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Solving Yin-Yang Puzzles Using Exhaustive Search
and Prune-and-Search Algorithms
Made Indrayana Putra, Muhammad Arzaki, and Gia Septiana Wulandari

Abstract—We investigate some algorithmic and mathematical
aspects of Yin-Yang/Shiromaru-Kuromaru puzzles. Specifically,
we discuss two algorithms for solving arbitrary Yin-Yang puz-
zles, namely the exhaustive search approach and the prune-
and-search technique. We show that both algorithms have an
identical asymptotic running time of O(max{mn, 2mn−h}) for
finding all solutions of a Yin-Yang instance with h hints of size
m × n. Nevertheless, our experiments show that the practical
running time of the prune-and-search technique outperforms the
conventional exhaustive search approach.

Index Terms—complexity, exhaustive search, prune-and-
search, Yin-Yang puzzles.

I. INTRODUCTION

Y IN-YANG (also known as Shiromaru-Kuromaru) is a
pencil-and-paper puzzle first published in 1994 by the

Japanese magazine Puzzler that has recently been proven to
be NP-complete in [1]. In general, a Yin-Yang puzzle consists
of m×n grid of cells, and every cell either has a black circle, a
white circle, or is empty. The objective of this puzzle is to fill
every empty cell with either a black or a white circle such that:
1) for each color (black and white), the cells containing circles
of the same color form a single connected group of cells,
where connectivity is based on four-way orthogonal adjacency;
2) there is no 2× 2 grid of cells containing the same color.

Puzzles, particularly those based on pencil-and-paper, are
primarily intended as recreational tools [2]. Nevertheless,
the mathematical and computational aspects of puzzles have
undergone significant investigations due to their connections to
important combinatorial and computational problems. Several
systematic studies have been carried out on the topic of the
complexity of puzzles [3]–[5]. Moreover, many pencil-and-
paper based puzzles have been proven to be NP-complete,
such as (in chronological order): Sudoku (2003) [6], Nurikabe
(2004) [7], Hiroimono (2007) [8], Heyawake (2007) [9],
Hashiwokakero (2009) [10], Kurodoko (2012) [11], Yajilin and
Country Road (2012) [12], Shikaku and Ripple Effect (2013)
[13], Yosenabe (2014) [14], Shakashaka (2014) [15], Fillmat
(2015) [16], Usowan (2018) [17], Sto-Stone (2018) [18],
Dosun-Fuwari (2018), [19], Tatamibari (2020) [20], Kurotto
and Juosan (2020) [21], and Yin-Yang (2021) [1].
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The NP-completeness of Yin-Yang puzzles means that there
should exist a Yin-Yang solution verifier that can be executed
in polynomial time. Moreover, there also should exist an
exponential time algorithm for solving arbitrary Yin-Yang
puzzles. Nevertheless, since algorithmic investigation relating
to the Yin-Yang puzzle is relatively new and limited, to our
knowledge, a formal investigation of the Yin-Yang solver
has never been discussed rigorously. There are numerous
approaches for solving NP-complete puzzles, such as using
the integer programming model [15] or the SAT-solver tech-
nique [22]–[26]. Nevertheless, in this paper, we discuss two
explicit yet elementary techniques for solving arbitrary Yin-
Yang puzzles, namely the exhaustive search and prune-and-
search approaches. We show that we can find all solutions of
arbitrary Yin-Yang instances in exponential time in terms of
the size of the puzzle and the number of hints.

The rest of the paper is organized as follows. We discuss
some theoretical aspects of the Yin-Yang puzzles in Section
II. Here, we also derive an additional rule regarding the non-
existence of a 2 × 2 alternating pattern. In Section III we
discuss an O(mn) time algorithm for verifying whether an
arbitrary m × n Yin-Yang configuration is also a solution.
We discuss our main algorithms in Section IV and show
that we can solve an arbitrary m × n Yin-Yang puzzles with
h hints in O(max{mn, 2mn−h}) time. Section V discusses
computational experiments of our algorithms. Here, we also
discuss some combinatorial results based on mathematical
analysis and experiments. Finally, this paper is summarized
and concluded in Section VI.

