa
tion waves are generated. Moreover, owingto (3.11) the total variation of all these waves is bounded by O(1)ζcρ.
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ℓ ∪R3

r ∪R2
ℓ ∪R2

r ∪R1
ℓ ∪R1

r. We only fo
us on the analysis ofthe interval R3
ℓ sin
e the analysis of the other intervals is entirely similar. We �x xνi ∈ R3

ℓ and we
onsider the Riemann problem between the states
U− := lim

x↑xν
i

Uν
0 (x) = U0(x

ν
i−1) (on the left), U+ := lim

x↓xν
i

Uν
0 (x) = U0(x

ν
i ) (on the right).Claim. Assume that U−, U+ are as at the previous line and that V − := V (xνi−1). Let ξ > 0 be thestrength of the 3-sho
k between V − (on the left) and V (xνi ) (on the right), namely

V (xνi ) = D3[ξ, V
−].If b = ζw(x

ν
i − xνi−1), then all the hypotheses of Lemma 3.4 are satis�ed.Proof. Hypothesis (3.9) in the statement of Lemma 3.3 follows by (5.10). Next, we point out thatthe 
ondition 0 < b < ε is satis�ed provided that ν is su�
iently small. Indeed, b ≤ O(1)ζwhν and

hν → 0+ when ν → 0+.To 
he
k the other hypotheses, we �rst re
all that xνi ∈ R3
ℓ . By 
ombining the expli
it expressionof V (4.17) with (2.11a) and (2.11b) we infer that the derivative of V satis�es V ′(x) = O(1)η−1.This implies that ξ = O(1)(xνi − xνi−1)η

−1 and hen
e that
√
ε
b

ξ
= O(1)

√
εζwη.Next, we plug (5.4) and (5.7) into (5.8) and we get that the �rst 
ondition in (3.20) is satis�ed:

|V − − U−| = |Ψ(xνi−1) + U0(x
ν
i−1)− Ũ(xνi−1)| ≤ O(1)

(
ζwω + ζcρ+ r

)

≤ O(1)εζwη <
√
ε
b

ξ
.

(5.14)To establish the last inequality we used (5.1a). The 
ondition ξ2 < εb is satis�ed be
ause
ξ2 = O(1)(xνi − xνi−1)

2η−2 = O(1)h2νη
−2 < b = O(1)εζwhνprovided that hν is su�
iently small. Finally, we 
he
k that (3.21
) holds. We use again (5.8) andwe re
all that Ψ′ = ζw(−~r1I − ~r2I + ~r3I) on Rw. By using (4.21) and (5.1b), this implies

|U+ − U− −D3[ξ, V
−] + V − + b~r1I + b~r2I − b~r3I |

= |U0(x
ν
i )− U0(x

ν
i−1)− V (xνi ) + V (xνi−1)−Ψ(xνi ) + Ψ(xνi−1)|

= |(U0 − Ũ)(xνi )− (U0 − Ũ)(xνi−1)|≤r(xνi − xνi−1) < εbAll the hypotheses of Lemma 3.4 are therefore satis�ed. This 
on
ludes the proof of the 
laim. �By applying Lemma 3.4 and using (3.22) we arrive at the following 
on
lusion.Con
lusion: By Lemma 3.4, the only waves 
reated in the intervals R3
ℓ , R3

r, R2
ℓ , R2

r R1
ℓ and R1

rare 1-, 2- and 3-sho
ks. In parti
ular, no rarefa
tion waves are generated.The total variation of all the 3-sho
ks generated in the intervals R3
ℓ , R3

r is O(1)ω and the totalvariation of all the 1 and 2-sho
ks generated in the intervals R3
ℓ , R3

r is bounded by O(1)ζwωη.The total variation of all the 2-sho
ks generated in the intervals R2
ℓ , R2

r is O(1)ω and the totalvariation of all the 1 and 3-sho
ks generated in the intervals R2
ℓ , R2

r is O(1)ζwω.The total variation of all the 1-sho
ks generated in the intervals R1
ℓ , R1

r is O(1)ω and the totalvariation of all the 2 and 3-sho
ks generated in the intervals R1
ℓ , R1

r is O(1)ζwωη.



28 L. CARAVENNA AND L. V. SPINOLO5.4. Wave front-tra
king approximation: qualitative intera
tion analysis. In this para-graph we split the waves of the wave front-tra
king approximation Uν into several groups, thatare de�ned in the following. As we will see in � 5.6 and as we pointed out in the proof roadmapin � 5.1, the waves of group A are the waves that will 
ontribute to the formation of a wave patternsimilar to the one of the solution with initial datum V (see Figure 5). The waves of groups B 
anbe heuristi
ally speaking regarded as perturbation waves.We now de�ne the groups A, B, C1, . . . , Cm. In � 5.3 we dis
ussed the waves that are generatedat t = 0. In parti
ular, we proved that only sho
ks are generated at t = 0. We split these wavesinto two groups:
• Sho
ks of group A: group A 
omprises� the 3-sho
ks generated in the intervals R3

ℓ and R3
r and their right extreme;� the 2-sho
ks generated in the intervals R2

ℓ and R2
r and their right extreme;� the 1-sho
ks generated in the intervals R1

ℓ and R1
r and their right extreme.We �x a sho
k i ∈ A. Let Vi be its strength, whi
h is de�ned as in � 2.1. Due to the
on
lusions at the end of � 5.3.3, the total strength of all the sho
ks of group A is O(1)ω,namely(5.15) ∑

i∈A

Vi = O(1)ω

• Sho
ks of group B: group B 
omprises all the sho
ks generated at t = 0 in the interval
]− ρ, ρ[ whi
h are not 
omprised in group A. In other words, group B 
omprises� the 1, 2 and 3-sho
ks generated in the open interval Rc;� the 1 and 2-sho
ks generated in the intervals R3

ℓ and R3
r ;� the 1 and 3-sho
ks generated in the intervals R2

ℓ and R2
r ;� the 2 and 3-sho
ks generated in the intervals R1

ℓ and R1
r .Owing to the 
on
lusions at the end of � 5.3.2 and of � 5.3.3, the total strength of all thesesho
ks 
an be bounded by(5.16) ∑

i∈B

Vi ≤ O(1)
(
ρζc + ωζw

)
.We now want to tra
k the evolution of the sho
ks of groups A and B by dis
ussing their intera
tions.For the time being, we do not take into a

ount the fa
t that in some 
ases we have to use a simpli�edRiemann solver (see � 2.1). We will take into a

ount the presen
e of non-physi
al waves in � 5.7.We separately 
onsider the following 
ases:i) We �x two sho
ks, i and j, and we assume that i is either a 1 or a 3-sho
k and j is a 2-sho
k.Just to �x the ideas, let us assume that i is a 3-sho
k. In this step, we do not 
are whether iand j belong to group A or B. Let Vi and Vj be their strengths and we assume that i and jintera
t at some point. By Lemma 3.1 all the outgoing waves are sho
ks. By de�nition, westill 
all i the outgoing 3-sho
k and we still 
all j the outgoing 2-sho
k. Also, the outgoing

i belongs to the same group (A or B) as the in
oming i, and the same happens for j. Wesay that the outgoing 1-sho
k is the new sho
k whi
h is 
reated at the intera
tion. Thisnew sho
k belongs neither to A nor to B: we de�ne a new group C1 in the following.We 
on
lude by re
alling some intera
tion estimates: let V ′
i and V ′

j be the strengths of iand j after the intera
tion. By Lemma 3.1, V ′
j = Vj . Also, we re
all [8, formula (7.31) p.
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h states that(5.17) |V ′
i − Vi| ≤ O(1)ViVj.Also, [8, formula (7.31) p. 133℄ implies that the strength of the new sho
k generated at theintera
tion is bounded by O(1)ViVj .ii) We �x two sho
ks, i and j, and we assume that i is a 3-sho
k and j is a 1-sho
k. Owingto the analysis in � 3.1, the outgoing waves are a 3-sho
k and a 1-sho
k. By de�nition,we still 
all i the outgoing 3-sho
k j the outgoing 1-sho
k. We say that the outgoing ibelongs to the same group as the in
oming i. The same holds for j. Finally, we re
all somequantitative intera
tion estimates: we term Vi and Vj , V ′

i and V ′
j the strengths of i and jbefore and after the intera
tion, respe
tively. Owing to the analysis in � 3.1,(5.18) V ′

i = Vi, V ′
j = Vjiii) We �x two sho
ks i and j and we assume that they are both 2-sho
ks. We term Vi and Vjtheir strengths and we assume that they intera
t at some point. We set

a := δ, U ♯ := UI = (δ, 0,−δ), s1 = −Vi, s2 = −Vjand we 
laim that the hypotheses of Lemma 3.2 are satis�ed. The hypothesis
• |Uℓ − U ♯| ≤ εa holds owing to (5.10) and to the fa
t that a = δ = ε (see (4.20a)).
• 0 ≤ η ≤ εa is satis�ed be
ause η = ε2 owing to (4.20b).
• |s1|, |s2| ≤ ε are satis�ed. Indeed, owing to Lemma 2.1 the maximal strength of a 2-sho
k is bounded by the total variation of the v 
omponent. The total variation of the
v 
omponent at t = 0 satis�es TotVar v0 ≤ O(1)ε3 by (5.11). Sin
e the total variationof a s
alar 
onservation law is a monotone non in
reasing fun
tion with respe
t totime [19℄, we 
an 
on
lude that |s1|, |s2| ≤ ε.Lemma 3.2 states then that the outgoing waves at the intera
tion point are three sho
ks.We now separately 
onsider the following 
ases:

• if i belongs to A and j belongs to B, then we term i the outgoing 2-sho
k and wepres
ribe that it still belongs to A. Note that the strength of i after the intera
tion is
V ′
i = Vi + Vj . We set V ′

j = 0, in su
h a way that(5.19) V ′
i + V ′

j = Vi + Vj.

