
1 

 

 

 

DESIGN OF DEEP LEARNING BASED METHOD FOR OPTIMIZING 

MIMO COMMUNICATION 

 

THESIS 

 

ELECTRICAL ENGINEERING 

COMMUNICATION AND INFORMATION SYSTEMS 

 

 

Declared qualified to obtain 

a Master Teknik degree  

 

 

 

     

 

 

 
 

 

Mahdin Rohmatillah 

Student ID: 166060300111002 

 

 

UNIVERSITY of BRAWIJAYA 

FACULTY of ENGINEERING 

MALANG 

2018                



 

i 

 

Acknowledgement 

 

This master’s thesis was done in National Sun Yat-Sen University, Taiwan as a result 

of double degree cooperation with University of Brawijaya, Indonesia. 

First and foremost, I would like to thank God, The Almighty, for giving me His 

blessing and opportunity to make everything possible. Secondly, I would like to express my 

deepest appreciation and gratitude to my research supervisor in National Sun Yat-sen 

University, Professor Chao-Kai Wen for his advice and invaluable guidance throughout my 

research. I would also like to thank my research supervisors in University of Brawijaya, Hadi 

Suyono, ST., MT., Ph.D and Rahmadwati, ST., MT., Ph.D. This work will not be done 

without their precious support and encouragement 

I also want to give much respect and appreciation for all of my lab mates in 

Communication Technology (CT) Lab, the best lab in the world (:D). 

I dedicated this thesis to my family for the love, constant encouragement, and endless 

support. My deepest gratefulness goes to my wonderful mother and father, Binti Maqsudah 

and Sholeh Hadi Pramono, for her praying that manage me to reach this far. Special thanks 

and appreciation for all of my brothers and sister, Arif Ulumuddin, M. Hamdani Azmi and 

Somadevi for their patience, support, and heartwarming love. The last is for all of my best 

friends who always understand and give much support to me.  

 

Kaohsiung, July 2018  

Mahdin Rohmatillah   



 

ii 

 

 

ABSTRACT 

Multiple Input Multiple Output (MIMO) communication system, a system 

implementing multiple antennas at the transmitter and receiver, has been developed rapidly 

in order to improve the effectiveness of communication among users. However, trade-off 

phenomenon between performance and computational complexity always become the hugest 

dilemma suffered by researchers. As an alternative solution to the aforementioned problem, 

this research proposes an optimization in both of spatial diversity and spatial multiplexing 

MIMO communication system using end-to-end learning based model, specifically, it adapts 

autoencoder model. Four models are introduced in this thesis which each two of them address 

a problem about data detection task and channel estimation task that has not been addressed 

in the previous research. The proposed models were evaluated in one of the most common 

channel impairment which is Rayleigh fading with additional Additive White Gaussian Noise 

(AWGN). The results show that these deep learning based models for MIMO communication 

system result in very promising results by outperforming the baseline methods (methods 

widely used in conventional MIMO communication). In perfect CSIR (Channel State 

Information in Receiver side) case, the proposed models achieve BER nearly 10−5 at SNR 

22.5 dB. While in channel estimation case, the proposed models can exceed the baseline 

performance even by only transmitting 2 pilots. 

 

Keywords: Deep Learning; MIMO Communication; Spatial Diversity; Spatial Multiplexing 

  



 

iii 

 

Table of Contents 

 
Acknowledgement .................................................................................................................. i 

ABSTRACT .......................................................................................................................... ii 

Table of Contents ................................................................................................................. iii 

List of Tables ........................................................................................................................ vi 

List of Figures ..................................................................................................................... vii 

List of Abbreviations ........................................................................................................... ix 

Introduction .......................................................................................................................... 1 

1.1 Background ...................................................................................................................... 1 

1.2 Motivation ........................................................................................................................ 2 

1.3 Objective .......................................................................................................................... 3 

1.4 Thesis Organization ......................................................................................................... 3 

Related Theory ...................................................................................................................... 4 

2.1 Deep Learning .................................................................................................................. 4 

2.1.1 Deep Feed Forward Network ................................................................................. 4 

2.1.2 Backpropagation ..................................................................................................... 5 

2.1.3 Autoencoder............................................................................................................ 7 

2.1.4 Activation Function ................................................................................................ 8 

2.1.4.1 PReLU (Parametric Rectified Linear Unit) ................................................. 8 

2.1.4.2 Softmax ........................................................................................................ 9 

2.1.4.3 Linear ........................................................................................................... 9 

2.1.5 Batch Normalization ............................................................................................. 10 

2.1.6 Optimizer .............................................................................................................. 11 



 

iv 

 

2.1.6.1 Adam ......................................................................................................... 11 

2.1.7 Loss Function ....................................................................................................... 11 

2.1.7.1 Log-cosh .................................................................................................... 12 

2.1.7.2 Categorical Cross Entropy ......................................................................... 13 

2.2 Baseline Method ............................................................................................................ 13 

2.2.1 Alamouti ............................................................................................................... 13 

2.2.2 Maximum Likelihood (ML) Detector................................................................... 15 

Design of Deep Learning Based Model ............................................................................. 17 

3.1 Overview of Proposed Method ...................................................................................... 17 

3.2 Spatial Diversity Model ................................................................................................. 18 

3.2.1 Previous research .................................................................................................. 18 

3.2.2 Proposed Model .................................................................................................... 19 

3.2.2.1 Data Detection with Perfect CSIR ............................................................. 19 

3.2.2.2 Channel Estimation.................................................................................... 23 

3.3 Spatial Multiplexing Model ........................................................................................... 26 

3.3.1 Data Detection with Perfect CSIR ........................................................................ 26 

3.3.2 Channel Estimation............................................................................................... 28 

Result and Discussion ......................................................................................................... 32 

4.1 Spatial Diversity MIMO Communication...................................................................... 32 

4.1.1 Data Detection with Perfect CSIR ........................................................................ 32 

4.1.2 Channel Estimation............................................................................................... 34 

4.2 Spatial Multiplexing MIMO Communication ................................................................ 35 

4.2.1 Data Detection with Perfect CSIR ........................................................................ 35 

4.2.2 Channel Estimation............................................................................................... 37 

Conclusion ........................................................................................................................... 39 



 

v 

 

References............................................................................................................................ 40 

 

 

  



 

vi 

 

 

List of Tables 

 

Table Page 

1. Table 2-1: Transmission Sequence for the Two-Branch Transmit Diversity Scheme .... 14 

2. Table 3-1: Layout of all used NNs (2x1 Scheme) ........................................................... 22 

3. Table 3-2: Layout of all used NNs (Channel Estimation 2x1 Scheme) .......................... 25 

4. Table 3-3: Layout of all used NNs (2x2 Scheme) ........................................................... 28 

5. Table 3-4: Layout of all used NNs (Channel Estimation 2x2 Scheme) .......................... 31 

6. Table 4-1: Hyperparameters Tuning for Channel Estimation (2x1 Scheme) .................. 35 

7. Table 4-2: Comparison of Hyperparameter Tuning between 2 Different Scheme .......... 35 

  



 

vii 

 

List of Figures 

 

Figure Page 

1. Figure 2-1: Feed Forward Neural Network ....................................................................... 5 

2. Figure 2-2: Illustration of Chain Rule Algorithm .............................................................. 6 

3. Figure 2-3: Architecture of an Autoencoder...................................................................... 8 

4. Figure 2-4: Activation Output ........................................................................................... 8 

