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Abstract – Soil contamination with heavy metals is a global environmental matter of interest due to its thinkable dangers 
to humans, environmental health, and the ecosystem preceding shortfalls in agricultural produce and dangerous health 
outcomes as they penetrate the food chain. This study aimed to mitigate lead and cadmium ions contaminant in soil using 
calcium carbide waste-carbonized lophira alata sawdust composite (CCW-CLAS). Contaminated soil samples were collected 
from Evbareke spare parts market, Benin City, Edo state Nigeria, using a grid sampling method at a depth of 0-20cm with 
a soil auger. 50% W/W of the powdered calcium carbide waste and lophira alata sawdust was placed in a ceramic crucible, 
put into a muffle furnace, and heated at 350oC for 3 hours. The X-ray diffraction analysis for the calcium carbide waste-
carbonized lophira alata sawdust composite (CCW-CLAS) revealed that it was made up of predominantly calcite fraction 
(55.0%), portlandite (25.0%), coesite (7.3%), muscovite (6.7%), dolomite (4.0%) and lime (2.1%) this was supported by 
FTIR analysis. SEM analysis revealed that calcium carbide waste-carbonized lophira alata sawdust composite (CCW-CLAS) 
possesses a rough surface with a pore of varied size and irregular shape. The contaminated soil from the Evbareke spare 
parts market was heavily polluted with petroleum hydrocarbons, and the soil was highly saline with low C.E.C. The soil 
texture was loamy sand; as the amount of CCW-CLAS increased in the soil, the amount of cadmium and lead ions that was 
releasable in the soil reduced, indicating that CCW-CLAS was effective in immobilizing cadmium and lead ions. The 
optimum amount of the amender in the contaminated soil to immobilize lead ion was 4% w/w, and cadmium ion was 2%. 
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Introduction 
Soil contamination with heavy metals is a global environmental matter of interest owing to its thinkable 

dangers to human, environmental health, and ecosystem preceding shortfalls in agricultural produce and 
dangerous health outcomes as they penetrate the food chain (Guala et al., 2010; Bielicka-Giełdoń et al., 2013; 
Moses and Obasigie, 2020). The entire quantity of potentially accessible metals (quantity/capacity factor), the 
activity and the ionic ratios of metals in the soil solution (intensity factor), as well as the rate of metal relocation 
from solid to liquid phases and to plant roots (reaction kinetics), are the three factors that determine the 
relocation of heavy metals from soils to plants (Moradkhani et al., 2013, Bakshi et al., 2018).  

Automobile spare parts sourcing from disassembling unserviceable vehicles is a means of getting recyclable 
automobile parts. However, this activity leaves a trail of contaminants in the soil made up of organic and 
inorganic compounds, such as heavy metals. Heavy metals are of noticeable worry owing to their toxicity, 
extensive supplies, non-biodegradable properties, and amassing behaviors (Akoto and Abankwa, 2014; Adeyi 
and Torto, 2014;  Topcuoğlu, 2016). Heavy metals in soil are potentially accessible for plant uptake if the mobility 
Factor exceeds 10%, and high mobility factors indicate that the metals originated from anthropogenic sources 
(Chengo et al., 2013). 

Bioavailability is the quantity of ingested metal ions absorbed in soil cavities. It relies on the metals' dividing 
wall in the middle of the solid and solution phases (Abdu, 2010; Violante et al., 2010). The major factors that 
influence the heavy metal mobility and bioavailability to plants are entire metals content in the soil, metals forms, 
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the soil pH, organic matter content, and clay fraction (Akoto and Abankwa, 2014; Okoro et al., 2012; Benson et 
al., 2013; Gawdzik et al., 2015). The most active and bioavailable heavy metals in the fractionated form are water 
soluble, exchangeable, and carbonate-bound species, and those associated with clay minerals as relatively inactive 
(Abdu, 2010).  