• if i and j both belong to either A or B, then we pro
eed as follow. Just to �x the ideas,assume that i is the fastest sho
k among the two, namely i is on the left of j before theintera
tion. By de�nition, we still 
all i the outgoing 2-sho
k and we pres
ribe that itbelongs to the same group (A or B) as the in
oming sho
ks. We also set V ′
j = 0, insu
h a way that (5.19) holds.In both 
ases, we say that the outgoing 1 and 3-sho
k are new sho
ks generated at theintera
tion. Note again that these new sho
ks belong neither to A nor to B: they willbelong to the group C1 de�ned in the following.iv) We �x two sho
ks, i and j, and we assume that they belong to same family, whi
h 
an beeither 1 or 3. Just to �x the ideas, let us assume that they are both 3-sho
ks. Owing to theanalysis in � 3.2, the only outgoing wave is a 3-sho
k. We separately 
onsider the following
ases:
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• if i belongs to A and j belongs to B, then we term i the outgoing 3-sho
k and wepres
ribe that it still belongs to A. Note that the strength of i after the intera
tion is
V ′
i = Vi + Vj . We set V ′

j = 0 in su
h a way that (5.19) holds.
• if i and j both belong to either A or B, then we pro
eed as in 
ase iii). Just to �x theideas, assume that i is the fastest sho
k among the two, namely i is on the left of jbefore the intera
tion. By de�nition, we still 
all i the outgoing 3-sho
k and we saythat it belongs to the same group as the in
oming sho
ks. We also set V ′

j = 0, in su
ha way that (5.19) holds.We expli
itly stress three properties following from the analysis of 
ases i)�iv) above. First, theoutgoing waves are always sho
ks. Se
ond, new sho
ks are only 
reated when the intera
tioninvolves at least one 2-sho
k. Third, the new sho
ks 
reated at the intera
tion are either 1- or3-sho
ks, namely no new 2-sho
ks are 
reated.We now fo
us on the new sho
ks 
reated at intera
tion points. They 
an only be 1- and 3-sho
ks,sin
e by Lemma 2.1 and by the de�nitions in i) and iii) above no new 2-sho
k 
an arise. We now
olle
t them into a sequen
e of groups Cm de�ned by re
ursion on m ∈ N.
• Group C1: we term C1 the group of new sho
ks that are generated at the followingintera
tions:� between a sho
k i and a sho
k j both belonging to group A.� between a sho
k i belonging to group A and a sho
k j belonging to group B.� between a sho
k i and a sho
k j both belonging to group B.As mentioned before, C1 only 
omprises 1- and 3-sho
ks. It follows from the analysis in � 3.1that if two sho
ks of group C1 intera
t then either they basi
ally 
ross ea
h other or theymerge: to label the outgoing waves at the intera
tion, we pro
eed as in 
ase iv) above. Notefurthermore that, if a sho
k i ∈ C1 merges with a sho
k j ∈ A ∪ B of the same family, weterm j the outgoing sho
k and we set V ′

i = 0, V ′
j = Vi + Vj . Hen
e, the only possibility forthe generation of new waves is the one dis
ussed at the next item.

• Group Cm+1: we term Cm+1 the group of new sho
ks that are generated at intera
tionsbetween a sho
k i belonging to group Cm and a 2-sho
k j belonging to either group A or B.As mentioned before, Cm only 
omprises 1- and 3-sho
ks. At intera
tions among sho
ks inCm+1 the sho
ks 
an basi
ally either basi
ally 
ross ea
h other or they 
an merge. In any
ase, no new sho
k is 
reated: to label the outgoing waves at intera
tion points, we pro
eedas in 
ase iv) above. Also, if a sho
k i ∈ Cm+1 merges with a sho
k j ∈ Cm ∪A ∪ B of thesame family, we denote by j the outgoing sho
k and we set V ′
i = 0: in this way equality(5.19) is satis�ed.In this way we have 
lassi�ed all the sho
ks of the wave-front tra
king approximation Uν .5.5. Wave front-tra
king approximation: quantitative intera
tion estimates. This para-graph aims at establishing Lemma 5.2 below. In the statement, Vi denotes as usual the strengthof the sho
k i.
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onstant K > 0 su
h that, if the 
onstant ε in the statement of Proposi-tion 4.4 is su�
iently small, then we have the following estimates: for every t > 0
∑

iA∈A

ViA(t
+) ≤ Kω,(5.20a)

∑

iB∈B

ViB (t
+) ≤ Kωε,(5.20b)

∑

i∈Cm

Vi(t
+) ≤ (2Kω)m+1.(5.20
)Proof. We point out that owing to (5.15) and (5.16) 
ombined with (5.1a) we 
an 
hoose K in su
ha way that we have the inequalities(5.21) ∑

iA∈A

ViA(t = 0) ≤ 1

2
Kω,

∑

iB∈B

ViB(t = 0) ≤ 1

2
K(ωζw + ρζc) ≤

1

2
Kωε.The sho
ks of groups Cm, m ∈ N, do not exist at t = 0, but we 
an adopt the notation that theirstrength is 0, in su
h a way that (5.20
) is formally satis�ed. The proof of the lemma is basedon the following argument: we assume that estimates (5.20a), (5.20b) and (5.20
) are satis�ed forevery t < t̄ and we show that they are satis�ed for t = t̄. The te
hni
al details are organized in thefollowing four steps.� Step 1: we make some preliminary 
onsiderations.. We �rst introdu
e a new notation: wedenote by D the group(5.22) D := B ∪

∞⋃

m=1

Cm.In the above expression, the groups B and Cm are as in � 5.4. Note furthermore that here an inthe following we term groups the sets A, B, Cm, D, while we use the term family as a shorthandfor 
hara
teristi
 family.Note that by 
ombining all the inequalities in (5.20) and (4.20b) we get that, if ε is su�
ientlysmall, then
∑

i∈D

Vi(t
+) ≤ Kωε+

∞∑

m=1

(2Kω)m+1 ≤ 2Kωε for every t < t̄(5.23a)
∑

i∈A∪D

Vi(t
+) ≤ Kω + 2Kωε ≤ 2Kω for every t < t̄(5.23b)Note furthermore that the quantities at the left hand side of (5.20), (5.23a) 
an only 
hange atintera
tion times.� Step 2: we establish the bound on ∑

iA∈A ViA . Note that the only ways ∑iA∈A ViA 
an 
hangeare the following intera
tions:i) Intera
tions where a sho
k i ∈ A with strength Vi merges with a sho
k j with strength Vj ofthe same family and of the same group A. In this 
ase (5.19) ensures that ∑iA∈A ViA doesnot 
hange at this intera
tion. For this reason, in the following we negle
t these intera
tions.ii) Intera
tions where a sho
k iA ∈A with strength ViA merges with a sho
k jD of the samefamily but of group D. In this 
ase V ′
iA

= ViA + VjD . Ea
h sho
k jD of group D may haveat most one of these intera
tions: let J iA
D be the subset of sho
ks of group D that mergewith iA.
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tions where a sho
k iA ∈A with strength ViA intera
ts with a sho
k j of a di�erentfamily. In this 
ase by the intera
tion estimate (5.17) one has
V ′
iA ≤ ViA +O(1)ViAVj = ViA

(
1 +O(1)Vj

)
.Ea
h sho
k j may intera
t at most on
e with a given sho
k iA of a di�erent family.We re
all that all sho
ks in group A are generated at time t = 0 and we tra
k the evolution of a givensho
k iA ∈A between time t = 0 and t = t̄. If the sho
k iA only intera
ts with sho
ks j ∈ J iA