5. Figure 2-5: Linear Activation Function`` ........................................................................ 10 

6. Figure 2-6: Log-Cosh Loss vs Predictions ...................................................................... 12 

7. Figure 2-7: 2x1 Alamouti Scheme................................................................................... 13 

8. Figure 3-1: Flowchart of the Research ............................................................................ 18 

9. Figure 3-2: Previous Model in Spatial Diversity MIMO Communication ...................... 19 

10. Figure 3-3: Spatial Diversity MIMO Autoencoder Model ............................................ 20 

11. Figure 3-4: Transmitted Symbols Scheme and Constellation Diagram of the model ... 21 

12. Figure 3-5: Constellation Diagram of the Previous Research ....................................... 22 

13. Figure 3-6: Model for Generating 1 Pilot (2x1 Scheme)............................................... 23 

14. Figure 3-7: Model for Generating 2 Pilots (2x1 Scheme) ............................................. 24 

15. Figure 3-8: Data Transmission Model (2x1 Scheme) ................................................... 24 

16. Figure 3-9: Constellation Diagram of the Proposed Model for Spatial Diversity Channel 

Estimation ................................................................................................... 26 

17. Figure 3-10: Spatial Multiplexing MIMO Autoencoder ............................................... 27 

18. Figure 3-11: Constellation Diagram of Transmitted Symbols of 2x2 NN Based Model ..  

  ................................................................................................................... 27 



 

viii 

 

19. Figure 3-12: Model for Generating 1 Pilot (2x2 Scheme) ............................................ 29 

20. Figure 3-13 Model for Generating 3 Pilots (2x2 Scheme) ............................................ 29 

21. Figure 3-14: Data Transmission Model (2x2 Scheme) ................................................. 30 

22. Figure 4-1: Bit Error Rate Performance of Learned Diversity Scheme (Perfect CSI) .. 33 

23. Figure 4-2: Bit Error Rate Performance of Learned Diversity Scheme Compared with 

Previous Model ............................................................................................................. 34 

24. Figure 4-2: Bit Error Rate Performance of Learned Diversity Scheme (Channel 

Estimation) ................................................................................................ 36 

25. Figure 4-3: Bit Error Rate Performance of Learned 2x2 Scheme (Perfect CSI) ........... 37 

26. Figure 4-4: Bit Error Rate Performance of Learned 2x2 Scheme (Channel Estimation)

 ................................................................................................................... 38 

  



 

ix 

 

 

List of Abbreviations 

 

AWGN ........................... Additive White Gaussian Noise 

BER ............................... Bit Error Rate 

CNN ............................... Convolutional Neural Network 

CSI ................................. Channel State Information 

MAP............................... Maximum a Posteriori 

MIMO ............................ Multiple Input Multiple Output 

ML ................................. Maximum Likelihood 

MLP ............................... Multilayer Perceptron 

NN ................................. Neural Network 

OFDM ............................ Orthogonal Frequency Division Multiplexing 

PReLU ........................... Parametric Rectified Linear Unit 

ReLU ............................. Rectified Linear Unit 

RNN ............................... Recurrent Neural Network 

SNR  .............................. Signal to Noise Ratio 

 

 

 

  



1 

 

Chapter 1 

Introduction 

 

1.1 Background 

The increase of demand on better quality of service in telecommunication including 

high data rate, reliable and secured wireless communication has put significant pressure on 

wireless communication researchers to develop a new method for satisfying users’ 

expectations. However, this problem has become more complicated due to the limitation of 

radio frequency spectrum and several wireless channel impairments, for instance Rayleigh 

fading. As a solution, in recent years, Multiple-Input Multiple-Output (MIMO) systems have 

arose as one of the most promising methods in the wireless communication system (Oestges 

et al, 2010). 

The utilization of several antennas either at transmitter or receiver or at both of them 

has become more popular nowadays due to its ability to maintain a reliable communication 

in a wireless channel with some impairment predominantly by fading. This reliable 

communication can be maintained because multiple antennas technology provides benefits 

in a communication system which are spatial multiplexing or spatial diversity gain, array 

gain and interference reduction (Biglieri et al, 2007)  

The main idea behind MIMO communication is that signals which are sampled in the 

spatial domain at both transmitter and receiver are combined in a certain method that they 

either add diversity to improve the quality in term of Bit Error Rate (BER) of the 

communication and/or create effective multiple parallel spatial data pipes that will result in 

increasing the data rate (Oestges et al, 2010). 

Basically the MIMO communication process is that first, input bits are first encoded 

through several process that eventually result in spatial data streams. These data streams are 

then transmitted by several antennas to the receiver and propagate through certain channel 

impairments, for example Rayleigh fading. The received signal will be decoded in the 

receiver side until the estimated bits are obtained. 

However, the process of encoding and decoding mentioned in previous paragraph are 

very challenging. For years, researchers have been developing algorithms in multiple 
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antennas technology in order to improve its performance either in detection task or channel 

estimation task or other tasks but the issue of a trade-off between performance improvement 

and computational complexity always become a main restriction and consideration. As a 

solution, deep learning, an approach shining nowadays, is introduced in multiple antennas 

communication system.  

Deep Learning actually is the development of the basic Neural Network (NN) which 

firstly introduced in 1940 by McCulloch et al in a form of electronic brain. Years after years 

this method has been developed very well that eventually result in some breakthrough models 

and methods. Those advanced models result in very high performance and can handle so 

many works in several domains, especially in computer vision started by digit recognition 

(Hinton et al, 2006).  

1.2 Motivation 

Recently, there are some publications implementing method from deep learning field 

in MIMO communication system in order to improve its performance. As a result, they 

perform very well and even result in better performance compare to the baseline methods. 

Some of the most interesting results of machine learning implementation in a 

communication system are paper titled “An Introduction to Deep Learning for the Physical 

Layer” (O’shea et al, 2017) and “Deep Learning-Based Communication Over the Air” 

(Doner et al, 2018) which introduce deep learning as an end-to-end system in SISO 

communication. This end-to-end model means that transmitter, channel impairments, and 

receiver are represented by one or several neural network layer (dense) then interpret the 

whole system as an autoencoder, a powerful method for performing unsupervised learning 

(Baldi et al, 2012). Since they show good results, researches related to autoencoder 

implementation in MIMO communication has been developing rapidly, for instance its 

application in channel decoding (Gruber et al, 2017) and Orthogonal Frequency Division 

Multiplexing (OFDM) (Ye et al, 2018). However, the need of improvement in this topic is 

still required especially in end-to-end learning based model in order to make it feasible to be 

implemented in the real world condition. 
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1.3 Objective 

This thesis aims to provide a new method in optimizing the performance of both 

spatial diversity and spatial multiplexing MIMO communication system. The proposed 

method is based on deep learning field implementation, which is end-to-end learning 

autoencoder. The deep learning method is selected as a solution because it has been proven 

as to work well with low computational complexity. The computational complexity in deep 

learning method emerge only in training stage. Once we obtain the well trained weights, we 

just need to load them and pass the data for testing stage. 

1.4 Thesis Organization 

This master thesis focuses on the design of end-to-end learning based models for 

MIMO communication in both spatial diversity (2x1) and spatial multiplexing (2x2) scheme. 