The best-demonstrated technologies (BDATs) for the remediation of heavy metal-contaminated locations, 
such as immobilization, soil washing, and phytoremediation procedures, are the most regularly used (Kede et al., 
2014). The process of decreasing metal mobility, bioavailability, and bioaccessibility of heavy metals in soil by 
adding immobilizing agents such as an organic and inorganic amendment to the contaminated soils is called 
immobilization or waste fixation. This process helps to transform heavy metals into harmless forms (Fahmi et 
al., 2018; Khalid et al., 2017; Zaghloul and Saber, 2019). The basic function of immobilizing amendments is to 
change the prototype soil metals to further geo-chemically stable phases through sorption, precipitation into 
insoluble hydroxides, carbonates or silicates, ion exchange as well as complexation processes, swap of metals 
into a mineral structure, physical encapsulation and other possible means (Bakshi et al., 2018; Khalid et al., 2017; 
Sarkar et al., 2014). Soil amendments like clay, cement, Zeolites, minerals, phosphates, fly ash, organic composts, 
and microbes are the most applied (Soltan et al., 2012; Wuana et al., 2013 ). Recently, heavy metals in contaminated 
soils have been immobilized using cheap industrial remainders such as red mud, termitaria, and industrial 
eggshells (Khalid et al., 2017; Ba-Naimoon and Hamid. 2016, Muhammad et al., 2018).  

Lead (Pb), which mounts up in the body organs, precedes poisoning (plumbism) or even death. The 
gastrointestinal tract, kidneys, and central nervous system are likewise influenced by lead. Children open to lead 
are in danger of impaired growth, low IQ, shortened attention span, hyperactivity, and mental deterioration 
[(Chen et al., 2014; Lakherwal, 2014; Singh and Gupta, 2016; Abdel-Raouf and Abdul-Raheim, 2017). Cadmium 
is extremely harmful to humans, plants, and animals. Detrimental consequences of cadmium in humans include 
renal damage, emphysema, hypertension, and testicular atrophy. The mainly serious type of Cd toxicity in 
humans is “Itai-itai,” a disease typified by the agonizing ache in the bone (Singh and Gupta, 2016). 

In order to attenuate the consequences of lead (Pb) and cadmium (Cd) presence in contaminated soil in and 
around the Evbareke spare parts market, this research was intended to assess the degree of lead and cadmium 
ions mitigation with the use of calcium carbide waste-carbonized Lophira alata sawdust composite (CCW-CLAS) 
as an immobilization materials  

Materials and Methods 
Study area description, soil sample collection, and pre-treatment 

A collection of sixty (60) samples out of a possible sixty-four (64) sampling points of contaminated soil 
samples were collected from Evbareke spare parts market in Evbareke of latitude 60 22’ 00”N and longitude 50 
36’ 00”E. The control soil was taken from Evbareke senior Secondary School at latitude 60 21’ 33”N and 
longitude 50 37’ 00’E, in Egor Local Government Area, Edo State, Nigeria, at the depths of 0-20cm using a soil 
auger, on a land size of approximately 450m2 (30m x 15m). The grid sampling method was used for gathering 
the soil sample. The samples were collected at regularly spaced intervals over space or time. After removing the 
trashes, the soil samples were air-dried at ambient temperature, ground, and sieved to give <2mm particle size 
and composited as the parent soil. The remaining moisture was dried by heating at 105±5oC for 3 hours in an 
oven.  

The soil sample was physiochemically characterized for pH, Particle size analysis – Hydrometer method, 
electrical conductivity, cation exchange capacity, total phosphorus, total petroleum hydrocarbon, total Organic 
carbon, and moisture content using the standard method (North Central Region-13, 1998). The heavy metal 
content in the soil was determined using sequential extraction procedures-Fractionation, adopted from Tessier 
et al. (1979). The heavy metal content in every fraction was determined using the atomic absorption 
spectrophotometric (AAS) VGP 210 model – Buck Scientific Equipment Inc. 

Preparation of calcium carbide waste-carbonized Lophira alata composite (CCW-CLAS) 
The calcium carbide waste was collected from a panel beating workshop at Isiohor near Nigeria Army School 

of Supply and Transport (NASST) in Isiohor, Benin city, Edo state. The calcium carbide waste was air-dried for 
3 weeks at ambient temperature. The dried calcium carbide waste was crushed and ground into powdery form. 
50% W/W of the powdered calcium carbide waste and Lophira alata sawdust was put in a ceramic crucible, 
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positioned into a muffle furnace, and heated at a temperature of 350oC for 3 hours until a dark ash composite 
powder was obtained.  