D ⊆Dand with waves j1, . . . , jk of di�erent families then by ii), iii) above one has the inequality
ViA(t̄

+) ≤


ViA(t = 0) +

∑

j∈J
iA
D

Vj




∏

j∈A∪D

(
1 +O(1)Vj

)
.Note that the last fa
tor in the above expression does not depend on iA. Also, by using theinequality ex ≥ 1 + x we get

∏

j∈A∪D

(
1 +O(1)Vj

)
≤ eO(1)

P
j∈A∪D Vj .We now sum over all the sho
ks iA ∈A and be obtain

∑

iA∈A

ViA(t̄
+) ≤




∑

iA∈A

ViA(t = 0) +
∑

iA∈A

∑

j∈J
iA
D

Vj




∏

j∈A∪D

(
1 +O(1)Vj

)

≤




∑

iA∈A

ViA(t = 0) +
∑

jD∈D

Vj


 exp


O(1)

∑

j∈A∪D

Vj


The last inequality holds be
ause two sets J iA

D and J
i′A
D are disjoint subsets of D (keep in mindthat we are negle
ting the fa
t two sho
ks iA ∈A and i′A ∈A 
an merge). We now plug the aboveinequality into (5.21) and we re
all that by assumption at time t < t̄ estimates (5.20) hold. Owingto (5.23) we obtain

∑

iA∈A

ViA(t̄
+) ≤

(
1

2
Kω + 2Kωε

)
exp (O(1)Kω) < Kω(5.24)provided that ε is su�
iently small, sin
e owing to (4.20b) ω = ε3. Note that (5.24) impliesthat (5.20a) holds for t = t̄ provided that (5.20b) and (5.20
) hold for t < t̄ and (5.21) holds at

t = 0.� Step 3: we 
ontrol ∑iB∈B ViB . The only ways ∑iB∈B ViB 
an in
rease are the following:i) If a a sho
k iB ∈B merges with a sho
k j ∈A∪B of the same family. In this 
ase ∑iB∈B ViBdoes not in
rease owing to (5.19).ii) If a sho
k iB ∈B with strength ViB merges with a sho
k j ∈ ∪m∈NCm of the same family.iii) If a sho
k iB ∈B with strength ViB intera
ts with a sho
k j of a di�erent family.



A COUNTER-EXAMPLE TO THE REGULARITY OF SYSTEMS 33By repeating the same argument we used in Step 2 we 
on
lude that, if the initial estimate (5.21)holds and moreover (5.20) holds for t < t̄, then by (5.23)
∑

iB∈B

ViB(t̄
+) ≤




∑

iB∈B

ViB(t = 0) +

∞∑

m=1

∑

i∈Cm

Vi


 exp


O(1)

∑

j∈A∪D

Vj




≤
(1
2
Kωε+

(2Kω)2

1− 2Kω

)
exp (O(1)Kω) ≤ Kωε

(5.25)provided that ε is su�
iently small, due to (4.20b). Inequality (5.25) implies that (5.20b) holds for
t = t̄ provided that (5.20) hold for t < t̄ and (5.21) holds at t = 0.� Step 4: we 
on
lude the proof. To 
ontrol ∑i∈C1

V i we �rstly re
all that a sho
k of groupC1 
an be generated when a sho
k j1 belonging to either group A or B intera
ts with a sho
k j2belonging to either group A or B. As pointed out before, the strength of the outgoing new sho
k isbounded by O(1)Vj1Vj2 . We denote by V0
i the strength of the sho
k i ∈ C1 at the time when thesho
k i is generated. We then have

∑

i∈C1

V0
i ≤

∑

j1∈A

∑

j2∈A

O(1)Vj1Vj2 +
∑

j1∈A

∑

j2∈B

O(1)Vj1Vj2 +
∑

j1∈B

∑

j2∈B

O(1)Vj1Vj2

≤ K2
(
ω2 + ω2ε+ (ωε)2

)
≤ 2K2ω2.Next, re
all that ∑i∈C1

Vi(t) 
an in
rease not only when a new sho
k is generated, but also:i) if a sho
k i ∈C1 with strength Vi merges with a sho
k j ∈ Cm, m > 1 of the same family.ii) if a sho
k i ∈C1 with strength Vi intera
ts with a sho
k j of a di�erent family.By arguing as in Step 2, we �nd that if (5.20) holds for t < t̄ and (5.21) holds at t = 0, then
∑

i∈C1

Vi(t̄+) ≤




∑

i∈C1

V0
i +

∞∑

m=2

∑

i∈Cm

Vi


 exp


O(1)

∑

j∈A∪D

Vj




≤
(
2K2ω2 +

(2Kω)3

1− 2Kω

)
exp (O(1)Kω) ≤ (2Kω)2provided that ε is su�
iently small, sin
e owing to (4.20b) ω = ε3. We have thus established (5.20
)for all t > 0 when m = 1. The 
ase when m > 1 
an be handled in an entirely similar way. This
on
ludes the proof of Lemma 5.2. �5.6. Wave front-tra
king approximation: sho
k generation analysis. In this paragraph we�nally show that the in wave-front tra
king approximation one 
an re
ognize a wave pattern likethe one of the solution of the Cau
hy problem with initial datum V , see Figure 5. In parti
ular, in� 5.6.1 we establish the generation of six �big sho
ks�: Lemma 5.3 establishes the formation of two1-sho
ks and two 3-sho
ks, while Lemma 5.4 established the formation of two 2-sho
ks, whi
h aremoreover approa
hing. In � 5.6.2 we 
on
lude the analysis of the wave pattern generation.5.6.1. Sho
k formation: small times. We re
all that the interval R3

ℓ is de�ned by formula (4.15)and we establish the following lemma.Lemma 5.3. By the time t = 6/5, some of (or all of) the 3-sho
ks of group A generated at time
t = 0 in the interval R3

ℓ merge into a single 3-sho
k with strength greater than ω
√
ε/2.



34 L. CARAVENNA AND L. V. SPINOLOProof. We �rst des
ribe the idea underpinning our argument. We term jℓ and jr the 3-sho
ks thatare generated at t = 0 at the left and the right extrema of the interval R3
ℓ , respe
tively. In Step 3below we show that at t = 0 these two 3-sho
ks are approa
hing. We then tra
k the the evolutionof jℓ and jr on the time interval ]0, 6/5[ and we point out that there are only two possibilities:

• The strength of both jℓ and jr remains smaller than ω
√
ε. In this 
ase we show in Step 5below that jℓ and jr keep approa
hing and they merge by time t = 6/5. We also show thatthis implies the 
reation of a 3-sho
k with strength at least O(1)ω.

• The strength of either jℓ or jr surpasses ω√ε at some time t̄ ∈]0, 6/5[: just to �x the ideas,let us assume that it is the strength of jℓ. In Step 6 below we show that this implies thatthe strength of the jℓ remains bigger than ω
√
ε/2 on the whole interval ]t̄, 6/5].The te
hni
al details are organized as follows.� Step 1: we point out that in the time interval ]0, 6/5[ the waves of group A generated in R3

ℓ
an only intera
t among themselves and with the waves of group D (see (5.22) for the de�nition ofgroup D). In other words, they 
annot intera
t with sho
ks of group A generated in other intervals.To see this, we pro
eed as follows. We re
all de�nition (4.15) and that the sho
ks of group Aare only generated in the intervals R3
ℓ , R2

ℓ , R1
ℓ , R3

r , R2
r and R1

r . The 
losest interval to R3
ℓ is R2

ℓand the distan
e between the right extreme of R3
ℓ and the left extreme of R2

ℓ is(5.26) − q + q− λ2(U
′) + λ3(U

′) ≥ 3− λ2(U
′) + λ3(U

′) ≥ 6.To establish the last inequality, we used (5.12) and the expli
it expression of the eigenvalues,see (2.7). This implies that, if the 
onstant ε in the statement of Proposition 4.4 is su�
ientlysmall, then in the time interval ]0, 6/5[ the 3-sho
ks generated at t = 0 in R3
ℓ 
annot intera
t withthe 2-sho
ks generated at t = 0 in R2

ℓ .� Step 2: we fo
us on the time t = 0 and we introdu
e some notation. Let xℓ and xr be the rightand left extrema of R3
ℓ , namely xℓ = −q − λ3(UI) and xr = −q − λ3(U

′). We re
all that by themesh de�nition dis
ussed in � 5.3.1 xℓ and xr are both points of dis
ontinuity for Uν
0 . Next, wede�ne the states U−

ℓ (0), U+
ℓ (0), U−

r (0), U+
r (0) by setting

U−
ℓ (0) := lim

x↑xℓ

Uν
0 (x), U+

ℓ (0) := lim
x↓xℓ

Uν
0 (x)(5.27a)

U−
r (0) := lim

x↑xr

Uν
0 (x), U+

r (0) := lim
x↓xr

Uν
0 (x)(5.27b)We denote by jℓ and jr the 3-sho
ks of group A generated at t = 0 at xℓ and xr, respe
tively. Wealso denote by speedjℓ(0) and speedjr(0) their speed at t = 0.� Step 3: we 
ontrol from below the initial di�eren
e in speed of jℓ and jr. More pre
isely, weestablish the following estimate:(5.28) speedjℓ(0)− speedjr(0) ≥

11

12
length(R3

ℓ ) =
11

12

(
λ3(UI)− λ3(U

′)
)
.To this end, we point out that owing to (5.9),

|U−
ℓ (0)− U+

ℓ (0)| ≤ O(1)
hν
η
, |U−

r (0)− U+
r (0)| ≤ O(1)

hν
η
.The expli
it expression (2.7) of λ3 implies that |∇λ3| ≤ O(1)η and hen
e by using the aboveinequalities we arrive at(5.29) ∣∣speedjℓ(0) − λ3

(
U−
ℓ (0)

)∣∣ ≤ O(1)hν ,
∣∣speedjr(0)− λ3

(
U+
r (0)

)∣∣ ≤ O(1)hν .