The proposed models are basically inspired of the autoencoder implementation where model 

try to replicate its input to its input. Chapter 1 discusses the background and the motivation 

of the research, Chapter 2 deeply explains several related theories referred as a basic 

reference in building this research including the baseline method. Chapter 3 explains a 

detailed design of deep learning based models and their properties (layout of all used layers 

and their hyperparameters tuning). Moreover, there is a clear explanation about the 

comparison between the proposed research and the previous research. Chapter 4 discusses 

about the simulation results obtained from Spyder software using keras with tensorflow 

(Abadi et al, 2016) backend for the deep learning based method and Matlab for the baseline 

method. Chapter 5 presents conclusion of this thesis which includes the summary and 

opportunities for the future research.  
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Chapter 2 

Related Theory 

 

This chapter discusses about theories referred as a basic reference in building this 

research. The related theories are divided into two parts, deep learning related theories and 

theories of baseline method that is later used as a comparison with the proposed neural 

network based method. 

 

2.1 Deep Learning 

2.1.1 Deep Feed Forward Network 

Deep feed forward network or sometimes called Multilayer Perceptron (MLP) is one 

of the quintessential or fundamental deep learning model. The term deep comes from the 

depth of the hidden layer or layer between the input and the output layer. While, These 

models are called feedforward because information flows through the function being 

evaluated from x which then go through the intermediate computations used to define 𝑓, and 

eventually to the output y. This network aims to find the best function of 𝑓∗ which suitable 

to the desired task. For example, this network define 𝑦 = 𝑓(𝑥; 𝜃) using the best obtained 

parameter 𝜃 resulted from learning process (Goodfellow et al, 2016). This network has been 

developed to more advanced network, for instance Recurrent Neural Network (RNN) 

(Mikolov et al, 2010) feed forward network with feedback connection and Convolutional 

Neural Network (CNN) (Krizhevsky et al, 2012) which implements parameter sharing 

method.  
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Process of feed forward neural network is depicted by Figure 2-1. There are three 

type of nodes or layers which are, input layer, hidden Layer and output layer. Input layer 

gives information from the dataset to the network by directly passing them to the next layer, 

in other word there is no computational process in this layer. Hidden layer perform a massive 

computational process in order to find the best representation or features of given dataset. 

This layer called as a hidden layer as it does not have direct connection with the “world”. 

The last, output layer is a layer that provide a transfer information from the network to be 

implemented in the real world situation such as regression. 

 Figure 2-1: Feed Forward Neural Network 

 

2.1.2 Backpropagation 

Backpropagation (LeCun et al, 1989) is a method to compute the gradient for 

updating weights or parameter 𝜃 based on the cost function 𝐽(𝜃) acquired from feed forward 

process. The term back-propagation is often misunderstood as meaning the whole learning 

algorithm for multi-layer neural networks. Actually it just means the method for computing 

gradients in such networks. Moreover, backpropagation is generally considered as something 

very specific to multi-layer neural networks, but once its derivation is understood, it can 

easily be generalized to arbitrary functions. The basic idea of the back-propagation algorithm 

is that the partial derivative of the cost J with respect to parameters θ can be decomposed 

recursively by taking into consideration the composition of functions that relate θ to J, via 
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intermediate quantities that mediate that influence, for example the activations of hidden units 

in a deep neural network.  

The process of weight updating is done by applying chain rule. The illustration of 

chain rule algorithm is shown by Figure 2-2 (Goodfellow et al, 2016). Let assume z is the 

output node, y is hidden node, and x is the input node, w is the model weight or parameter θ, 

and J is the cost function. Let take one case for example, In order to know how much change 

affected by 𝑤2 in total error, we must calculate partial derivative of 
𝜕𝐽

𝜕𝑤2
 which equal to 

following equation 

𝜕𝐽

𝜕𝑤2
=  

𝜕𝐽

𝜕𝑎3
 

𝜕𝑎3

𝜕𝑛𝑒𝑡𝑧

𝜕𝑛𝑒𝑡𝑧

𝜕𝑤2
    (2-1) 

𝑎3 is the output of activation function in the node 3, 𝑛𝑒𝑡𝑧 is the input of the node z or node 

3. The obtained derivation is then used for parameter update.  

Figure 2-2: Illustration of Chain Rule Algorithm 

Algorithm 1 explain about backpropagation algorithm based on Andrew Ng 

explanation (Ng. Andrew, 2012) let assume that we have large training set 

{(𝑥(1), 𝑦(1)), … , (𝑥(𝑚), 𝑦(𝑚))}. Then, backpropagation process can be explained through the 

following algorithm. Notation ∆ is the variable that will be used to compute 
𝜕

𝜕𝜃𝑖𝑗
(𝑙) 𝐽(𝜃). 𝛿 

denotes the error of the specific node. The last 𝐷𝒊𝒋
(𝒍)

=
𝜕

𝜕𝜃𝑖𝑗
(𝑙) 𝐽(𝜃). Subscript i and j represent 

interconnection between node i and j, while superscript l denotes the 𝑙𝑡ℎ layer of the network. 
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Initialization: ∆𝒊𝒋
(𝒍)

= 0 for all l, i, j 

for i = 1:m do 

Set 𝑎(1) = 𝑥(𝑖) 

Perform forward propagation to compute 𝑎(𝑙) for l = 2, 3, …, L 

Using 𝑦(𝑖), compute 𝛿(𝐿) = 𝑎(𝐿) − 𝑦(𝑖) (2-2) 

Compute 𝛿(𝐿−1), 𝛿(𝐿−2), … , 𝛿(2) 

∆𝒊𝒋
(𝒍)

≔ ∆𝒊𝒋
(𝒍)

+ 𝑎𝒋
(𝒍)

𝛿𝒊
(𝒍+1)

  (2-3) 

end 

if j ≠ 0 then 

𝐷𝒊𝒋
(𝒍)

≔
1

𝑚
∆𝒊𝒋

(𝒍)
+ 𝜆𝜃𝒊𝑗

(𝒍+1)
  (2-4) 

else 

𝐷𝒊𝒋
(𝒍)

≔
1

𝑚
∆𝒊𝒋

(𝒍)
  (2-5) 

end 

Algorithm 1: Backpropagation Algorithm 

 

2.1.3 Autoencoder 

Autoencoder is a Neural Network (NN) which is categorized as an unsupervised 

learning and has a function to replicate its input to its output. Basically, autoencoder consists 

of encoder and decoder which contain a code to describe the input (ℎ = 𝑓(𝑥)) and creates a 

reconstruction of the input from the hidden layer respectively (𝑟 = 𝑔(ℎ)). The output of 

autoencoder, actually, is a compressed representation of the input that sometimes 

autoencoder can be used for feature reduction. The illustration of autoencoder model is shown 

by Figure 2-3. 

Figure 2-3: Architecture of an Autoencoder 
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2.1.4 Activation Function 

Activation functions are really important for in deep learning field in order to make 

the model understands about the relation between the inputs and response variable. They 

introduce non-linear properties to our Network. Their main purpose is to convert an input 

signal of a node in a network to an output signal that subsequently used as an input in the 

next layer. Sometimes activation function is called as a neuron internal state (Fausset et al, 

1994). 