II. PRELIMINARIES

A. NP-Completeness of Yin-Yang Puzzles

The NP-completeness of Yin-Yang puzzles was first proven
by Demaine et al. [1]. These puzzles can be considered as a
type of grid graph partitioning problem. Here, we consider
a rectangular m × n grid and the vertices are located in the
intersection of the rows and columns (also called cells). Some
vertices are pre-colored with either black or white (or any two
distinct colors), and the objective of this problem is to color the
remaining vertices subject to some constraints. The adjacency
between vertices is defined as the usual four-way orthogonal
adjacency in a grid, and an edge is defined as a connection
between two vertices of the same color according to this adja-
cency rule. Mathematically, the grid graph connected partition
completion problem and its related grid graph tree partition
completion problem are defined below, and the problems were
proven to be NP-complete [1].
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Definition 1. [1] Suppose we consider an m × n grid and
a graph G = (V,E) is defined on this m × n grid. Suppose
the vertices collection {A,B,U} is a partition of V . The grid
graph connected partition completion problem is a problem
to determine whether there is a partition {A′, B′} of V such
that A ⊆ A′, B ⊆ B′, and the induced subgraphs GA′ =
(A′, EA′) and GB′ = (B′, EB′) are connected, i.e., EA′ =
{{u, v} | {u, v} ∈ E and u, v ∈ A′} and EB′ = {{u, v} |
{u, v} ∈ E and u, v ∈ B′}. If the objective of the problem is
restricted so that both GA′ and GB′ are trees, then the problem
is called the grid graph tree partition completion problem.

We illustrate the grid graph connected partition completion
problem in Fig. 1 and the grid graph tree partition completion
problem in Fig. 2. In Fig. 1a, we have a 5 × 5 grid graph
and A, B, and U are respectively denote the set of red nodes,
blue nodes, and gray nodes. The grid graph connected partition
problem in Definition 1 examines whether there is another way
to partition the nodes of the graph into two sets A′ and B′

where A′ ⊆ A and B′ ⊆ B and every node in the same sets
are connected. In other words, we need to change every gray
node in U into either a red node or a blue node and ensure that
every node of the same color is connected according to the
four-way orthogonal adjacency. A solution of the instance in
Fig. 1a is given in Fig. 1b. However, since the solution is not
a tree (we can see some red and blue cycles in the solution),
it is not a solution for the grid graph tree partition completion
problem. On the other hand, the solution shown in Fig. 2b for
the same instance gives us a tree. Hence, it is a solution for
the grid graph tree partition completion problem for the given
instance.

In the grid graph connected partition problem, we have
partition {A,B,U} of V . To be compared with Yin-yang
puzzles, the partition can be respectively considered as the
set of cells with black circles, the set of cells with white
circles, and the set of empty cells we have in the puzzle. This
means that if we have induced connected subgraphs GA′ and
GB′ of a grid graph, we can say that the first constraint of
the Yin-Yang puzzle solution is satisfied. Moreover, if GA′

and GB′ are trees, the second constraint of the Yin-Yang
puzzle solution is satisfied. It is proven that both grid graph
connected partition completion and grid graph tree partition

(a) An instance of a
grid graph

connected partition
completion problem.

(b) A solution to the
instance of a grid
graph connected

partition completion
problem on the left.

Fig. 1: An illustration of the grid graph connected partition
completion problem. The left part is the instance and the

right part is the solution to the problem. Notice that there are
four vertices resembling a 2× 2 block of the same color in

the solution.

(a) An instance of a
grid graph tree

partition completion
problem.

(b) A solution to the
instance of a grid

graph tree partition
completion problem

on the left.

Fig. 2: An illustration of the grid graph tree partition
completion problem. The left part is the instance and the

right part is the solution to the problem. Notice that no four
vertices resemble 2× 2 block of the same color in the

solution.

completion problems can be reduced to the planar 4-regular
tree residue vertex breaking (TRVB) problem, which is an
NP-hard problem described in [27].

B. Yin-Yang Instance, Configuration, and Solution

To construct algorithms for solving arbitrary Yin-Yang
puzzles, we first provide the formal definitions of Yin-Yang
instance, Yin-Yang configuration, and Yin-Yang solution in
Definition 2 and Definition 3.

Definition 2. An instance of a Yin-Yang puzzle (or Yin-Yang
instance for short) of size m × n is a rectangular array (or
board) of m rows and n columns such that:

1) a cell (i, j) is an intersection between row i and column
j where 1 ≤ i ≤ m and 1 ≤ j ≤ n,

2) every cell (i, j) is either empty or filled with either a
white or a black circle.

We call the initial white and black circles in a Yin-Yang puzzle
as hints.

Definition 3. An m× n Yin-Yang configuration is an m× n
rectangular array whose each of the entries is either a black
circle (which can be represented using 0) or a white circle
(which can be represented using 1). A Yin-Yang solution is a
Yin-Yang configuration that satisfies the two rules of the Yin-
Yang puzzle.

◦ •

• ◦ • •

• •
(a) A 5× 5
Yin-Yang
instance.

◦ • • ◦ ◦
◦ • ◦ ◦ •
• ◦ ◦ • •
◦ • • ◦ •
◦ ◦ ◦ • •
(b) A 5× 5

Yin-Yang
configuration.

◦ • • • •
◦ ◦ ◦ ◦ •
• ◦ • • •
• ◦ ◦ ◦ •
• • • • •

(c) A solution
for Yin-Yang
puzzle in Fig.