Characterization of calcium carbide waste-carbonized-Lophira alata sawdust (CCW-CLAS)  
The CCW-CLAS Composite prepared was characterized using Fourier Transform-Infra Red (FT-IR System, 

spectrum BX, PerkinElmer, England), Scanning electron microscopy (SEM; phenom pro suite desktop scanning 
electron microscope), and x-ray diffraction (with X-Ray diffractometer, Shimadzu 6000 model). Immobilization 
assessment of lead and cadmium from soil amended with CCW-CLAS composite using column test leaching 
method (CTLM). Chezom et al. (2013) adopted the column test leaching method with minor alterations applied 
to confirm the level of in-situ immobilization of lead and cadmium. The leaching technique was done in a column 
filled with different mass proportions of CCW-CLAS composite and the soil sample at an L/S ratio of 2:1. The 
column containing the amended soil sample of 50g was supported on a retort stand. The end of the column was 
covered with a semi-permeable membrane, and 100ml of distilled water loaded with 1% HCl (v/v) was poured 
into the column and allowed to stand for 1 hour, after which it was perforated so that the leachate would flow 
through the vertical column of the amended soil in a down-flow manner and the leachate obtained was analyzed 
using AAS. Table 1 shows the different mixture ratios of contaminated soil samples and CCW-CLAS composite 
placed in each column. 
Table 1. Ratios of Soil Sample and Calcium Carbide Waste-Carbonized Lophira Alata Sawdust (CCW-CLAS) 

Composite Mixture. 

Percentage 
Weight of CCW-CLAS Composite 

(g) 
Weight of Soil (g) 

2% 1 49 
4% 2 48 
6% 3 47 
8% 4 46 
10% 5 45 

The relative index mobility of these metals was calculated as the mobility factor (MF) (Osakwe and Okolie, 
2015) using the following equation (1). 

MF = 
𝐹1  + 𝐹2 + 𝐹3

𝐹1  + 𝐹2 + 𝐹3+𝐹4+𝐹5+ 𝐹6
 X 100                          (1) 

Results 
Characterization of calcium carbide waste-carbonized-Lophira alata sawdust (CCW-CLAS) 

The results of the characterization of calcium carbide waste-carbonized lophira alata sawdust (CCW-CLAS) 
composite for its functional group identification, crystallinity, and surface morphology were obtained using 
Fourier Transform-Infra Red (FT-IR),  x-ray diffraction (XRD) as well as Scanning electron microscopy (SEM). 
The results are shown in Figures 1, 2, 3, and Figure 4, respectively: 
  

 
Figure 1. FTIR Spectrum for CCW-CLAS composite. 
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Figure 2. X-ray defractogram for CCW-CLAS composite. 

 

 
 

Figure 3. Plot and table of the result of X-ray for CCW-CLAS composite. 

a                                                                         b 
Figure 4. SEM pictures of CCW-CLAS Composite. 
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The Results of the soil sample's physicochemical and geochemical characterization are shown in Tables 2 and 
3. It expressed the quality of the contaminated soil and the control site soil in determining the level of 
contamination and their resultant consequences. 

 
Table 2. Results of the physicochemical characterization of the soil sample. 

Parameters Units Contaminated soil Control Soil 

pH - 6.24 5.43 
Electrical conductivity  

μS/cm 
 

1037.50 
 

235.00 
Total phosphorus mg/kg 372.58 202.20 
Total petroleum 
hydrocarbon 

 
mg/kg 

 
107,304.59 

 
4.04 

Cation exchange capacity  
Cmol/kg 

 
9.89 

 
4.34 

Total organic carbon  
% 

 
3.63 

 
1.11 

Moisture content % 1.05 0.84 
Particle size analysis Clay (%) 4.38 5.88 

Silt (%) 3.60 7.60 

Sand (%) 92.02 86.52 

 
Table 3 Results of the soil sample's geochemical (soil fractionation) characterization for lead and cadmium. 