2.1.4.1 PReLU (Parametric Rectified Linear Unit) 

PReLU (He et al, 2015) is an activation function which generalizes the traditional 

Rectified Linear Unit (ReLU) which has zero gradient when the input is negative value. The 

output of PReLU is given by 

 𝑓(𝑦𝑖) = {
𝑦𝑖 , if y𝑖 > 0

𝑎𝑖𝑦𝑖 , if 𝑦𝑖 ≤ 0
 (2-6) 

Here, 𝑦𝑖  is the output of the nonlinear activation function of f on the 𝑖𝑡ℎ  channel and 𝑎𝑖 

denotes a coefficient controlling the slope of the negative part. The value of coefficient a 

varies on different channel. Figure 2-4 shows the difference between the output of ReLU and 

PReLU. 

 (a) (b) 

Figure 2-4: Activation Output (a) ReLU (b) PReLU 

The update value of coefficient 𝑎𝑖  is done by using backpropagation algortithm, 

similar to weight update process. The gradient of 𝑎𝑖 for one layer is given by 
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∂𝜀

𝜕𝑎𝑖
= ∑

∂𝜀

𝜕𝑓(𝑦𝑖)𝑦𝑖

𝜕𝑓(𝑦𝑖)

𝑎𝑖
    (2-7) 

휀 represents the objective function, while 
∂𝜀

𝜕𝑓(𝑦𝑖)
 indicates the gradient which is propagated 

from deeper layer. Next, the gradient of activation is given by 

𝜕𝑓(𝑦𝑖)

𝑎𝑖
= {

0, if y𝑖 > 0
𝑦𝑖 , if 𝑦𝑖 ≤ 0

    (2-8) 

Eventually, the coefficient 𝑎𝑖 is updated by using the momentum method as shown by the 

following equation 

∆𝑎𝑖 ≔ 𝜇∆𝑎𝑖 + 𝜖
𝜕𝜀

𝜕𝑎𝑖
    (2-9) 

𝜇 and 𝜖 denotes the momentum and learning rate respectively. 

2.1.4.2 Softmax 

Softmax is a generalization of logistic regression in order to handle multiple classes 

classification task (Duan et al, 2003). Softmax function are mostly used in the output layer 

to represent the probability over J different classes. Occasionally, softmax function is put in 

the hidden layer to behave as a decision maker between one of J different option for some 

internal variables. The output of softmax activation is given by 

𝑓𝑖(𝑥) =
𝑒𝑥𝑖

∑ 𝑒
𝑥𝑗𝐽

𝑗=1

 for i = 1, … , J   (2-10) 

 

2.1.4.3 Linear 

Linear activation function is an activation which its output is identical to its input. 

Figure 2-5 shows the output of linear activation function which follows the following 

equation 

𝑓(𝑥) = 𝑥    (2-11) 

Mostly, this activation is put in the output layer, not in the hidden layer. Because It doesn’t 

help the network to understand with the complexity or various parameters of usual data that 

is fed to the neural networks. 
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Figure 2-5: Linear Activation Function 

2.1.5 Batch Normalization 

Proposed in 2015, batch normalization is a method of adaptive reparameterization 

motivated by the difficulty of training deep models (Ioffe et al, 2015). Batch normalization 

applies a normalization to mini batch H (𝐻′) of activations of the layer by using following 

equation 

𝐻′ =
𝐻−𝜇

𝜎
     (2-12) 

where 𝜇 is the mean of each activation function over m data in batchsize which is defined by 

𝜇 =
1

𝑚
∑ 𝐻𝑖𝑖      (2-13) 

and 𝜎 is a vector containing the standard deviation given by 

σ = √𝛿 +
1

𝑚
∑ (𝐻 − 𝜇)𝑖

2
𝑖     (2-14) 

However, the normalization of H (𝐻′) will reduce the performance of the model as 

the output of activation function is shifted or scaled by randomly initialized parameter. Then, 

instead of directly using  𝐻′ , batch normalization applies gamma parameter (standard 

deviation) and beta parameter (mean)  to the equation. Therefore the batch normalization 

utilizes γ𝐻′ + 𝛽 that only allows SGD do the denormalization by changing only these two 

weights for each activation, instead of losing the stability of the network by changing all the 

weights. 
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2.1.6 Optimizer 

2.1.6.1 Adam 

Adam (Kingma et al, 2014) derived from adaptive momentum estimation, is a method 

for minimizing 𝔼[𝑓(𝜃)] with respect to its parameter 𝜃 that only requires first order gradient 

with require a little number of memory. Adam takes advantages of two previous methods, 

Adagrad (Duchi et al, 2011) and RMSProp (Tieleman et al, 2012) which works well with 

sparse gradients and in on-line and non-stationary setting. Several advantages of Adam are 

first; magnitudes of parameter updates are invariant to rescaling of gradient. The second, its 

stepsize are approximately bounded by the stepsize hyperparameter. The third, Adam does 

not require a stationary objective. The last, it works with sparse gradients. Moreover, it also 

naturally performs a form of step size annealing. 

The process of Adam in optimizing the model weight is started by obtaining gradient 

with respect to stochastic objective at time step t where, t ← t + 1 that is 

𝑔𝑡 ← ∇𝜃𝑓𝑡(𝜃𝑡 − 1)    (2-15) 

Then, the biased first and second raw momentum estimate, 𝑚𝑡  and 𝑣𝑡  respectively, are 

updated by following equation 

𝑚𝑡 ← 𝛽1𝑚𝑡−1 + (1 − 𝛽1)𝑔𝑡   (2-16) 

𝑣𝑡 ← 𝛽2𝑣𝑡−1 + (1 − 𝛽2)𝑔𝑡
2   (2-17) 

𝛽1 and 𝛽2 are the exponential decay rate for the moment estimates. After that, parameter 𝜃 is 

updated preceded by changing the stepsize number, that is 

𝑎𝑡 = 𝑎 √1 − 𝛽2
𝑡/(1 − 𝛽1

𝑡)   (2-18) 

𝜃𝑡 ← 𝜃𝑡−1 − 𝑎𝑡𝑚𝑡/(√𝑣𝑡  ∈̂)   (2-19) 

𝛽1
𝑡
 and 𝛽2

𝑡
are exponential decay rate for the moment estimates in a certain timestep and ∈̂ 

denotes the epsilon used for avoid zero division. 

 

2.1.7 Loss Function 

Loss function is a function that calculates loss between given an input to a target. In 

a simple way, loss function is a method of evaluating how well the model fit with the given 

dataset. Loss function is very useful for updating model weights as the output of it will 

become a guidance in training process (Goodfellow et al, 2016). 
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2.1.7.1 Log-cosh 

Log-cosh is a function used in regression task that performs better or than L2. This 

function is defined as 

𝐿(𝑦, �̂�) = ∑ log (cosh (�̂�𝑖 − 𝑦𝑖)𝑛
𝑖=1    (2-20) 

�̂�𝑖 and 𝑦𝑖 is the predicted output and target of 𝑖𝑡ℎ dataset. and Log(cosh(x)) is approximately 

equal to 
𝑥2

2
 for small x and 𝑎𝑏𝑠(𝑥) − log (2) for large x. It implicitly shows that log-cosh 

works nearly identical to mean squared error, but this function is not strongly affected by 

occasional wildly incorrect prediction like mean squared error. However, log-cosh loss has a 

drawback that it still suffers from the problem of gradient and hessian for very large off-

target being constant (Neuneier et al, 1998). Figure 2-6 shows the plot of log-cosh vs 

prediction value where true value is equal to 0 

Figure 2-6: Log-Cosh Loss vs Predictions 
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2.1.7.2 Categorical Cross Entropy 

Categorical cross entropy is a loss function which suitable or appropriate to handle 

multi class-classification task. Sometimes it is also called negative log likelihood. The 

equation of categorical cross-entropy loss function (ℓ𝐶𝐸) is given by 

ℓ𝐶𝐸(𝑦, �̂�) =
−1

|𝑦|
∑ [(𝑦𝑖

|𝑦|−1
𝑖=0 𝑙𝑜𝑔(�̂�𝑖) + (1 − 𝑦𝑖)log (1 − �̂�𝑖)]  (2-21) 

�̂� is the output of the last neural network layers while �̂�𝑖 and 𝑦𝑖 denote estimated output and 

target of data respectively. 