3a

Fig. 3: Examples of a Yin-Yang instance, a Yin-Yang
configuration, and a solution to a Yin-Yang puzzle. Fig. 3b is
obtained from the instance in Fig. 3a by filling all cells with
either colors. Fig. 3c is a solution to a Yin-Yang puzzle in

Fig. 3a.
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Fig. 3 provides an example of a Yin-Yang puzzle and its
related terminology based on Definition 2 and Definition 3.
Fig. 3a shows an example of a 5× 5 Yin-Yang instance with
eight circles as hints. This instance is used as a basis to solve
the puzzle. Fig. 3b shows a 5 × 5 Yin-Yang configuration
based on Fig. 3a. However, this configuration does not satisfy
the connectivity rule for the Yin-Yang puzzle. Any Yin-Yang
board whose every cell has been filled with either a black or a
white circle is a Yin-Yang configuration. Fig. 3c is a solution
for Yin-Yang instance in Fig. 3a. This solution is a Yin-Yang
configuration that follows the two Yin-Yang rules. We notice
that all Yin-Yang solutions are Yin-Yang configurations, but
not conversely.

C. The Non-existence of 2× 2 Alternating Cells

In a Yin-Yang puzzle, it is possible to have a configuration
with 2 × 2 cells containing two white and two black circles
that are placed diagonally. We formally define this condition
in Definition 4 and illustrates such a condition in Fig. 4.

Definition 4. A block of 2 × 2 alternating cells are four
adjacent cells (r, c), (r, c + 1), (r + 1, c), and (r + 1, c + 1)
such that the color of the circles in (r, c) and (r+1, c+1) are
identical, the color of the circles in (r, c + 1) and (r + 1, c)
are identical, and the color of the circles (r, c) and (r, c+ 1)
are different. In other words, all circles in the same row and
the same column are of a different color.

•
◦
◦
•

◦
•
•
◦

Fig. 4: Two types of 2× 2 alternating patterns.

The non-existence of 2× 2 alternating cells is discussed in
[1, Lemma 1]. However, the proof is not described rigorously.
Here, we discuss a more formal deduction to prove the
non-existence of 2 × 2 alternating cells in any Yin-Yang
solution by reducing the Yin-Yang configuration containing
2 × 2 alternating cells into a (non-planar) graph. Hence, the
existence of 2 × 2 alternating cells implies the existence of
a planar embedding of a previously known non-planar graph,
namely, the complete graph K5 [28]–[30]. Since it is already
known that K5 is non-planar, we need to know if we can
convert a Yin-Yang configuration containing a 2×2 alternating
pattern into a graph containing a subgraph that is isomorphic
to K5.

Theorem 1. Let A be a Yin-Yang configuration of size m ×
n containing at least one 2 × 2 alternating cells, then this
configuration does not satisfy the connectivity constraint of a
Yin-Yang puzzle.

Proof. Suppose we have 2×2 alternating cells in a configura-
tion. We then have a subgraph with two white nodes and two
black nodes in an alternating pattern. These nodes cannot be
moved as they are reflecting the 2× 2 alternating cells in the
configuration. First, we assume that there is a path connecting
the white nodes. If we add a new node with a different color in

the middle of the subgraph, we will have a new subgraph with
five nodes. Fig. 5 shows illustrations for both subgraphs. Now,

1 2

3 4

(a) A subgraph of a
Yin-Yang configuration

containing a 2× 2
alternating pattern.

1 2

3 4

5

(b) A subgraph from Fig.
5a with an additional node

in the middle.

Fig. 5: Graph construction from Yin-Yang configuration
containing 2× 2 alternating cells.

let us assume there is a path connecting the black nodes. Then
we will have a connected graph containing five four-degree
nodes. This means that the graph is isomorphic to K5, which
is known to be non-planar [28]–[30]. The new path cannot
possibly be inside nodes 1, 2, 3, and 4, and must be outside
of that area. If there is a path connecting the black nodes, the
path must intersect the path of white nodes from node 1 to
node 4. There is no way to connect the colored circles without
intersecting with another color. Therefore, the existence of a
2× 2 alternating pattern violates the connectivity rule.

Another type of discrete proof using the extremal principle
technique is discussed in [31]. As a result, we have the
following corollary.

Corollary 1. Any Yin-Yang solution does not contain 2 × 2
alternating cells defined in Definition 4.

III. POLYNOMIAL TIME ALGORITHM FOR VERIFYING
YIN-YANG SOLUTION

We discuss pertinent algorithms to verify whether a Yin-
Yang configuration is a solution or not based on the Yin-Yang
rules. The algorithms use 0-based indexing. Thus, an m × n
Yin-Yang puzzle is represented with a two-dimensional array
A and the indices for the rows and columns are respectively
0, 1, . . . ,m−1 and 0, 1, . . . , n−1. We use a binary array A to
represent a Yin-Yang configuration. The number 0 represents
a black circle while 1 represents a white circle.