Fraction 
Contaminated soil (mg/kg) Control soil (mg/kg) 

Lead Cadmium Lead Cadmium 

Soluble 0.21 0.03 BDL BDL 
Exchangeable 1.07 0.20 BDL BDL 
Carbonate-bound 7.50 0.20 0.71 BDL 
Fe-Mn oxide bound 21.07 0.47 0.71 BDL 
Organically bound 3.21 0.20 BDL 0.07 
Residual 19.64 BDL BDL BDL 
Total 52.70 1.10 1.42 0.70 

Note: BDL=below detectable level 

A comparison of the quantity of bioavailable lead and cadmium ions in the contaminated soil vis-à-vis the 
highest acceptable concentration (HAC) by NESREA is shown in table 4. The effect of calcium carbide waste-
carbonized Lophira alata sawdust (CCW-CLAS) on the leaching of cadmium and lead from contaminated soil is 
shown in Table 6 and Figure 5. 

 
 
Table 4. Bioavailable lead and cadmium of the geochemical fraction in the contaminated soil sample vis-à-vis 

the highest acceptable concentration (HAC) by NESREA. 

Fraction 
Contaminated soil (mg/kg) Control soil (mg/kg) 

Lead Cadmium Lead Cadmium 

Soluble  0.21 0.03 BDL BDL 
Exchangeable  1.07 0.20 BDL BDL 
Carbonate-bound  7.50 0.20 0.71  BDL 
Total 8.78 0.46 0.71  BDL 
HAC (NESREA, 2009) 10 3.0  

Note: BDL=below detectable level 
 

Table 5. Percentage of lead in various geochemical fractions in the contaminated soil sample. 

Fraction Contaminated soil (%) Control soil (%) 

 Lead Cadmium Lead Cadmium 
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Soluble  0.40 2.73 0.00 0.00 
Exchangeable  2.03 18.18 0.00 0.00 
Carbonate-bound  14.23 18.18 50.00 0.00 
Fe-Mn oxide bound 39.98 42.73 50.00 0.00 
Organically bound 6.09 18.18 0.00 100.00 
Residual 37.27 0.00 0.00 0.00 
Mobility Factor 16.66 39.09 50.00 0.00 

 
Table 6. The effect of CCW-CLAS composite on cadmium leaching and lead from contaminated soil. 

Percentage of CCW-
CLAS Composite 

Weight of CCW-CLAS 
Composite (g) 

Weight of 
Soil (g) 

Amount of Leached lead from 
contaminated soil (mg/g) 

Lead Cadmium 

2% 1.00 49.00         0.02 BDL 
4% 2.00 48.00 0.01 BDL 
6% 3.00 47.00 0.01 BDL 
8% 4.00 46.00 0.01 BDL 
10% 5.00 46.00 0.01 BDL 

 
Discussion 
Characterization of calcium carbide waste-carbonized-Lophira alata sawdust (CCW-CLAS) 

The FT-IR spectra revealed characteristic bands at 3637.9 cm-1 due to –OH stretching attributed to Ca(OH)2, 
SiOH group, alcohols (R-OH), and phenols (Ar-OH) groups. The appearance at the 3,339.7 cm-1 band is due to 
the OH-stretching band of the hydroxyl group attributed to Alcohol (ROH), phenol (ArOH); N-H stretch of 
primary aliphatic amines (R-NH2), primary aromatic amine (Ar-NH2) and amide (-CONH). The appearance of 
diverse amine groups in CCW-CLAS makes it an efficient encapsulating agent and an effective sorbent for metal 
ions via chelation. The peak at 1401.5cm-1 represents –OH bending attributed to tertiary alcohol and phenol; 
silicon compounds (-SiOH) and CO3

2- broad and sharp band was attributed to calcium carbonate CaCO3, while 
the peaks at 872.2 representing CaO, CO3

2- the strong and sharp band was attributed to calcium carbonate 
(CaCO3) and SiO3

2- attributed to calcium silicate (CaSiO3). 711.9 represent CO3
2- the weak band also attributed 

to calcium carbonate (CaCO3). The presence of these inorganic groups in CCW-CLAS can bring about a rise in 
the soil pH of the environment hence making the cadmium and lead non-bioavailable. The presence of the other 
functional groups will increase the heterogeneity and thereby increase their ability to retain lead and cadmium 
ions, thus preventing their leaching into the environment. 