2.2 Baseline Method 

2.2.1 Alamouti  

Alamouti is a simple transmit diversity scheme improving the quality of signal at the 

receiver on one side of the link by simple processing across two transmit antenna on the 

opposite side (Cho et al, 2010). This scheme provides identical diversity order as MRRC 

consisting of one transmit antenna and two receive antennas. Alamouti scheme has been 

proven to provide an improvement in terms of error performance, data rate, or capacity of 

wireless communication. Figure 2-7 shows basic alamouti scheme proposed in (Alamouti, 

1998) 

Figure 2-7: 2x1 Alamouti Scheme 
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Alamouti works as two signals are simultaneously transmitted over a given symbol 

perid. The transmitted symbols from antenna 1 and antenna 2 are shown in Table 2-1 or in 

other word the transmitted codeword is 

𝐗 = [
𝑠0 −𝑠1

∗

𝑠1 𝑠0
∗ ]    (2-22) 

Table 2-1: Transmission Sequence for the Two-Branch Transmit Diversity Scheme 

 Antenna 0 Antenna 1 

Time t 𝑠0 𝑠1 

Time t + T −𝑠1
∗ 𝑠0

∗ 

As depicted in Table 2-1, the transmitted codeword is a complex-orthogonal matrix that is, 

𝐒𝐒𝐻 = [
|𝑠0|2 + |𝑠1|2 0

0 |𝑠0|2 + |𝑠1|2] = (|𝑠0|2 + |𝑠1|2)𝐈2 (2-23) 

𝐈2 denotes the 2x2 identity matrix. 

 Alamouti code has a diversity gain of 2, and this diversity analysis is based on ML 

signal detection at the receiver side. As explained in the paper (Alamouti, 1998), it is assumed 

that two channel gains, ℎ0(𝑡) and ℎ1(𝑡) are time-invariant over two consecutive symbol 

periods, that is, 

ℎ0(𝑡) = ℎ0(𝑡 + 𝑇𝑠) = ℎ0 =  |ℎ0|𝑒𝑗𝜃0 

(2-24) 

ℎ1(𝑡) = ℎ1(𝑡 + 𝑇𝑠) = ℎ1 =  |ℎ1|𝑒𝑗𝜃1 

Where |ℎ𝑖| and 𝜃𝑖 denote the amplitude gain and phase rotation of i antenna respectively. 

The received signal then is expressed by  

𝑦0 = ℎ0𝑥0 + ℎ1𝑥1 + 𝑧0 

(2-25) 

𝑦1 = −ℎ0𝑥1
∗ + ℎ1𝑥0

∗ + 𝑧1 

The additive white Gaussian noise at time t and t + 𝑇𝑠 is denoted by 𝑧0 and 𝑧1 respectively. 

The equation in 2-20 can be formed to matrix vector equation as follow 

[
𝑦0

𝑦1
∗] = [

ℎ0 ℎ1

−ℎ1
∗ ℎ0

∗] [
𝑥0

𝑥1
] + [

𝑧0

𝑧1
∗]   (2-26) 
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In this simulation, ℎ1and ℎ2 are exactly known. Then, by multiplying both side of 2-21by the 

Hermitian transpose of the channel matrix, the equation becomes 

     [
ℎ0 ℎ1

−ℎ1
∗ ℎ0

∗] [
𝑦0

𝑦1
∗] = [

ℎ0
∗ ℎ1

ℎ1
∗ −ℎ0

] [
ℎ0 ℎ1

ℎ1
∗ −ℎ0

∗] [
𝑥0

𝑥1
] + [

ℎ0
∗ ℎ1

ℎ1
∗ −ℎ0

] [
𝑧0

𝑧0
∗] 

(2-27) 

= (|ℎ0|2 + |ℎ1|2) [
𝑥0

𝑥1
] + [

ℎ0
∗𝑧0 + ℎ1𝑧0

∗

ℎ1
∗𝑧0−ℎ0𝑧0

∗ ] 

Then, the input-output relations are obtained as follow 

[
�̃�0

�̃�1
] = (|ℎ0|2 + |ℎ1|2) [

𝑥0

𝑥1
] + [

�̃�0

�̃�1
]   (2-28) 

where 

[
�̃�0

�̃�1
] ≜ [

ℎ0 ℎ1

−ℎ1
∗ ℎ0

∗] [
𝑦0

𝑦1
∗] 

(2-29) 

[
�̃�0

�̃�1
] ≜ [

ℎ0 ℎ1

−ℎ1
∗ ℎ0

∗] [
𝑧0

z0
∗] 

As the antenna interference does not exist anymore or in other word no existence of unwanted 

symbol 𝑥1  received at receiver 0, the Maximum Likelihood (ML) receiver structure as 

follows 

𝑥𝑖,ML = Q (
�̃�𝑖

|ℎ0|2+|ℎ1|2) , 𝑖 = 0,1.    (2-30) 

The Q( ) denotes a slicing function determining a transmit symbol for the given constellation 

set. 

 

2.2.2 Maximum Likelihood (ML) Detector 

Maximum Likelihood (ML) detector is one of the most reliable method in spatial 

multiplexing MIMO communication. It provides minimal probability of error and low 

complexity in systems with few transmitting antenna (Cho et al, 2010). ML detector works 

by calculating the Euclidean distance between the received signal vector and product of all 

possible transmitted signal with the given channel H, and find the one with the minimum 

distance. Let C and 𝑁𝑇  denote a set of signal constellation symbol points and number of 
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transmit antennas respectively. Then, ML determines the estimate of the transmitted vector 

X as 

�̂�𝑀𝐿 = argmin
𝑥∈𝐶𝑁𝑇

 ‖𝑦 − 𝐻𝑥‖2    (2-31) 

where y is the received signal and ‖𝑦 − 𝐻𝑥‖ corresponds to the ML metrics. 

The ML method achieves the optimal performance as the maximum a posteriori 

(MAP) detection when all the transmitted vectors are equally likely. The drawback of this 

detection method is that the complexity will exponentially increase as modulation order 

and/or the number of transmit antennas increase (Cho et al, 2010).
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Chapter 3 

Design of Deep Learning Based Model 

 

This section deeply describes the design of the proposed method in term of the model. 

Moreover, the differences between the previous research and the proposed research will be 

clearly addressed. Basically, four models are introduced in this research assigned with the 

different tasks, 2x2 spatial multiplexing and 2x1 spatial diversity.  

 

3.1 Overview of Proposed Method 

Overall, the proposed models consist of several dense and lambda or custom layers 

representing MIMO communication. All of the proposed models actually follow the 

autoencoder scheme where model try to replicate its input to its output. In this research, each 

transmitter was designed to transmit 2 bits, making each antenna has 4 different bit pairs. 