A. Constraint Checking Related to 2× 2 Cells

We use Algorithm 1 to check whether a Yin-Yang board
contains 2×2 cells of the same color or 2×2 cells of alternating
color as described in Definition 4. In this algorithm, we call the
procedure COMPARE2BY2(s) to check whether any 2×2 cells
violate the Yin-Yang rule, i.e., whether these cells are of the
same color or they form alternating patterns. More specifically,
the procedure returns true if the 2× 2 cells do not satisfy the
aforementioned rule. This condition happens when s is the
string 0000 (all circles are black), 1111 (all circles are white),
0110, or 1001. The 0110 and 1001 are strings associated with
the alternating 2× 2 cells as described in Definition 4.

The general idea of Algorithm 1 is to scan the binary two-
dimensional array A of Yin-Yang configuration with a 2 × 2
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Algorithm 1 CHECK2BY2(A[m,n]) checks whether a Yin-Yang board A of size m×n contains a block of 2× 2 cells of the
same color or a block of 2× 2 alternating cells as in Definition 4.

Input: A two dimensional binary array A[m,n] of size m× n, each cell contains either 0 or 1.
Output: The procedure returns true if A[m,n] does not contain a block of 2× 2 cells of the same color or a block of 2× 2

alternating cells as in Definition 4; otherwise the procedure returns false.
1: for i← 0 to m− 2 do
2: for j ← 0 to n− 2 do
3: s← A[i][j] ∥A[i+ 1][j] ∥A[i][j + 1] ∥A[i+ 1][j + 1] ▷ concatenate all entries in a 2× 2 adjacent cells
4: if COMPARE2BY2(s) = true then
5: return false
6: end if
7: end for
8: end for
9: return true

box and concatenate the value of the cells to form a string.
The 2× 2 box scans through every possible 2× 2 cell in the
array, and it is performed (m− 1)(n− 1) times. The string is
then compared with the COMPARE2BY2() procedure to check
whether it satisfies the aforementioned rule. This process is
illustrated in Fig. 6.

Fig. 6: Scanning process illustration for checking the rules
related to 2× 2 cells. The colored dots represent the top

left-most cell in a 2× 2 block in each iteration. The colored
dashed boxes represent the 2× 2 blocks checked in each

iteration.

Fig. 6 shows a visualization of Algorithm 1. The colored
dots represent the targeted cell in each iteration. The colored
dashed squares represent the 2× 2 blocks that are checked in
each iteration. These 2× 2 blocks are obtained by taking the
targeted cell as the top-left cell in the block as well as three
cells rightward, downward, and diagonally downward from it.
Since the cells in row m− 1 and column n− 1 cannot form
2× 2 cells where the cell is the top-left cell in the area, these
cells are not included as the targeted cells.

The time complexity of this function can be observed from
each for loop. The for loop in lines 1-8 runs (m − 1) times
and the for loop in lines 2-7 runs (n − 1) times. Since the
loops are nested, the algorithm runs in O((m − 1)(n − 1))
time, which can be simplified into O(mn).

B. Connectivity Checking of a Yin-Yang Solution

In a Yin-Yang solution, all circles of the same color must
be connected. To determine whether the circles are connected,
we can use graph traversal algorithms, such as the Breadth-
First Search (BFS) or the Depth-First Search (DFS) algorithm.
Algorithm 2 is a function that checks whether the solution
follows the connectivity constraint using the BFS approach.
The main idea is to use BFS to search through each of the
connected cells.

Before we use the BFS to check the connectivity, we
initially determine the number of white and black circles in
the board. We do this by checking each cell in the array A and
counting the number of circles for each color. This procedure
runs for all cells in the array A, which is of size m×n. Thus,
we have O(mn) time complexity for this procedure.

We also need to know which cell is the starting point for
the black circles and the white circles in our BFS procedure.
Suppose we want to check whether the white circles are
connected. First, we look for the leftmost top cell containing
a white circle. Suppose this cell is denoted by (r, c). To check
the connectivity of the white circles, we perform BFS using
(r, c) as the initial node.

The algorithm uses arrays dr and dc to represent (row, col+
1), (row + 1, col), (row, col − 1), and (row − 1, col), which
are the adjacent cells of the cell (row, col). The algorithm
also calls the procedure VALIDCELL(r, c) to check whether
a cell (r, c) cell exists within the array A (mathematically,
0 ≤ r ≤ m − 1 and 0 ≤ c ≤ n − 1). The algorithm then
checks the following conditions:

1) If the adjacent cell has not been checked, then we mark
its position, otherwise we ignore it.

2) If the value of that adjacent cell in the array A matches
the color of the initial circle, then we add that position
into the queue and add 1 to the count.

The algorithm then runs until there are no more cells to
be checked inside the queue. The function returns the total
number of the traversed cells with the same color as the initial
cell. With this criterion, one can then see if it is equal to the
total number of that color (0 or 1). If the condition holds, then
all of those cells of the same color are connected. Otherwise,
some cells of that color are not connected.