A COUNTER-EXAMPLE TO THE REGULARITY OF SYSTEMS 35Next, we use (4.21), (5.4), (5.8), (5.13b) and the equalities V (xℓ) = UI and V (xr) = U ′ to get(5.30) |U−
ℓ (0)− UI | ≤ O(1)

(
εω + r +

hν
η

)
, |U+

r (0)− U ′| ≤ O(1)
(
εω + r

)
.Exploiting again the equality |∇λ3| ≤ O(1)η, we get that (5.30) implies

∣∣λ3

(
U−
ℓ (0)

)
− λ3(UI)

∣∣ ≤ O(1) (εωη + rη + hν)
∣∣λ3

(
U+
r (0)

)
− λ3(U

′)
∣∣ ≤ O(1) (εωη + rη) .By plugging the above estimate into (5.29) we arrive at(5.31) speedjℓ(0)− speedjr(0) ≥ λ3(UI)− λ3(U

′)−O(1) (εωη + rη + hν)Next, we point out that the equality |∇λ3| = O(1)η implies that(5.32) λ3(UI)− λ3(U
′) = O(1)ωη,be
ause by Lemma 4.3 the parameter τ in (4.13) is of order ω. We eventually obtain (5.28) byobserving that terms in the last parenthesis in (5.31) are of lower order than ωη: this follows byre
alling (5.1b), and the fa
t that hν ↓ 0 when ν ↓ 0.� Step 4: we 
onsider the evolution of the sho
ks jℓ and jr in the time interval ]0, 6/5[. Let U+

ℓ (t)and U−
ℓ (t), U+

r (t) and U−
r (t) be the left and right state at time t of jℓ and jr, respe
tively. Notethat the above fun
tions are pie
ewise 
onstant: to de�ne their pointwise values, in the followingwe 
hoose their right 
ontinuous representative. One of the following two 
ases must o

ur:i) we have(5.33) |U+

ℓ (t)− U−
ℓ (t)| < ω

√
ε, |U+

r (t)− U−
r (t)| < ω

√
ε for every t ∈]0, 6/5[.We handle this 
ase in Step 5 below.ii) There is t̄ ∈]0, 6/5[ su
h that(5.34) either |U+

ℓ (t̄)− U−
ℓ (t̄)| ≥ ω

√
ε or |U+

r (t̄)− U−
r (t̄)| ≥ ω

√
ε.We handle this 
ase in Step 5 below.� Step 5: we 
on
lude the proof of the lemma under the assumption that (5.33) holds.We re
all from Step 1 that in the time interval t ∈]0, 6/5[ both jℓ and jr 
an either merge withother 3-sho
ks of group A or intera
t with 1-, 2- and 3-sho
ks of group D (5.22), but they 
annotintera
t with other 1- or 2-sho
ks of group A. This implies that U−

ℓ (t) and U+
r (t) 
an only 
hangeowing to the intera
tion with some sho
k of group D: we re
all (5.23a) and we 
on
lude that(5.35) |U−

ℓ (t)− U−
ℓ (0)| + |U+

r (t)− U+
r (0)| ≤ O(1)ωε.Next, we pro
eed as in Step 3 and by 
ombining (5.33) with (5.35) we 
on
lude that(5.36) speedjℓ(t)− speedjr(t) ≥

5

6
length(R3

ℓ ) =
5

6

(
λ3(UI)− λ3(U

′)
) for every t ∈]0, 6/5[provided that ε (and hen
e ω, owing to (4.20b)) are su�
iently small. In the previous expression,we denote by speedjℓ(t) and speedjr(t) the speed of jℓ and jr at time t. Note that (5.36) impliesthat by the time t = 6/5 the sho
ks jℓ and jr merge. By 
onstru
tion, this implies that all the3-sho
ks of group A generated at t = 0 in R3

ℓ merge by time t = 6/5. In the following, we denote
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ℓ the group of the 3-sho
ks of group A generated at t = 0 in R3

ℓ . We follow the same argumentas in Step 2 of Lemma 5.2 and we use the inequality
∏

j∈A∪D

(
1−O(1)Vj

)
≥ 1−O(1)

∑

j∈A∪D

Vj,whi
h is a 
onsequen
e of the elementary inequality (1 − x)(1 − y) ≥ 1 − (x + y) if x, y ≥ 0. We
on
lude that the total strength of the sho
ks in A3
ℓ 
an bounded from below, more pre
isely byre
alling (5.23a) and the analysis in � 5.3.3 we have

∑

i∈A3
ℓ

Vi(t) ≥
(
1−O(1)

∑

i∈D

Vi

) ∑

i∈A3
ℓ

Vi(t = 0) ≥ O(1)ω.We eventually obtain that by time t = 6/5 the sho
ks of group A3
ℓ merge into a single sho
k withstrength O(1)ω.� Step 6: we 
on
lude the proof of the lemma under the assumption that (5.34) holds.First, we point out that (5.34) implies that at t = t̄ part of the waves of group A3

ℓ have merged intoa sho
k of strength ω
√
ε. Hen
e, we are left to prove that this sho
k �survives� with a su�
ientlylarge strength up to time t = 3/2. To this end, we point out that for t > t̄ this sho
k 
an mergewith other 3-sho
ks of group A3

ℓ and hen
e in
rease its strength. Also, it 
an intera
t with othersho
ks of group D: however, by following the same argument as in Step 2 of Lemma 5.2 and byre
alling (5.23a) the strength of the sho
k is bounded from below by
(
1−O(1)

∑

i∈D

Vi

)
ω
√
ε ≥ ω

√
ε/2,provided that ε is su�
iently small. This 
on
ludes the proof of Lemma 5.3. �Note that by repeating the above proof we obtain the an analogous of Lemma 5.3 holds forthe 3-sho
ks of group A generated at time t = 0 in the interval R3

r and the 1-sho
ks of group Agenerated at time t = 0 in the intervals R1
ℓ and R1

r . In the 
ase of 2-sho
ks we have a strongerresult.Lemma 5.4. Let T̃ be the same 
onstant as in (4.3). The following 
on
lusions hold true:i) By the time t = 6/5, all the 2-sho
ks of group A generated at time t = 0 in the intervalR2
ℓ merge into a single 2-sho
k J2

ℓ having strength greater or equal than O(1)ω. The sameholds for the 2-sho
ks of group A generated at time t = 0 in the interval R2
r, let J2

r be theresulting sho
k.ii) The 2-sho
ks J2
ℓ and J2

r are approa
hing and they merge by the time t = 2T̃ .Proof. The proof of i) is organized in two steps. We only dis
uss the 2-sho
ks of group A generatedat time t = 0 in the interval R2
ℓ , the argument for the 2-sho
ks generated in R2

r is 
ompletelyanalogous.� Step 1: we dis
uss the situation at time t = 0. We re
all that, owing to Lemma 2.1, the speedof a 2-sho
k j between U− and U+ is(5.37) speedj = v− + v+.Next, we �x xνi , xνi+1 ∈ R2
ℓ . We denote by ji and ji+i the 2-sho
ks generated at t = 0 at the points

x = xνi and xνi+1, respe
tively, and by speedji(0) their speed at t = 0. Let v′U0
, v′V be the �rst
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ond 
omponents of U0 and V , respe
tively. By 
ombining (4.17), (4.18), (4.21)and (5.8) we have
∣∣∣∣v

′
U0
(x) +

1

2

∣∣∣∣ =
∣∣v′U0

(x)− v′V
∣∣ ≤ O(1)ζw +O(1)r, for every x ∈ R2

ℓBy using the relations ζw = ε, r < ε2, (5.13a) and (5.37), we get that, when ε is small enough, thelast inequality brings us to
speedji(0)− speedji+1

(0) ≥
(
1

2
−O(1)ε

)
(xνi−1 − xνi+1) ≥

(
1

2
−O(1)ε

)
2(1 − ε)hν

≥ 5

6
(xνi − xνi+1).