Therefore, the total of bit pair combinations of each antenna are 16. Instead of expressing 

them in a one-hot encoding method, in this research, each of bit pair is expressed in an integer 

number that later be fed into embedding layer. The embedding layer will turn the data indices 

into vectors in order to save the memory usage. Reshape layer in the transmitter model block 

has a function to create parallel transmit stream denoted by three dimensional matrix ℝ2𝑥2𝑥𝑛. 

The first dimension represents the number of transmit antenna, the second dimension 

represents the complex number consisting of two real numbers, and the last dimension 

represents n time samples. Layer with linear function will determines the final transmitted 

symbol that its power will be constrained by BatchNormalization layer. Then, the last layer 

which has a softmax activation function will decode the message or data transmitted of each 

antenna. Figure 3-1 shows the Flowchart of the research. All of the models were trained using 

millions of synthetically generated data with various number of batch size with some 

hyperparameter tunings that will be explained deeply in the Chapter 4. 
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Figure 3-1: Flowchart of the Research 

3.2 Spatial Diversity Model 

3.2.1 Previous research 

Previous research from paper titled “Deep Learning Based MIMO Communication” 

(O’shea et al, 2017) also proposes a model for detection task in spatial diversity MIMO 

communication system which is shown by Figure 3-2. 

Start 

Generate Data 

Design the Model 

Set the Hyperparameters 

Train the Model 

Is the desired 

performance 

already satisfied? 

Test the Model 

End 

Yes 

No 
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Figure 3-2: Previous Model in Spatial Diversity MIMO Communication 

This model actually works identically to the proposed model. As discussed in the overview 

section, S is data which want to be transmitted represented as one-hot vector and X is a three 

dimensional matrix ℝ2𝑥2𝑥𝑛. However, there are some problems in the previous model. First, 

channel response H and noise existence are expressed by several custom layers. For the noise, 

maybe it is not a big problem as Keras already provides Gaussian noise layer as a regularizer 

but, for the channel response (Rayleigh fading), it brings up a doubt whether the channel 

response generated by a custom layer is suitable to standard Rayleigh fading or not. The 

second is no Channel State Information (CSI) in the receiver side which is an uncommon 

situation in the communication system. Moreover, as this model is compared to the baseline 

method which perfectly knows CSIR, the provided performance result can be considered as 

an unfair comparison. 

3.2.2 Proposed Model 

3.2.2.1 Data Detection with Perfect CSIR 

Figure 3-3 shows the model of deep learning based spatial diversity MIMO 

communication. There are several differences between the previous model and the proposed 

research beside the depth of network. In this research, there are three input that will be fed to 

the model, those are data which want to be transmitted (S), channel response H (Rayleigh 

fading) and Additive White Gaussian Noise Z (AWGN). Channel response and noise were 

generated using random normal function “randn()” from Numpy library. This model also 
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uses perfect CSI in the receiver side, making it fairly compared with the baseline model. The 

used non-linear activation function is PReLU (He et al, 2015) instead of ReLU. One of the 

advantages of using PReLU is the negative value input will still have output rather than zero. 

As the data flowing in the model has a range of -∞ to ∞, the PReLU properties is very 

beneficial for improving the model accuracy. Moreover, we have tried to use ReLU, 

activation proposed in the previous work, in this model. Unfortunately, the training and 

validation loss become very high due to zero gradient issue. 

 After parallel transmitted symbol is formed, the BatchNormalization layer in the end 

of transmitter model block will performs as a power constraint so that the power of 

transmitted signal does not exceed the standard power transmission. To obtain the standard 

power transmission, the hyperparamter of gamma was constrained by setting the maximum 

value of the maximum-norm constraint to be 0.78. This constraint only takes place on 

network parameters during optimization. Maximum norm constraint is a regularization used 

for enforcing the absolute upper bound of neurons’ weight vector that eventually being 

constrained by the calculated gradient descent. Matrix multiplier and noise addiction layer 

were made using several lambda or custom layers.  

Figure 3-3: Spatial Diversity MIMO Autoencoder Model 
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Different from standard Alamouti, Symbol transmitted by this NN based model is 

shown by Figure 3-4 where symbol transmitted by each antenna is identical in every two time 

slots. Therefore, the equation of received signal becomes 

𝑦0 = ℎ0𝑥0 + ℎ1𝑥1 + 𝑧0 

(3-1) 

𝑦2 = ℎ0𝑥0 + ℎ1𝑥1 + 𝑧1 

This transmission scheme is intended for maintaining diversity in transmission process. 

 

 (a) (b) 

Figure 3-4: (a) Transmitted Symbol Scheme (b) Constellation Diagram of the Proposed 

Model 

Actually, previous research also implements the aforementioned symbol transmission 

scheme, but if we observe from the constellation diagram shown by Figure 3-5 the symbols 

transmitted of each antenna every two time slots are not always identical. In order to give 

𝑆0 𝑆0 

𝑆1 𝑆1 Ant 1 

Ant 0 

Time 
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more complete information, Table 3-1 gives information about all of used NN in the proposed 

model including its parameters. 

Figure 3-5: Constellation Diagram of the Previous Research 

Table 3-1: Layout of all used NNs (2x1 Scheme) 

 

 

 

 

 

 

 

 

 

Encoder Estimator : Parameters Output Dimension 

Input 0 None,2,1 

Embedding 128 None,2,1,8 

Flatten 0 None,16 

Dense + PReLU 272+16 None, 16 

Dense (Linear) 68 None,4 

Reshape 0 None,2,2,1 

Normalization 4 None,2,2,1 

   

Estimator : Parameters Output Dimension 

Flatten 0 None,4 

Dense + PReLU 1664  + 128 None,128 

Dense + PReLU 4128 + 32 None,32 

Reshape 0 None,2,16 

Dense (softmax) 68 None,2,4 
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3.2.2.2 Channel Estimation 

This research also extends the idea of the previous research to the channel estimation 

in spatial diversity MIMO communication. The method consists of two model, first is channel 

estimator model which results in pilot, and the second is data transmission model. Figure 3-

6 shows the channel estimator model. 

Figure 3-6: Model for Generating 1 Pilot (2x1 Scheme) 

𝑺𝟏
′
 is a fixed 16 data stream that used for generating parallel transmit stream pilot 𝑿𝟏

′. 