The running time of BFS is O(|V |+|E|) where |V | denotes
the number of vertices, and |E| denotes the number of edges in
the graph [32, p. 597]. Since a cell is at most connected to four
other cells, then |E| ≤ 4|V |. We also have |V | ≤ mn, thus
the running time for Algorithm 2 is O(|V |+ |E|) = O(mn).

Another approach for checking the connectivity of the
circles of the same color is using the DFS. In DFS, we use a
stack data structure instead of a queue. Although theoretically,
the asymptotic running time complexities of BFS and DFS
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Algorithm 2 CHECKCONNECTIVITYBFS(A[m,n], r, c, color) counts the number of connected cells of the same color in a
Yin-Yang board A of size m× n using the BFS approach.

Input: A two dimensional binary array A of size m× n, each cell contains either 0 or 1, two integers r and c that marks the
starting position (a cell (r, c) within A[m,n]), and an integer color whose value is either 0 or 1.

Output: The procedure returns the number of connected cells of a color based on color ∈ {0, 1}.
1: checklist[r][c]← 1 ▷ adding an indicator that the first cell has been checked
2: queue.push([r, c])
3: dr ← [0, 1, 0,−1]
4: dc← [1, 0,−1, 0]
5: count← 1
6: while queue not empty do
7: row, col← queue.pop()
8: for i← 0 to 3 do ▷ iteration for dr and dc
9: adjRow ← row + dr[i]

10: adjRol← col + dc[i]
11: if VALIDCELL(adjRow, adjRol) and checklist[adjRow][adjCol] = 0 then
12: checklist[adjRow][adjCol]← 1 ▷ adding an indicator that the adjacent cell has been checked
13: if A[adjRow][adjCol] = color then
14: queue.push([adjRow, adjCol]) ▷ push the row and column positions to the queue
15: count← count+ 1 ▷ increment the counter for the number of connected cells by 1
16: end if
17: end if
18: end for
19: end while
20: return count

are identical, each algorithm might have a different practical
running time. For experimental comparison purposes, we also
devise an algorithm for checking the connectivity of a Yin-
Yang solution using the DFS approach. The pseudo-code for
this algorithm is similar to Algorithm 2 with little differences
in lines 2, 6, 7, and 14 where the stack data structure is used
instead of a queue.

C. Main Verification Algorithm and Its Analysis

Suppose we are given a Yin-Yang configuration represented
in a two-dimensional array A. To check whether this con-
figuration is also a Yin-Yang solution, we use Algorithm 3
which is a combination of Algorithm 1 and Algorithm 2.
Notice that Algorithm 2 can be replaced with the DFS-based
approach with the same asymptotic running time complexity.
Some variables are written with the letter w or b in the
beginning so that they can be associated with either white
or black circles. For example, variables wCount and bCount
respectively count the number of white and black circles in
A, whereas variables wStart and bStart are correspondingly
used to determine the starting positions of the white and
black circles in A. All of these variables are later used for
determining the connectivity of each color of circles using
graph traversal algorithms. In Algorithm 3, the procedure
CHECKCONNECTIVITYBFS() refers to either Algorithm 2 or
its DFS-based counterpart. The bV alid variable counts the
number of black circles traversed from the top leftmost black
circle in A. Similarly, the wV alid variable counts the number
of white circles traversed from the top leftmost white circle
in A. If bCount = bV alid, we conclude that all black circles

in A are connected. Analogously, wCount = wV alid infers
that all white circles in A are connected.

The asymptotic running time of Algorithm 3 can be de-
termined from the functions involved in lines 1, 7, and 12.
Observe that:

1) line 1 calls the procedure CHECKS2BY2() described in
Algorithm 1 whose running time is O(mn),

2) line 7 calls either the procedure CHECKCONNECTIV-
ITYBFS() described in Algorithm 2 or its DFS-based
counterpart, the running time of such an algorithm is
O(mn),

3) line 12 performs similar computation as line 7, the
running time of such computation is O(mn).

Since each procedure is called independently, the running time
of Algorithm 3 is O(mn). We conclude that verifying whether
a Yin-Yang configuration of size m × n is also a Yin-Yang
solution takes O(mn) time. In other words, we show that
verifying whether a Yin-Yang configuration is also a Yin-Yang
solution takes polynomial time with respect to the size of the
Yin-Yang board.

IV. SOLVING YIN-YANG PUZZLE USING EXHAUSTIVE
SEARCH AND PRUNE-AND-SEARCH TECHNIQUES

In this section, we discuss two algorithms for solving
arbitrary Yin-Yang puzzles with h hints of size m × n. The
algorithms also used 0-based indexing as described in Section
III.
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Algorithm 3 VERIFICATION(A[m,n]) checks if an m× n Yin-Yang configuration is a valid solution or not.