(5.38)� Step 2: we show that the sho
ks ji and ji+1 merge in the time interval ]0, 6/5[. By thearbitrariness of xνi and xνi+1 this establishes i).We re
all that the speed of a 2-sho
k does not 
hange at the intera
tion with a 1- or a 3-sho
k.Hen
e, the speed of ji and ji+1 
an only 
hange when they merge with a 2-sho
k. Three 
ases 
ano

ur:
• the sho
ks ji and ji+1 merge: this proves the 
laim of the present step.
• ji merges with a 2-sho
k ℓ on the left of ji: this implies that the speed of ji in
reases.
• ji+1 merges with a 2-sho
k ℓ on the right of ji+1: this implies that the speed of ji+1de
reases.If only the last two 
ases o

ur, by re
alling (5.38) we 
on
lude that

speedji(t)− speedji+1
(t) ≥ speedji(0)− speedji+1

(0) >
5

6
(xνi − xνi+1) for every t ∈]0, 6/5[.This implies that by the time 6/5 the sho
ks ji and ji+1 merge, and hen
e 
on
ludes the proof ofi).� Step 3: We are now left with establishing ii), namely proving that the sho
ks J2

ℓ and J2
r(de�ned as in the statement of Lemma 5.4) merge by the time 2T̃ . To this end, we re
all theexpli
it expression of R2

ℓ and R2
r (4.15):R2

ℓ :=]− q − λ2(U
′),−q − λ2(U

′′)[, R3
r :=]q − λ2(U

∗), q − λ2(U
∗∗)[.We also introdu
e the following notation: we term

• v−ℓ (t) the se
ond 
omponent of the left state of the 2-sho
k 
reated at t = 0 at the leftextreme of R2
ℓ ,

• v+ℓ (t) the se
ond 
omponent of the right state of the 2-sho
k 
reated at t = 0 at the rightextreme of R2
r,

• speedℓ(t) the speed of the 2-sho
k arising at t = 0 at the left extreme of R2
ℓ .The fun
tions v−r (t), v+r (t) and speedr(t) are similarly de�ned by 
onsidering R2

r. Note that v−ℓ (t)and v+ℓ (t) are the left, right state and speed of J2
r for t > 6/5, be
ause by (i) all the 2-sho
ksgenerated at t = 0 in R2

ℓ merge by the time t = 6/5. By using an analogous argument we provethat v−r (t), v+r (t) and speedr(t) are the left state, the right state and the speed of J2
r , respe
tively.By 
ombining (4.17), (4.21), (5.4) and (5.8) with (5.1a) and (5.13b) we infer that(5.39) ∣∣∣

{
[v−ℓ (0) + v+ℓ (0)] − [v−r (0) + v+r (0)]

}
− [vI − vIII ]

∣∣∣ ≤ O(1)(ωε + hν).



38 L. CARAVENNA AND L. V. SPINOLONext, we point out that v−ℓ v+ℓ v−r v+r 
an only vary with respe
t to t owing to the intera
tionswith 2-sho
ks of group B. Owing to (5.20b), this implies that(5.40) |v−ℓ (t)− v−ℓ (0)|+ |v+ℓ (t)− v+ℓ (0)| + |v−r (t)− v−r (0)| + |v+r (t)− v+r (0)| ≤ O(1)ωε.By 
ombining (5.39) and (5.40) we infer
speedℓ(t)− speedr(t) ≥ [v−ℓ (t) + v+ℓ (t)]− [v−r (t) + v+r (t)]

≥ [vI − vIII ]−O(1)(ωε + hν).
(5.41)By using (5.41) and the de�nitions (4.3), (4.15) of T̃ and R2

r, we realize that the sho
ks J2
ℓ and J2

rmerge by time
t ≤ [q − λ2(U

∗∗)]− [−q − λ2(U
′)]

supt[speedℓ(t)− speedr(t)]
≤ 2q +O(1)ω

vI − vIII −O(1)(εω + hν)
=

2q +O(1)ω

2q/T̃ −O(1)(εω + hν)

=
1 +O(1)ω

1−O(1)(ε + T̃ hν)
· T̃ .To get the last equality we have used the equalities T̃ = O(1)ω−1 and q = 20. Sin
e hν → 0+,this implies that, if ω = ε3 is su�
iently small, then J2

ℓ and J2
r merge by the time t = 2T̃ . This
on
ludes the proof of Lemma 5.4. �5.6.2. Sho
k formation: wave pattern generation. By relying on the analysis at the previous para-graph, at t = 6/5 the wave-front tra
king approximation Uν(t, ·) 
ontains at least six �big sho
ks�.Going from the left to the right, i.e. as x in
reases, we en
ounter: a 3-sho
k with strength at least

ω
√
ε/2 (see Lemma 5.3), a 2-sho
k with strength greater or equal than O(1)ω, a 1-sho
k withstrength greater or equal than ω

√
ε/2, and then again 3-sho
k with strength at least ω

√
ε/2, a2-sho
k with strength greater or equal than O(1)ω, a 1-sho
k with strength greater or equal than

ω
√
ε/2. Note that the two 2-sho
ks are approa
hing and they meet by time t = 2T̃ . Also, the sixbig sho
ks do not intera
t on the time interval ]0, 6/5[ be
ause the generation regions R3

ℓ , R2
ℓ , R1

ℓ ,R3
r , R2

r , R1
r are su�
iently separated, see (4.15a) and (4.15). Besides those six �big sho
ks� thereare in general other waves, whi
h however are all sho
ks by the analysis in � 5.4.5.7. Con
lusion of the proof. In this paragraph we 
on
lude the proof of Proposition 4.4.In � 5.7.1 we take into a

ount the presen
e of non-physi
al waves in the wave-front tra
king ap-proximation. In � 5.7.2 we establish a bound from below on the number of sho
ks in the wave-fronttra
king approximation. Finally, in � 5.7.3 we 
omplete the proof of Proposition 4.4.5.7.1. Non-physi
al waves. In this paragraph we take into a

ount the presen
e of non-physi
alwaves. We �rstly re
all some fa
ts about the simpli�ed Riemann solver and we refer to [8, �7.2℄for a 
omplete dis
ussion.First, one 
hooses a threshold parameter µν > 0. We dis
uss the 
hoi
e of µν later in thisparagraph, however we point out that µν → 0+ as ν → 0+. The a

urate Riemann solver is usedto solve the intera
tion of a wave α of strength Vα with a wave β of strength Vβ in the wavefront-tra
king approximation if the produ
t of the strengths of the in
oming waves satis�es(5.42) Vα · Vβ ≥ µν .If the above 
ondition is violated, we use the simpli�ed Riemann solver, whi
h is de�ned at [8,p.131℄ and involves the introdu
tion of so-
alled non-physi
al waves. Non-physi
al waves travel ata speed faster than any other wave and the simpli�ed Riemann solver is de�ned in su
h a way that
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tion with the other waves has a minimal e�e
t. To simplify the exposition, here wedo not re
all all the te
hni
al details and we only dis
uss the properties of the simpli�ed Riemannsolver for the Baiti-Jenssen system (2.3) that we need in the following. These properties are eithera dire
t 
onsequen
es of the de�nition of simpli�ed Riemann solver or 
an be straightforwardlyre
overed by 
ombining the de�nition with the features of the Baiti-Jenssen system dis
ussed in� 2.2.i) If the in
oming waves are a 1-sho
k and a 3-sho
k, then the simpli�ed Riemann solver
oin
ides with the a

urate Riemann solver.ii) If we use the simpli�ed Riemann solver to solve the intera
tion between a 2-sho
k and a 1-sho
k (respe
tively a 3-sho
k), then the outgoing waves are a 2-sho
k, a 1-sho
k (respe
tivelya 3-sho
k) and a non-physi
al wave. The value of the v 
omponent is 
onstant a
ross thenon-physi
al wave.iii) If the in
oming waves are both 1-sho
ks then the simpli�ed Riemann solver 
oin
ides withthe a

urate Riemann solver. The same happens if the in
oming waves are both 3-sho
ks.iv) If the in
oming waves are both 2-sho
ks, then the speed of the outgoing sho
k is the samein the simpli�ed and in the a