Channel response H and noise Z were also generated using “randn()” function from Numpy 

library. The most important hyperparameter tuning among other parameters is that in 

BatchNormalization layer that we must set the maximum-norm constraint of the beta 

constraint and gamma constraint to be 0.05 and 0.9 respectively. If we desire to use more 

than one pilot, then we just need to add more encoder estimator model block to the system as 

depicted by Figure 3-7. However, the gamma constraint must be set differently in different 

scheme and will be deeply explained in the next chapter. After a good estimator model is 

obtained which is indicated by low training and validation loss, we then put the encoder and 

channel estimator model block to the data transmission model as a non-trainable layers as 

depicted by Figure 3-8. Table 3-2 shows the layout of all NN used for generating pilot and 

data transmission.  
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Figure 3-7: Model for Generating 2 Pilots (2x1 Scheme) 

 

Figure 3-8: Data Transmission Model (2x1 Scheme) 
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Table 3-2: Layout of all used NNs (Channel Estimation 2x1 Scheme), (a) Channel 

Estimator Model (1 Pilot), (b) Data Transmission Model 

 (a) 

 

 

 

 

 

 

 

 

 

 

 

 

 (b) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Encoder Estimator : Parameters Output Dimension 

Input 0 None,1 

Embedding 128 None,1,8 

Reshape 0 None,2,2,2 

Dense + PReLU 48 + 64 None,2,2,16 

Dense (Linear) 17 None,2,2,1 

Normalization 4 None,2,2,1 

Estimator : Parameters Output Dimension 

Flatten 0 None,4 

Dense + PReLU 640  + 128 None,128 

Dense + PReLU 16512 + 128 None,128 

Dense + PReLU 4128 + 32 None,32 

Dense (Linear) 264 None,8 

Reshape 0 None,2,2,2 

Encoder Estimator : Parameters Output Dimension 

Input 0 None,2,1 

Embedding 128 None,2,1,8 

Flatten 0 None,16 

Dense + PReLU 2176+128 None,128 

Dense + PReLU 2064+16 None, 16 

Dense (Linear) 68 None,4 

Reshape 0 None,2,2,1 

Normalization 4 None,2,2,1 

Estimator : Parameters Output Dimension 

Flatten 0 None,4 

Dense + PReLU 1664  + 128 None,128 

Dense + PReLU 4128 + 32 None,32 

Reshape 0 None,2,16 

Dense (softmax) 68 None,2,4 
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While constellation diagram of pilot and the symbol transmitted for data transmission are 

shown by Figure 3-9. 

 

 

  

 

 

 

 

 

 

 

 (a) (b) 

Figure 3-9: Constellation Diagram of the Proposed Model for Spatial Diversity Channel 

Estimation, (a) pilot, (b) Symbols from Data Transmission Model 

 

3.3 Spatial Multiplexing Model 

2x2 spatial multiplexing MIMO communication with knowledge of CSIR is a new 

topic that has not been addressed yet in the previous research. This section is also divided 

into two part, data detection and channel estimator model. Overall, how the models working 

are just similar to the proposed model in the spatial diversity case. 

 

3.3.1 Data Detection with Perfect CSIR 

Figure 3-10 shows the model of data detection in 2x2 spatial multiplexing MIMO 

communication with perfect CSIR. 𝑺 16 combination of data stream that used for generating 

parallel transmit stream pilot 𝑿, ℝ2𝑥2𝑥1. Channel response H and noise Z were also generated 

using “randn()” function from Numpy library The difference of this model to the spatial 

diversity communication model are the location of the reshape layer in the end of the 

transmitter model block, the hyparparameter of BatchNormalization layer was set to 1 for the 

max norm of gamma constraint. Constellation diagram of the model transmitted symbols is 

shown by Figure 3-11 and the layout of all used NN is depicted in Table 3-3 

Tx Sym: ant 0, t=0,1 

Tx Sym: ant 1, t=0,1 

Tx Sym: ant 0, t=4 Tx Sym: ant 0 t=5 

Tx Sym: ant 1 t=5 Tx Sym: ant 1, t=4 

Tx Sym: ant 0, t=2,3 

Tx Sym: ant 1, t=2,3 
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Figure 3-10: Spatial Multiplexing MIMO Autoencoder 

Figure 3-11: Constellation Diagram of Transmitted Symbols of 2x2 NN Based Model  
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Table 3-3: Layout of all used NNs (2x2 Scheme) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.3.2 Channel Estimation 

The idea of data detection with perfect CSIR is also extended to the channel 

estimation case. As mentioned before, the main idea of channel estimation in the spatial 

multiplexing MIMO communication is just similar with the previous channel estimation 

model in the spatial diversity MIMO communication. Beside of the hyperparameter tuning 

in the BatchNormalization layer, the other differences are the depth of layer where in this 

case, only one dense layer with PReLU activation function is required in the transmitter 

model block and batch size in training stage that will be clearly discussed in the next chapter. 

Figure 3-12 shows the model for generating pilot in spatial multiplexing MIMO 

communication. Similar with the spatial diversity case, if we want to add more pilots to the 

communication scheme, then we just  

need to add more encoder estimator model block to the network as shown by Figure 3-13.  

Encoder Estimator : Parameters Output Dimension 

Input 0 None,2,1 

Embedding 128 None,2,1,8 

Flatten 0 None,16 

Dense + PReLU 272+16 None, 16 

Reshape 0 None,2,2,1 

Dense (Linear) 5 None,2,2,1 

Normalization 4 None,2,2,1 

Estimator : Parameters Output Dimension 

Flatten 0 None,4 

Dense + PReLU 1664  + 128 None,128 

Dense + PReLU 4128 + 32 None,32 

Reshape 0 None,2,16 

Dense (softmax) 68 None,2,4 
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Figure 3-12: Model for Generating 1 Pilot (2x2 Scheme) 

Figure 3-13 Model for Generating 3 Pilots (2x2 Scheme) 
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After good estimator model is obtained, then we fix the model as a non-trainable 

model and put it as a part of data transmission model which is depicted in Figure 3-14. Table 

3-4 gives information about layout of all NN used in the estimator model and data 

transmission model respectively. 

Figure 3-14: Data Transmission Model (2x2 Scheme) 
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Table 3-4: Layout of all used NNs (Channel Estimation 2x2 Scheme), (a) Channel 

Estimator Model (1 Pilot), (b) Data Transmission Model 

 (a) 

 

 

 

 

 

 

 

 

 

 

 

 

 (b) 

 

  

Encoder Estimator : Parameters Output Dimension 

Input 0 None,2,1 

Embedding 128 None,2,1,8 

Flatten 0 None,16 

Dense + PReLU 272+16 None, 16 

Reshape 0 None,2,2,1 

Dense (Linear) 5 None,2,2,1 

Normalization 4 None,2,2,1 

Estimator : Parameters Output Dimension 

Flatten 0 None,4 

Dense + PReLU 1664  + 128 None,128 

Dense + PReLU 4128 + 32 None,32 

Reshape 0 None,2,16 

Dense (softmax) 68 None,2,4 

Encoder Estimator : Parameters Output Dimension 

Input 0 None,1 

Embedding 128 None,1,8 

Reshape 0 None,2,2,2 

Dense + PReLU 48 + 64 None,2,2,16 

Dense (Linear) 17 None,2,2,1 

Normalization 4 None,2,2,1 

Estimator : Parameters Output Dimension 

Flatten 0 None,4 

Dense + PReLU 640  + 128 None,128 

Dense + PReLU 16512 + 128 None,128 

Dense + PReLU 4128 + 32 None,32 

Dense (Linear) 264 None,8 

Reshape 0 None,2,2,2 
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Chapter 4 

Result and Discussion 

 

This chapter discusses about the result of the proposed method in term of Bit Error 

Rate (BER) over a range of Signal to Noise Ratio (SNR) and several hyperparameters tuning 

to obtain the mentioned result. The proposed methods which implement deep learning 

method were fairly compared with the baseline or conventional methods. All of the models 

were trained using Adam optimizer (Kingma et al, 2014) with learning rate of 0.01 and sparse 

categorical cross-entropy and logcosh loss function for data detection and channel estimation 

task (only for pilot model) respectively. All of the obtained result in deep learning field were 

obtained from simulation using Keras with tensorflow backend (Abadi et al, 2016), while the 

baseline results were obtained through simulation using Matlab. As a reminder, in data 

detection task, the channel response and noise are fluctuate changed every data transmission. 