The diffractogram plot and table of the result of the x-ray for CCW-CLAS composite revealed that it was 
made up of predominantly calcite fraction (55%), which is a calcium carbonate mineral component of limestone 
(Figure 3); others are portlandite (25%) which is the naturally occurring form of calcium hydroxide, the calcium 
analog of brucite, coesite (7.3%) – a form of silicon oxide (SiO2), muscovite (6.7%) – a form of hydrated 
phyllosilicate mineral of aluminum and potassium, dolomite (4.0%) - a type of limestone rich in magnesium and 
calcium carbonate (CaMg(CO3)2) and lime (2.10%) – this is a calcium-containing inorganic mineral composed 
primarily of carbonates, oxides, and hydroxides. The X-ray diffractogram confirms that the CCW-CLAS 
composite is made up of carbonates, oxides, and hydroxides of calcium which can raise the pH of the soil 
environment, thereby decreasing the availability of the cadmium and lead ions for uptake by plants to a large 
extent. 

The SEM photograph, at 1,500 and 1,000 times magnification, showed that the CCW-CLAS composite 
appears porous and possesses a rough surface. The pore is irregularly shaped and varies in size. The surface area, 
fragmentation of the particles, and the difference in pore size describe its ability to retain cadmium ions and lead 
ions, thus preventing its leaching. This coincides with Ince and Ince's (2017) observation that a large surface area 
and a high number of pores in materials (e.g., activated carbons) have been responsible for removing heavy 
metals. 

The physicochemical characterization of the contaminated soil from the Evbareke spare parts market 
revealed that the soil was heavily polluted with total petroleum hydrocarbon (TPH) (Table 2). This was an 
indication of anthropogenic activities in the spare parts market. Edori et al. (2020) asserted that the ensuing 
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consequence of this pollutant would bring about the relapse of the physicochemical and biochemical properties 
of the soil as well as limit the growth of plants. They also opined that the TPH would cause oxygen and water 
insufficiencies and phosphorus and nitrogen deficiency based on nutrients in the soil. The contaminated soil 
contains high soluble salt content (salinity) based on its electrical conductivity value compared to the soil from 
the control site; this indicated lead and cadmium availability. Du Laing et al. (2007) asserted that metal availability 
increases with salinity. The cation exchange capacity was rated low because its value falls between 6-12 Cmol/kg 
(Hazelton and Murphy, 2007), indicating that the soil has a low resistance to change in soil chemistry triggered 
by land use (Table 2). The value of pH obtained for the contaminated soil is 6.24 (Table 2); it is slightly acidic 
and could have contributed to the bioavailability of cadmium and lead ions in the contaminated soil; however, 
the heavy metals would have been more bioavailable in the control site soil if it had contained as high a quantity 
of lead and cadmium as in the contaminated soil. The particle size analysis for the contaminated soil revealed 
that the soil textural class was loamy sand, and the clay quantity was very low (< 5%) hence having a little or no 
withholding effect on the lead and cadmium ions. 

 

 
Figure 5. Effect of CCW-CLAS effect in remediating lead in contaminated soil. 

 
Geochemical (Soil Fractionation) Characterization of the Soil Sample for Lead and Cadmium 

The combined amount of lead and cadmium ions in the soluble, exchangeable, and carbonate bound 
fraction was less than that in the Fe-Mn oxide bound fraction (Table 3). Chengo et al. (2013) asserted that 
heavy metals in soil are potentially accessible for plant uptake if the Mobility Factor is above 10%; this 
indicated that the lead and cadmium ions were bioavailable since they had a mobility factor of 16.66 and 
39.09%, respectively (5). 