Input: A two dimensional binary array A of size m× n, each cell contains either 0 or 1.
Output: The procedure returns true if A is a valid Yin-Yang solution and false otherwise.

1: if CHECK2BY2(A) = true then
2: bCount← A.count(0) ▷ counts the number of black circles in A
3: wCount← A.count(1) ▷ counts the number of white circles in A
4: bStart← A.FIND FIRST(0) ▷ finds the top leftmost cell filled with a black circle in A
5: wStart← A.FIND FIRST(1) ▷ finds the top leftmost cell filled with a white circle in A
6: if bStart ̸= (−1,−1) then ▷ if the top leftmost black circle exist
7: bV alid← CHECKCONNECTIVITYBFS(A, bStart[0], bStart[1], 0)
8: else
9: bV alid← 0 ▷ since there is no black circle in A, the count for black circle is set to 0

10: end if
11: if wStart ̸= (−1,−1) then ▷ if the top leftmost white circle exist
12: wV alid← CHECKCONNECTIVITYBFS(A,wStart[0], wStart[1], 1)
13: else
14: wV alid← 0 ▷ since there is no white circle A, the count for white circle is set to 0
15: end if
16: if bCount = bV alid and wCount = wV alid then
17: return true
18: end if
19: end if
20: return false

A. Exhaustive Search Technique for Finding Yin-Yang Solu-
tions

An exhaustive search approach can be used to solve an
arbitrary Yin-Yang puzzle. The idea is to find all possible con-
figurations for a Yin-Yang puzzle and use the aforementioned
Yin-Yang verification algorithm to find which configurations
are also solutions. We first generate all possible Yin-Yang
configurations based on an arbitrary Yin-Yang instance using
Algorithm 4. A Yin-Yang instance is represented using an
array whose entries are either 0, 1, or ∗, where 0 denotes a
black circle, 1 denotes a white circle, and ∗ denotes an empty
cell.

Algorithm 4 returns all possible configurations of a Yin-
Yang instance. This procedure takes a copy of the input
and checks every cell, whether it contains ∗, 1, or 0. If the
current cell is filled with ∗ (which is associated with an empty
cell), then the function takes all existing configurations and
creates two new configurations for each of them. The new
configurations have the current cell replaced with either 1 or
0, doubling the number of the previous configurations. This
process repeats until all cells have been checked. The function
then returns a list of all possible configurations, i.e., all binary
arrays from the instance whose empty cells are filled with
either 1 or 0.

Fig. 7 shows a simple decision tree visualization of each
configuration generated with this algorithm from a single
instance. By creating two new configurations from a single
configuration, the procedure ends up with a larger number of
unique configurations. In this example, the initial Yin-Yang
instance consists of three empty cells, and each cell can be
filled with either 0 or 1. As a consequence, there are eight
different possible configurations as denoted by the leaves of

Algorithm 4 GETCONFIGURATIONS(A[m,n]) generates all
m× n Yin-Yang configurations based on an m× n Yin-Yang
instance.
Input: A two dimensional binary array A of size m×n, each

cell contains 0, 1, or ∗.
Output: The procedure returns all possible configurations

from the given instance.
1: config.push(A)
2: for i← 0 to m− 1 do
3: for j ← 0 to n− 1 do
4: if A[i][j] = ∗ then
5: newList← empty list
6: while config not empty do
7: newConfig ← config.pop()
8: newConfig[i][j]← 0
9: newList.push(newConfig)

10: newConfig[i][j]← 1
11: newList.push(newConfig)
12: end while
13: config ← newList
14: end if
15: end for
16: end for
17: return config

the decision tree in Fig. 7.
The asymptotic time complexity of Algorithm 4 can be

determined from the nested for loops in lines 2-16 and 3-15
and the while loop in lines 6-12. By considering the doubly-
nested nature of the for loops in lines 2-16 and 3-15, we
see that the algorithm performs at least m · n iterations to
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Fig. 7: Visualization of Algorithm 4. The root of the decision tree is the initial Yin-Yang instance where 0, 1, and ∗
correspondingly denote a black circle, a white circle, and an empty cell.

check whether a cell in the Yin-Yang configuration is empty
(which is denoted by ∗). Notice that mn is the minimum
number of iterations needed to perform a linear search in a
two-dimensional array of size m× n. The while loop in lines
6-12 runs depending on the number of available unfinished
configurations in the variable config. This while loop empties
the list config and creates two new configurations. Each
time the while loop terminates, the number of configurations
doubles. Since the while loop runs if the current cell in the
array A is equal to ∗, then the number of execution of this
loop is 1+2+4+ · · ·+2(mn−h)−1 = 2mn−h− 1, where h is
the number of hints (the number of non-empty cells). Notice
that mn − h is the number of empty cells in the Yin-Yang
configuration. Furthermore, the value 2mn−h also corresponds
to the number of ways to fill every empty cell in the initial
Yin-Yang instance with either 1 or 0. Moreover, the number of
nodes in the decision tree illustrating the process of Algorithm
4 for an m×n Yin-Yang instance of h hints is 2mn−h+1− 1.
We conclude that the asymptotic time complexity of this while
loop is O(2mn−h).