On the other hand, in channel estimation task, the channel responses are identical in every 16 

data transmission while the noise are varied in every data transmission. 

 

4.1 Spatial Diversity MIMO Communication 

4.1.1 Data Detection with Perfect CSIR 

In spatial diversity MIMO communication, the end-to-end learning based model was 

compared with the standard Alamouti system (Alamouti, 1998) over 1000000 bits. The 

proposed model was trained with millions of data (4000000 bits) and batch size of 500 data 

over 50 epochs. The NN based model was also trained in a fixed 𝐸𝑏/𝑁0  = 21dB.  We set 

the hyperparameter in BatchNormalization layer, gamma constraint,  to be 

max_norm(max_value=0.78). Figure 4-1 shows the performance of the NN based model 

compared to standard Alamouti scheme. From Figure 4-1, over the range of SNR, the NN 

based model shows promising result by outperform the standard Alamouti performance. 

Moreover, as SNR becomes higher, the gap performance between the proposed model and 

the baseline model also becomes bigger.  
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Figure 4-1: Bit Error Rate Performance of Learned Diversity Scheme (Perfect CSI) 

 We also tried to compare the proposed model with the previous model with the 

assumption that the reshape layer position, batch size and epoch are just identical with the 

proposed model, the model use perfect CSIR. Moreover, the number of neurons was assumed 

to be identical to the proposed model except with the last dense layer in the decoder block 

model as we only used one dense layer in the decoder. Figure 4-2 shows the performance of 

the aforementioned case. The result shows that the performance of the system become worst 

that the deep learning based model performance cannot outperform the baseline model. It 

indicates that the depth of layer and PReLU activation function has significant impact of the 

model accuracy. 
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4.1.2 Channel Estimation 

In the case of channel estimation, we have generated five transmission scheme that 

are system using 1 pilot, 2 pilots, 3 pilots, 4 pilots and perfect CSIR. All models were trained 

by 4000000 bits and tested by 1000000 bits. Training process in each data transmission model 

is different to each other because of the difference in transmission scheme, but the value of 

𝐸𝑏/𝑁0 are identical (21 dB). Table 4-1 shows the difference of hyperparameter value among 

each models. 

Figure 4-2 shows the result of the NN based channel estimation model in term of BER 

over a range of SNR. The result shows that the increase of pilot number will improve the 

system performance. Moreover, the proposed models which use imperfect CSI show an 

outstanding performance as this model is able to outperform the baseline model which 

perfectly knows the CSI in the receiver side after transmitting at least 3 pilots. 
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Figure 4-2: Bit Error Rate Performance of Learned Diversity Scheme Compared with 

Previous Model 

 

 Table 4-1: Hyperparameters Tuning for Channel Estimation (2x1 Scheme) 

 

4.2 Spatial Multiplexing MIMO Communication 

4.2.1 Data Detection with Perfect CSIR 

Identical with the previous case in section 4.1.1, this model also trained using 

4000000 bits input data and tested by 1000000 data bits. However, the hyperparameters were 

set differently. Batch size were set to 2000 data over 50 epochs and the value of 𝐸𝑏/𝑁0 are 

22 dB. We set the maximum normalization of the gamma constraint in BatchNormalization 

layer to have maximum value equal to 1. Table 4-2 shows the comparison of hyperparameter 

value between spatial diversity model and spatial multiplexing model.  

Table 4-2: Comparison of Hyperparameter Tuning between 2 Different Schemes 

Figure 4-3 shows the performance of end-to-end training based model compared to 

the conventional spatial multiplexing scheme using Maximum Likelihood (ML) detector. 

From Figure 4-3, it is clear the NN based model performs much better than the traditional 

method. In order to obtain this result, batch size take a significant impact to the system. 

Scheme Gamma Constraint Batch Size 

1 Pilot max_norm(max_value=1) 800 

2 Pilots max_norm(max_value=1) 400 

3 Pilots max_norm(max_value=0.9) 500 

4 Pilots max_norm(max_value=0.9) 250 

Perfect CSIR max_norm(max_value=0.8) 2000 

Scheme Gamma Constraint Batch Size 𝐸𝑏/𝑁0 

Spatial Diversity max_norm(max_value=0.78) 500 21 dB 

Spatial Multiplexing max_norm(max_value=1) 2000 22 dB 
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Difference batch size will cause another hyperparameters tuning, and if the hyperparameters 

are not well tuned then the performance will not good and sometimes result in uncommon 

constellation diagram. Position of the reshape layer also have a significant impact to the BER 

result and determine the shape of constellation diagram as well.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-3: Bit Error Rate Performance of Learned Diversity Scheme (Channel Estimation) 
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4.2.2 Channel Estimation 

In the case of channel estimation, we have generated five transmission scheme that 

are system using 1 pilot, 2 pilots, 3 pilots, 4 pilots and perfect CSIR. Different from the 

previous case in section 4.1.2 where training process in each data transmission model is 

different to each other, in the case of spatial multiplexing all of the schemes’ batch size were 

set to 2000 data over 50 epochs, the value of 𝐸𝑏/𝑁0 are 22 dB and we set the maximum-

norm constraint of the beta constraint and gamma constraint in BatchNormalization layer to 

be 0.05 and 0.9 respectively.  

Figure 4-4 and Figure 4-5 shows the result of the NN based channel estimation model 

in term of BER over a range of SNR. The result shows that the increase of pilot number will 

improve the system performance. Moreover, the proposed model which use imperfect CSI 

shows a promising performance as these models outperform the baseline model which 

perfectly knows the CSI in the receiver side even by only transmitting 1 pilot. 
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Figure 4-4: Bit Error Rate Performance of Learned 2x2 Scheme (Perfect CSI) 

 

 

 

 

 

 

 

 

 

Figure 4-5: Bit Error Rate Performance of Learned 2x2 Scheme (Channel Estimation) 
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Chapter 5 

Conclusion 

 

Trade-off phenomenon between system performance and computational complexity 

always become the biggest consideration in developing performance of MIMO 

communication. Based on that problem, this thesis proposes deep learning based methods for 

optimizing the performance in both spatial diversity and spatial multiplexing MIMO 

communication. This research proposes solutions from deep learning field because it has 

been proven to research very well in several domain especially image. Moreover, 

computational complexity is only suffered in training stage. Once we obtain the well trained 

weights, we just need to load them and pass the data for testing stage. 

There are four different models in this research which each two of them handle data 

detection and channel estimation task. Those models are fairly compared to the baseline 

methods. Every hyperparameter of each model was differently tuned in order to obtain the 

best result, especially in BatchNormalization layer and batch size for training the models. 

The obtained results show that NN based methods show promising performance by 

outperforming the baseline performance in a predetermined range of SNR (-4 dB until 22.5 

dB). In perfect CSIR (Channel State Information in Receiver side) case, the proposed models 

achieve BER nearly 10−5 at SNR 22.5 dB. While in channel estimation case, the proposed 

models can exceed the baseline performance even by only transmitting 2 or 3 pilots.  

These promising results were obtained due to appropriate hyperparameters tuning that 

eventually result in promising model accuracy. We believe that the obtained result can be 

improved by doing several hyperparameter tunings and/or even by building a new model 

with different algorithm.  
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