On comparing the bioavailable amount of lead and cadmium ions in the contaminated soil with the highest 
acceptable concentration (HAC) from NESREA (2009), it revealed that the amount of available lead and 
cadmium ions in the contaminated soil from the Evbareke spare parts market was lesser (Table 4). However, the 
total amount of lead in the contaminated soil (52.70mg/kg) exceeded the highest acceptable concentration 
(HAC) from NESREA, an indication that the contaminated soil was below pollution level in terms of 
bioavailability and well above the pollution level in term of the total amount of the heavy metals for the lead 
only. 
The water-soluble, exchangeable, and carbonate fractions (F1 + F2 + F3) are the main reactive, mainly mobile, 
and potentially accessible or bioavailable fractions because they are weakly or loosely bound to soil components 
(Table 5). The metals in these fractions are accessible by man via ingestion and are commonly deemed as being 
of anthropogenic origin. 
 
Effect of CCW-CLAS composite on leachability of cadmium and lead from contaminated soil 

Despite the low mobility factor of lead and cadmium ions in contaminated soil, CCW-CLAS composite was 
able to further reduce their bioavailability in the soil by in-situ immobilization remediation pattern, most likely 
through adsorption and complexation mechanism for the cadmium and lead ions. Thereby making it unavailable 

0

0,005

0,01

0,015

0,02

0,025

0% 2% 4% 6% 8% 10% 12%

A
m

o
u

n
t 

o
f 

le
a
d

 a
n

d
 c

a
d

m
iu

m
 

le
a
c
h

e
d

 (
m

g
/

k
g

)

CCW-CLAS Amendment in Soil (%)

Lead Cadmium



Aceh Int. J. Sci. Technol., 11(2) 165-174   
August 2022 

 doi: 10.13170/aijst.11.2.26836 
Copyright: © 2022 by Aceh International Journal of Science and Technology 

 172 

for uptake by plants hence reducing its transmission to man and animals, indicating that the CCW-CLAS 
amendment has transformed most lead and cadmium ions into insoluble or unavailable forms. Ogundiran and 
Osibanjo (2009) asserted that if heavy metals are obtained mainly in the soluble form, they may be leached down 
the soil profile attaining the groundwater or taken up and stored by plants, invertebrates, animals, and man. The 
amount of lead ion that was releasable or made available in the soil decreased appreciably as the amount of 
CCW-CLAS amendment increased. However, no soluble or available form of cadmium ions was leached. When 
the proportion of CCW-CLAS amendment reached 4% w/w level, the number of lead ions leached remained 
constant at 0.01mg/kg, and the cadmium ions were below detectable level, even when the amendment dosage 
increased to 10% w/w CCW-CLAS. This revealed that the optimum amount for the remediation of the 
contaminated soil was 4% w/w (2.00g-CCW/48.00g-contaminated soil) for the lead contaminant and <2% w/w 
(<1.00g-CCW/49.00g- contaminated soil) for cadmium contaminant (Figure 5). Calcium carbonate may have 
acted as the strong adsorbent for lead and cadmium ions since it can be complex as double salts like 
CaCO3.MCO3 (Rostami and Ahangar, 2013) (where M stands for heavy metals) and Carbonized lophira alata 
sawdust also acted as an adsorbent; this implies that the joint consequence of the complexation, as well as 
adsorbent, is most likely accountable for the in-situ immobilization of the lead and cadmium ions in the 
contaminated soil. 

Conclusion 
CCW-CLAS was able to appreciably reduce the lead and cadmium ions in the soil by in-situ adsorption and 

complexation remediation pattern, thereby making them appreciably less available for uptake by plants hence 
reducing their transmission to man and animals. As the amount of CCW-CLAS amendment increased in the 
soil, the amount of cadmium and lead ion that was releasable or made available in the soil reduced when the 
amendment increased from 0 – 4% w/w and remained constant at 0.01mg/kg for lead ions released, even when 
the amendment dosage increased to 10%w/w CCW-CLAS, However, at the application of the amendment, the 
amount of cadmium leached was below the detectable level. This revealed that the optimum amount of CCW-
CLAS composite for the remediation of the contaminated soil was at 4% w/w (2.00g-CCW/48.00g 
contaminated soil) for lead contaminant and ≤2% w/w (<1.00g-CCW/49.00g- contaminated soil) for cadmium 
contaminant, this observation indicated that CCW-CLAS was effective in immobilizing cadmium and lead ions. 
However, it immobilized the cadmium ion more than the lead ion. 
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