Algorithm 4 takes precisely mn steps if the Yin-Yang
instance does not contain an empty cell (a character ∗).
Moreover, the algorithm takes precisely 2mn − 1 steps if
the Yin-Yang instance is empty (all cells are empty). The
procedure requires O(mn) time if the number of empty cells is
sufficiently low, or mathematically we have mn ≥ 2mn−h−1.
In contrast, if the number of empty cells is sufficiently high,
we have mn ≤ 2mn−h − 1, and thus the procedure requires
O(2mn−h) time. Therefore, we conclude that the asymptotic
time complexity of Algorithm 4 is O(max{mn, 2mn−h}).

To obtain all solutions for an m×n Yin-Yang instance, we
first generate all possible Yin-Yang configurations using Al-
gorithm 4 and then verify each configuration using Algorithm
3. This process is described in Algorithm 5.

B. Prune-and-Search Technique for Finding Yin-Yang Solu-
tions

We can optimize Algorithm 4 by applying the prune-and-
search technique. N. Megiddo first suggested this paradigm
for solving linear programming related problems [33]. In
general, the prune-and-search approach removes (prunes) the
non-promising search space in each iteration. Here, the idea is
to check whether an unfinished configuration contains either
2× 2 cells of the same color or a 2× 2 alternating pattern. If
any configuration contains any of these conditions, then such a
configuration is removed from the prospective list of solutions.

Algorithm 6 provides a detailed description of the essential
CHECKSURROUND2BY2() function in our pruning technique.
Given a cell (r, c), this function checks whether (r, c) is
located within a block of 2 × 2 cells of the same color or
or a block of 2× 2 alternating cells. To verify this condition
efficiently, we consider four different positions of (r, c) within
a block of 2× 2 cells, namely top-left, top-right, bottom-left,
and bottom-right. If (r, c) is at the top-left position within a
block of 2× 2 cells, then we also need to check the entries of
(r, c+1), (r+1, c), and (r+1, c+1). We then check whether
these cells contain circles of the same color or constitute a 2×2
alternating pattern. Similar verification technique is performed
if (r, c) is at the top-right, bottom-left, or bottom-right position
of a 2× 2 block.

Fig. 8 illustrates lines 3-12 of Algorithm 6. The dashed
boxes illustrate the 2×2 cells that may contain the prohibited
pattern. The red dot indicates the cell that is included in each
of the possible 2× 2 blocks. For example, the top-left dashed
box demonstrates the condition when the cell (r, c) is located
at the bottom-right position of the 2 × 2 block. Notice that
the four possible positions of (r, c) within a 2 × 2 block are
checked efficiently using a similar technique as in Algorithm
2. For instance, if dr = dc = 1, then Algorithm 6 checks
whether the 2 × 2 block containing (r, c), (r + 1, c), (r +
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Algorithm 5 FINDSOLUTIONEXHAUSTIVE(A[m,n]) finds all solutions to a Yin-Yang instance of size m× n represented in
an array A. Each cell of A contains either 0, 1, or ∗, where ∗ denotes an empty cell.

Input: An m× n Yin-Yang instance represented in a binary array A[m,n].
Output: All solutions to the Yin-Yang instance A[m,n] given as the input.

1: config ← GETCONFIGURATIONS(A[m,n])
2: solution← empty list ▷ solution stores all possible solutions to the puzzle
3: for all C ∈ config do ▷ C is an array of Yin-Yang configuration
4: if VERIFICATION(C) = true then
5: solution.push(C) ▷ add C to the list of solutions
6: end if
7: end for
8: return solution

Algorithm 6 CHECKSURROUND2BY2(A[m,n], r, c) checks whether a cell (r, c) in a Yin-Yang board A of size m × n is
contained within 2× 2 cells of the same color or within 2× 2 alternating cells as in Definition 4.

Input: A cell (r, c) within two dimensional binary array A of size m× n.
Output: The function returns true if the cell (r, c) in A is not contained within 2× 2 cells of the same color or within a 2× 2

alternating cells as in Definition 4. The procedure returns false otherwise.
1: dr ← [1,−1, 1,−1]
2: dc← [1, 1,−1,−1]
3: for i← 0 to 3 do
4: adjR = r + dr[i]
5: adjC = c+ dc[i]
6: if VALIDCELL(adjRow, adjCol) then
7: s← A[r][c] ∥A[adjR][c] ∥A[r][adjC] ∥A[adjR][adjC] ▷ concatenate all entries in a 2× 2 adjacent cells
8: if COMPARE2BY2(s) = true then
9: return false

10: end if
11: end if
12: end for
13: return true

1, c), and (r + 1, c+ 1) constitutes a prohibited pattern using
COMPARE2BY2() function described earlier. Assuming that
the addition and concatenation operations take constant time,
it is obvious that the asymptotic complexity for the running
time of Algorithm 6 is O(1).