urate Riemann solver. Also, the value of the v 
omponentis 
onstant a
ross the outgoing non-physi
al wave.v) By 
ombing all the above features we 
on
lude that the strength of the v 
omponent isalways 
onstant a
ross non-physi
al waves.vi) If a non-physi
al wave intera
t with a 2-sho
k, then the speed of the 2-sho
k does not
hange.vii) The strength of ea
h non-physi
al wave is at most µν . Also, owing to the analysis in [8,p.142℄ we 
an 
hoose µν in su
h a way that the total strength of non-physi
al waves satis�es(5.43) total strength non physi
al waves ≤ ν,where ν is our approximation parameter. Owing again to the analysis in [8, p.142℄, this is
onsistent with the requirement that µν → 0+ as ν → 0+.We now dis
uss how the presen
e of the non-physi
al waves a�e
t the analysis at the previousparagraphs. First, we point out that it does not a�e
t at all the dis
ussion on the initial datumin � 5.3 be
ause by de�nition the simpli�ed Riemann solver is only used at time t > 0. Next, wepoint out that the use of the simpli�ed Riemann solver for
es the total number of waves to be �nite.In parti
ular, there a
tually are fewer waves of groups C1, . . . , Cm than those 
onsidered in � 5.4.Lemma 5.2 does not 
hange if we take into a

ount the presen
e of non-physi
al waves, providedthat we say that if a group Cm is empty, then the the total strength of its waves is 0. The reason whyLemma 5.2 does not 
hange is be
ause the proof is based on intera
tion estimates on the strengthof waves and by de�nition the intera
tion with a non-physi
al wave does not 
hange the strength ofa sho
k. Also Lemma 5.3 does not 
hange: indeed, the proof is based on the quantitative estimatesgiven by Lemma 5.2, whi
h are still valid. The further perturbation provided by the non-physi
alwaves is arbitrarily small owing to (5.43) and hen
e does not a�e
t the proof. Finally, Lemma 5.4does not 
hange be
ause the proof is based on estimates that, as a matter of fa
t, involve only these
ond 
omponent (i.e., the 
omponent v) of the wave front- tra
king approximation. Owing toproperties ii), iv), v) and vi) of the non-physi
al waves of the Baiti-Jenseen systems, non-physi
alwaves have basi
ally no e�e
t on the v 
omponent of the wave front-tra
king approximation andhen
e the proof of Lemma 5.4 is still valid if we take into a

ount non-physi
al waves.



40 L. CARAVENNA AND L. V. SPINOLO5.7.2. A bound from below on the number of sho
ks. This paragraph aims at establishing Lemma 5.5below. In the statement, J2
ℓ and J2

r are the same as in the statement of Lemma 5.4 and we denoteby [·] the entire part. Also, µν is the threshold to determine whether we use the a

urate or thesimpli�ed Riemann solver, see (5.42).Lemma 5.5. Fix a threshold θ > µν/ω
2. In the bounded set (t, x) ∈]− ρ, ρ[×]0, 2T̃ [, the wave-fronttra
king approximation Uν admits at least(5.44) nθ :=

[
logω/2

(O(1)θ√
ε

)]sho
ks j su
h that strength Vj of j satis�es(5.45) Vj ≥ θ.Proof. If there were only the six �big sho
ks� mentioned in � 5.6.2, then the wave pattern wouldbe qualitatively like the one represented in Figure 5. To understand the impa
t of the other wavesand to establish (5.44) we tra
k the evolution of the left 3-�big sho
k� J3
ℓ , whi
h has strength atleast ω√ε/4 when it intera
ts with the left 2-�big sho
k� J2

ℓ . We re
all that the strength of J2
ℓ is

O(1)ω and we use estimate (7.31) in [8, p.133℄: we 
on
lude that after this intera
tion the strengthof J3
ℓ is at least

ω
√
ε

4
−O(1)

√
εω2 ≥ ω

√
ε

8
.After this intera
tion, the sho
k J3

ℓ moves towards the right 2-�big sho
k� J2
r . Before intera
tingwith J2

r , however, J3
ℓ 
an intera
t with 1- and 3-sho
ks and with 2-sho
ks di�erent than J2

ℓ and
J2
r . The intera
tion with a 3-sho
k in
reases the strength of J3

ℓ be
ause the sho
k merges with
J3
ℓ . The intera
tion with a 1-sho
k does not a�e
t the strength of J3

ℓ . We are left to 
onsider theintera
tions with 2-sho
ks di�erent than J2
ℓ and J2

r . We re
all that 2-sho
ks are only generated at
t = 0 and that, owing to Lemma 5.4, all the 2-sho
ks generated at t = 0 in R2

ℓ and R2
r have mergedby the time t = 3/2 to generate J2

ℓ and J2
r , respe
tively. Hen
e, what we are left to 
onsider arethe intera
tions of J3

ℓ with the 2-sho
ks that are not generated at t = 0 in R2
ℓ ∪ R2

r . Note thatall these 2-sho
ks belong to group B. We re
all (5.20b) and the intera
tion estimate (7.31) in [8,p.133℄ and we infer that after the intera
tion with all these 2-sho
ks the strength of J3
ℓ is at least(5.46) ω

√
ε

8
−O(1)

ω
√
ε

8

∑

iB∈B

ViB ≥ ω
√
ε

8
−O(1)ω2ε3/2 ≥ ω

√
ε

16
.Owing to Lemma 3.1, when J3

ℓ intera
ts with J2
r , then a 1-sho
k is 
reated: by 
ombining (5.46)with the fa
t that the strength of J2

r is O(1)ω, we get that the strength of this 1-sho
k is atleast O(1)
√
εω2/16. Also, this 1-sho
k moves towards J2

ℓ , but before rea
hing J2
ℓ may intera
twith 1-, 2- and 3-sho
ks. By arguing as before, we infer that when it rea
hes J2
ℓ its strengthis at least O(1)

√
εω2/32. When this 1-sho
k intera
ts with J2

ℓ , a 3-sho
k with strength at least
O(1)

√
εω3/32 is 
reated. We repeat this argument as long as the strength of the re�e
ted 1- or3-sho
k j satis�es (5.45), namely we 
an repeat it a number nθ of times, where nθ satis�es

O(1)
√
εω

(ω
2

)nθ ≥ θ,This implies (5.44). We are left to justify the fa
t that we used the a

urate and not the simpli�edRiemann solver. Note that, owing to the inequality θ ≥ µν/ω
2 and sin
e the strengths VJ2

r
of J2

r
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ℓ
of J2

ℓ are equal to O(1)ω, if (5.45) holds then
Vj ·max

{
VJ2

r
, VJ2

ℓ

}
≥ O(1)θω ≥ O(1)

µν

ω
≥ µνprovided that ω is su�
iently small. This implies that we must use the a

urate and not thesimpli�ed Riemann solver and it 
on
ludes the proof of Lemma 5.5. �5.7.3. The limit solution has in�nitely many sho
ks. We are eventually ready to 
on
lude the proofof Proposition 4.4. First, we rely on the analysis in [8, Chapter 7℄ and we 
on
lude that when

ν → 0+ the wave front-tra
king approximation Uν(t, ·) 
onverges strongly in L1lo
(R) to a limitfun
tion U(t, ·) for every t > 0. Also, the fun
tion U is the admissible solution of the Cau
hyproblem obtained by 
oupling (2.6) with the initial datum U(0, ·) = U0.We are left to prove that U admits in�nitely many sho
ks in ] − ρ, ρ[×]0, 2T̃ [. We rely onLemma 5.5 and on �ne properties of the wave front-tra
king approximation established in [10℄(see also [8, �10.3℄ for an introdu
tory exposition).More pre
isely, we �rstly point out that the fun
tion nθ de�ned as in (5.44) satis�es(5.47) lim
θ→0+

nθ = +∞sin
e ω < 1. Next, we refer to the de�nition of maximal θ-sho
k front given in [8, p.219℄: looselyspeaking, a maximal θ-sho
k front is a polygonal line made by 
onse
utive sho
ks of the samefamily where the strength of ea
h sho
k is greater or equal than θ/2 and there is at least one sho
khaving strength greater or equal than θ.Also, we 
onsider the �big� 2-sho
ks J2
ℓ and J2

r given by the statement of Lemma 5.4. We term
(t∗ν , x

∗
ν) their interse
tion point and we remark that by 
onstru
tion x∗ν ∈ [−2q, 2q]. Note that bylooking at the proof of Lemma 5.5 we realize that, if θ > µν/ω

2, then there are at least nθ sho
kswith strength bigger or equal than θ and that 
ross the part of the plane between J2
ℓ and J2

r ,namely they interse
t the verti
al line x = x∗ν at some time t < t∗ν .We now argue indu
tively as follows. We �x a threshold θ1 > 0 su
h that nθ1 ≥ 1, namely thereis at least one sho
k j1ν su
h that the strength of j1ν is at a some point greater or equal than θ1. Inparti
ular, j1ν is a maximal θ1-sho
k front.Next, we �x θ2 su
h that nθ2 − nθ1/2 > 1: this implies that, for very ν su�
iently small, Uν hasat least a sho
k j2ν satisfying(5.48) θ2 ≤ strenght j2ν <
θ1
2
.By arguing as in [8, p. 220℄ we infer that when ν → 0+ the sho
k 
urves j1ν and j2ν 
onvergeuniformly (up to subsequen
es) to two sho
ks of the limit fun
tion U : we term them j1∞ and j2∞.Also, the value x∗ν 
onverges (up to subsequen
es) to some limit value x∗. Note that the limitsho
ks j1∞ and j2∞ both interse
t the verti
al line x = x∗ and, moreover, the strength of j1∞ isgreater or equal than θ1 and the strength of j2∞ is 
omprised between θ2 and θ1/2. This impliesthat j1∞ and j2∞ are two distin
t sho
k 
urves and, hen
e, the limit solution has at least 2 sho
kswith strength greater or equal than θ2.Owing to (5.47), we 
an iterate the above argument: for every natural number k, there is θk > 0su
h that the limit U has at least k distin
t sho
ks with strength greater or equal than θk. Thisimplies that U has in�nitely many sho
ks and 
on
ludes the proof of Proposition 4.4.



42 L. CARAVENNA AND L. V. SPINOLO5.8. Proof of Theorem 1.2. This paragraph aims at establishing the proof of Theorem 1.2. Beforeentering the te
hni
al details, we make some preliminary heuristi
 
onsiderations. To establishTheorem 1.2 we need to 
onstru
t a set B ⊆ S(R) that satis�es 
ondition ii) and iii) in thestatement of the theorem. Proposition 4.4 states that, if Ũ is the same as in (4.19), then theadmissible solution of the Cau
hy problem with initial datum Ũ develops in�nitely many sho
ksand this behavior is stable with respe
t to W 1∞-perturbations. Note, however, that both Ũ and its
W 1∞-perturbations have dis
ontinuous �rst order derivatives and hen
e they do not belong to S(R).To 
onstru
t B, we mollify Ũ to obtain a smooth fun
tion and we 
onsider W 1∞-perturbations ofthe molli�ed fun
tion.We now provide the te
hni
al details: we �rst introdu
e the notation. We �x a 
onvolutionkernel φ, namely a smooth fun
tion(5.49) φ : R → [0,+∞[,

∫R φ(x)dx = 1, φ(x) = 0 if |x| ≥ 1.We �x ς > 0 and we de�ne the molli�ed fun
tion Ũς : R → R3 by setting(5.50) Ũς(x) :=

∫ 1

−1
Ũ(x+ ςz)φ(z)dz,where Ũ is the same fun
tion as in (4.19). Note that Ũς ∈ S(R) sin
e

• Ũς is 
ompa
tly supported be
ause so it is Ũ .
• Ũς is smooth by the 
lassi
al properties of 
onvolution.Theorem 1.2 is a dire
t 
orollary of the following result.Proposition 5.6. There is a su�
iently small 
onstant ε > 0 su
h that the following holds. Assumethat q = 20 and that δ, ζw, ζc, η, ω, r and ρ are as in the statement of Proposition 4.4. Assumefurthermore that ς < ε2ηζc. Let Ũς be the same fun
tion as in (5.50) and set(5.51) B := S(R) ∩ {

U0 ∈ W 1∞(R) : ‖U0 − Ũς‖W 1∞ < r
}
.Then 
ondition i), ii) and iii) in the statement of Theorem 1.2 are satis�ed.The proof of Proposition 5.6 is divided into two parts: in � 5.8.1 we establish a te
hni
al lemmawhi
h loosely speaking says that Lemma 3.5 applies to the Riemann problems obtained from thepie
ewise 
onstant approximation of U0 ∈ B. In � 5.8.2 we 
on
lude the proof of Proposition 5.6and hen
e of Theorem 1.2.5.8.1. Analysis of the Riemann problems arising at initial time. This paragraph is devoted to theproof of Lemma 5.7.We assume that the hypotheses of Proposition 5.6 are satis�ed and we re
all that the set Bis de�ned as in (5.51). We also re
all the mesh de�nition in � 5.3.1: we �x ν > 0, hν > 0 and

xν0 < xν1 < · · · < xνmν
in ]− ρ, ρ[ in su
h a way that (5.13a) holds.Lemma 5.7. Assume that the same hypotheses as in the statement of Proposition 5.6 hold true.Fix xνi ∈]− ρ+ ε, ρ− ε[ and set(5.52) U− := lim

x↑xν
i

Uν
0 (x) = U0(x

ν
i−1), U+ := lim

x↓xν
i

Uν
0 (x) = U0(x

ν
i )and

Ṽ −(z) := V
(
xνi−1 + ςz

)
,
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tion as in (4.17). Also, let Ψ be the same fun
tion as in (4.18) and
onsider the fun
tions b̃, ξ̃1, ξ̃2, ξ̃3 : [−1, 1] → R whi
h are de�ned for every z ∈ [−1, 1] by theequalities
− b̃(z)~r1I − b̃(z)~r2I + b̃(z)~r3I = Ψ(xνi + ςz)−Ψ

(
xνi−1 + ςz

)

V (xνi + ςz) = D3

[
ξ̃3(z),D2

[
−ξ̃2(z),D1

[
−ξ̃1(z), Ṽ

−(z)
]]]

.
(5.53)Finally, let φ be the same fun
tion as in (5.49) and m the L1-absolutely 
ontinuous measure de�nedby setting(5.54) m(E) :=

∫

E
φ(x)dx for every L1-measurable set E.Then all the hypotheses of the Lemma 3.5 are satis�ed provided that ν is small enough.Observe that (5.49) and (5.54) yield that the measure m is 
on
entrated on [−1, 1]. The fun
tion

b̃ is therefore de�ned for m-a.e. z ∈ R, even if the fun
tion Ψ is only de�ned in ]− ρ, ρ[.Proof. We pro
eed a

ording to the following steps.� Step 1: we establish (3.30). We �rst point out that, by 
ombining (5.10), (5.49) and (5.50), we
an 
on
lude that the following estimate holds for every x ∈ R:
|Ũς(x)− UI | =

∣∣∣∣Ũς(x)− UI

∫R φ(z)dz∣∣∣∣ = ∣∣∣∣
∫R[Ũ(x+ ςz)− UI ]φ(z)dz

∣∣∣∣ ≤ O(1)ε3.This implies that, if U0 ∈ B, then, sin
e r < ε3 owing to (4.20
), we have
|U0(x)− UI | ≤ |U0(x)− Ũς(x)|+ |Ũς(x)− UI | ≤ r +O(1)ε3 ≤ ε,namely (3.30) holds true.� Step 2: we establish the �rst inequality in (3.31a). We �x z ∈ [−1, 1] and we �rst point outthat, owing to the expli
it expression (4.18) of Ψ, we have(5.55) b̃(z) ≥ min{ζc, ζw} · (xνi − xνi−1) = ζc · (xνi − xνi−1) > 0owing to (4.20). Also, for every z ∈ [−1, 1], we have that, owing to (5.13a),

b̃(z) ≤ (xi − xi−1)ζw ≤ hνζw ≤ εprovided that ν is su�
iently small be
ause hν → 0+ when ν → 0+. This 
on
ludes the proof ofthe �rst inequality in (3.31a).� Step 3: we establish the se
ond inequality in (3.31a). We 
ombine the expli
it expression (4.17)of V with the inequality |V ′| ≤ O(1)η−1 (see � 5.2) and we obtain that
0 ≤ ξ̃i(z) ≤ O(1)(xνi − xνi−1)η

−1 ≤ O(1)η−1hν , for i = 1, 2, 3 and z ∈ [−1, 1]and this, jointly with (5.13a) and (5.55), implies the se
ond inequality in (3.31a) provided that νis su�
iently small.� Step 4: we establish (3.31d). We �rst point out that, owing to (4.19) and (5.53),
Ũ (xνi + ςz)− Ũ

(
xνi−1 + ςz

)
=

[
V (xνi + ςz) − V

(
xνi−1 + ςz

)]
+

[
Ψ(xνi + ςz)−Ψ

(
xνi−1 + ςz

)]

= −b̃(z)~r1I − b̃(z)~r2I + b̃(z)~r3I

+D3

[
ξ̃3(z),D2

[
−ξ̃2(z),D1

[
−ξ̃1(z), Ṽ

−(z)
]]]

− Ṽ −(z)



44 L. CARAVENNA AND L. V. SPINOLOBy integrating the above equality with respe
t to the measure m and by re
alling (3.31
) and (5.50)we 
on
lude that
Ũς (x

ν
i )−Ũς

(
xνi−1

)
= −b~r1I − b~r2I + b~r3I

+

∫R {D3

[
ξ̃3(z),D2

[
−ξ̃2(z),D1

[
−ξ̃1(z), Ṽ

−(z)
]]]

− Ṽ −(z)
}
dm(z).(5.56)Next, we re
all (5.52) and we infer that(5.57) U+−U− = U0(x

ν
i−1)−U0(x

ν
i ) = Ũς(x

ν
i−1)−Ũς (x

ν
i )−Ũς (x

ν
i−1)+U0(x

ν
i−1)−U0(x

ν
i )+Ũς (x

ν
i ).Owing to (5.51), if U0 ∈ B, then

∣∣∣U0(x
ν
i−1)− Ũς(x

ν
i−1)−

[
U0(x

ν
i )− Ũς(x

ν
i )
]∣∣∣ ≤ r(xνi − xν−1

i ).By re
alling (5.57) with (5.51) and (5.56) we 
on
lude that, if U0 ∈B, then
∣∣U+ − U− + b~r1I + b~r2I − b~r3I −

∫R {D3

[
ξ̃3(z),D2

[
−ξ̃2(z),D1

[
−ξ̃1(z), Ṽ

−(z)
]]]

− Ṽ −(z)
}
dm(z)∣∣∣∣

≤ r(xνi − xν−1
i ) ≤ 1

4
ζc(x

ν
i − xν−1

i ) ≤ b

4
.To a
hieve the last two equalities we have used (4.20) and (5.55). This establishes (3.31d).� Step 5: we establish (3.31b). We �rst re
all that the �rst derivative of V satis�es |V ′| ≤ O(1)η−1and we infer that the same bound holds for |Ũ ′|. By re
alling (5.50), (5.49) and the inequality

ς < ε2ηζc we 
on
lude that
|Ũ (xνi−1)− Ũς(x

ν
i−1)| =

∣∣∣∣
∫ 1

−1

[
U(xνi−1)− U(xνi−1 + ςz)

]
φ(z)dz

∣∣∣∣

≤
∫ 1

−1
O(1)η−1ςφ(z)dz ≤ O(1)ε2ζc.By using again the inequality |V ′| ≤ O(1)η−1, we infer that, for every U0 ∈ B and every z su
hthat |z| ≤ 1 we have

|Ṽ −(z)− U−| ≤|V
(
xνi−1 + ςz

)
− V

(
xνi−1

)
|+ |V

(
xνi−1

)
− Ũ

(
xνi−1

)
|

+ |Ũ
(
xνi−1

)
− Ũς

(
xνi−1

)
|+ |Ũς

(
xνi−1

)
− U0

(
xνi−1

)
|

≤O(1)η−1ς|z| +O(1)εζwη +O(1)ε2ζc + r ≤ O(1)ε2η.

(5.58)To establish the last inequality we have used (4.20), (5.14) and the inequality ς < ε2ηζc. Next, were
all the expli
it expression (4.17) of V and (5.53) and we 
on
lude that(5.59) 0 ≤ ξ1(z) + ξ2(z) + ξ3(z) ≤ O(1)η−1L1
( [

xνi−1 + ςz, xνi + ςz
]
∩Rw

)
.By using the expli
it expression (4.18) of Ψ we infer that, for every z su
h that |z| ≤ 1,

b(z) = ζc L1
( [

xνi−1 + ςz, xνi + ςz
]
∩Rc

)
+ ζw L1

( [
xνi−1 + ςz, xνi + ςz

]
∩Rw

)

≥ ζw L1
( [

xνi−1 + ςz, xνi + ςz
]
∩Rw

)
.By 
ombining the above formula with (5.58) and (5.59) we eventually arrive at (3.31b). This
on
ludes the proof of the lemma. �
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on
lusion. In this paragraph we 
omplete the proof of Proposi-tion 5.6, whi
h has Theorem 1.2 as a dire
t 
orollary.We 
onsider the Baiti-Jenssen system (2.6) and the set B de�ned as in (5.51). We have to showthat 
onditions i), ii) and iii) in the statement of Theorem 1.2 are satis�ed. Condition i) is satis�edowing to the 
onsiderations in � 2.2.1. Condition ii) is satis�ed: indeed
• B is nonempty sin
e it 
ontains Uς , be
ause Uς ∈ S(R). Also,
• B is open in the topology of S(R), whi
h is stronger than the strong W 1,∞ topology.We are left to show that 
ondition iii) is also satis�ed. The reason why 
ondition 
ondition iii) issatis�ed is be
ause the proof Proposition 4.4 
ontinues to work if we repla
e the fun
tion Ũ withthe fun
tion Ũς , provided that ς < ε2ηζc. To see this, we �rst �x U0 ∈ B and we introdu
e itswave front-tra
king approximation by arguing as in � 5.3.1. Next, we point out that, owing toLemma 5.7, we 
an apply Lemma 3.5. This implies that the same 
on
lusions as at the end of� 5.3.2 and � 5.3.3 hold true. This in turn implies that all the analysis in � 5.4-� 5.7 applies. We
an infer that Proposition 4.4 holds true if we repla
e Ũ with Ũς and hen
e we 
on
lude the proofof Proposition 5.6 and Theorem 1.2. NotationGeneral mathemati
al symbols

LN : the Lebesgue measure on RN

O(1): any fun
tion satisfying 0 < c ≤ O(1) ≤ C for suitable 
onstants c, C > 0. The pre
ise valueof C and c 
an vary from line to line
S(R): the S
hwartz spa
e of rapidly de
reasing fun
tions, endowed with the standard topology (seefor instan
e [23, p.133℄ for the pre
ise de�nition)
‖·‖W 1∞ : the standard norm in the Sobolev spa
e W 1∞

TotVarU : the total variation of the fun
tion U : R → RN , see [3, � 3.2℄ for the pre
ise de�nition
~z1 · ~z2 : the Eu
lidian s
alar produ
t between the ve
tors ~z1, ~z2 ∈ RN

Di[σ, Ū ]: the i-wave fan 
urve through Ū See (2.1)
F ′: the �rst derivative of the di�erentiable fun
tion F : R → RN

F (x±): the left and right limit of the fun
tion F at x (whenever they exist)
Ri[s, Ū ]: the i-rarefa
tion 
urve through Ū See (2.2)
Si[s, Ū ]: the i-sho
k 
urve through Ū See � 2.1
W 1,∞: the spa
e of Lips
hitz 
ontinuous fun
tionsa.e. (t, x): for L2-almost every (t, x)a.e. x: for L1-almost every xSymbols introdu
ed in the present paper
δ: a stri
tly positive parameter See (4.16), (4.20a)
η: the perturbation parameter in the �ux fun
tion Fη See (2.3), (4.20b)
λi(U): the i-th eigenvalue of the Ja
obian matrix JFη See (2.7)q, p: stri
tly positive parameters See (4.16), (4.20a)Rℓ, . . . ,Rr: open subsets of R See (4.15)
µν : the threshold for using the a

urate Riemann solver See � 2.1
ν, hν : parameter and mesh size for the wave front-tra
king approximation See � 5.3.1
ω: a stri
tly positive parameter See (4.4), (4.20b)



46 L. CARAVENNA AND L. V. SPINOLO
Ψ: the fun
tion Ψ : R → R3 See �� 4.3.2, 4.3.3
ρ: the stri
tly positive parameter in (4.20e) See � 4.3.3, Remark 5.1
U ′, U ′′, U∗ and U∗∗: �xed states in R3 See (4.13)
Vi: the strength of a sho
k i See Page 6
ε: a stri
tly positive, su�
iently small parameter See Proposition (4.4)
~ri(U): the i-th right eigenve
tor of the Ja
obian matrix JFη See � 2.2.2
T̃ : the stri
tly positive intera
tion time See (4.3), (4.20d)
Ũ , Ũς : the fun
tion Ũ : R → R3 and its molli�
ation See � 4.3.3, (5.50), (5.51)
ζc: a stri
tly positive parameter See (4.18), (4.20
), (5.1a)
ζw: a stri
tly positive parameter See (4.18), (4.20a), (5.1a)
q: a stri
tly positive parameter that we �x equal to 20 See Lemma 4.1, Remark 5.1
r: a stri
tly positive parameter See (4.20
), (5.1), (4.21)
u,w, v: the �rst, se
ond and third 
omponent of the ve
tor-valued fun
tion U See � 2.2.1
Uν : wave front-tra
king approximation of the admissible solution U See � 2.1
Uν
0 : wave front-tra
king approximation of the initial datum U0 See � 2.1

V : the Lips
hitz 
ontinuous fun
tion V : R → R3 See (4.17)
W : the pie
ewise 
onstant fun
tion W : R → R3 See (4.1)
xνi : mesh points for the wave front-tra
king approximation See (5.13a)A
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