Fig. 8: Illustration for checking the rules related to 2× 2
cells from a single cell.

Algorithm 7 is modified from the exhaustive search tech-
nique in Algorithm 4. The function performs a similar task
as Algorithm 4 with a slight tweak when creating new
configurations. Instead of creating two new configurations
from an unfinished one, the function calls Algorithm 6 to
check whether the new configuration contains prohibited 2×2
patterns. If the additional circle (a new value of either 0 or
1) results in any of these patterns, the new configuration is
discarded.

Fig. 9 shows a visualization of Algorithm 7. This approach
eliminates any configuration containing 2×2 block of the same

color or any 2×2 alternating pattern. Thus, this approach may
reduce the number of nodes in the decision tree significantly
in some Yin-Yang instances. However, the asymptotic running
time complexity for the worst-case scenario of Algorithm 7 is
similar to that of Algorithm 4, i.e., O(max{mn, 2mn−h}). The
resulting decision trees related to Algorithm 4 and Algorithm
7 are identical if we deal with an instance such that replacing
∗ by 0 or 1 never yields any type of prohibited 2× 2 blocks.

To get all solutions to an m×n Yin-Yang instance, we first
generate all possible Yin-Yang configurations that do not have
prohibited 2×2 block using Algorithm 7. Afterwards, each of
these possible configurations is then checked with Algorithm
3. Nevertheless, since the configurations do not contain 2× 2
prohibited block, the CHECK2BY2() function in line 1 of
Algorithm 3 can be skipped. This process is similar to that
illustrated in Algorithm 5, but the function GETCONFIGURA-
TIONS() is replaced with GETCONFIGURATIONSPRUNE().

V. COMPUTATIONAL EXPERIMENTS

Our experiments are mainly conducted to test the actual run-
ning time of our proposed algorithms. We run our experiments
mainly using C++ programming language and g++ compiler
version 11.2.0 in a Windows 10 64-bit operating system. We
choose C++ instead of other programming languages such as
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Algorithm 7 GETCONFIGURATIONSPRUNE(A[m,n]) generates m×n Yin-Yang configurations based on an m×n Yin-Yang
instance using prune-and-search technique.

Input: A two dimensional binary array A of size m× n, each cell contains 0, 1, or ∗.
Output: The procedure returns some configurations that follows the 2× 2 rule and do not have alternating pattern from the

given instance.
1: config.push(A)
2: for i← 0 to m− 1 do
3: for j ← 0 to n− 1 do
4: if A[i][j] = ∗ then
5: newList← empty list
6: while config not empty do
7: newConfig ← config.pop()
8: newConfig[i][j]← 0
9: if CHECKSURROUND2BY2(newConfig, i, j) = true then

10: newList.push(newConfig)
11: end if
12: newConfig[i][j]← 1
13: if CHECKSURROUND2BY2(newConfig, i, j) = true then
14: newList.push(newConfig)
15: end if
16: end while
17: config ← newList
18: end if
19: end for
20: end for
21: return config

Java or Python due to its relatively fast running time [34].
The system also uses Intel(R) Core(TM) i7-7700HQ CPU
@ 2.80GHz with 16.0 GB of RAM and a 500 GB SATA
2.5” SSD with up to 550 MB/s of reading speed and 520
MB/s of write speed. The source codes, input files, as well as
other documents relating to our computational experiment are
available at
https://github.com/MadetheMeep/
Yin-Yang-Exhaustive-Search.

A. Experimental Results for Verification Algorithms

We tested our proposed verification function in Algorithm
3 with some Yin-Yang solutions as described in [35]. There
are 26 different Yin-Yang solutions where each solution cor-
responds to a character in the standard English alphabet. Each
solution is represented in an 11 × 9 board. For comparative
purposes, we compare the utilization of the BFS and DFS
approach in our proposed verification algorithm. In our exper-
iment, we determine the average running time to verify every
Yin-Yang solution. This average running time is obtained from
three different runs for verifying each solution.

From our experiment, we obtain that the average running
time for verifying a Yin-Yang solution using the BFS tech-
nique and DFS technique are respectively 0.5675 and 0.5711
milliseconds. The lowest average for verification time occurs
on the letter “C” for BFS (0.4460 milliseconds) and the letter
“J” for DFS (0.5010 milliseconds). In addition, the highest
average running time happens on the letter “G” for BFS

(0.7233 milliseconds) and the letter “X” for DFS (0.6307
milliseconds).

B. Experimental Comparison Between Exhaustive Search and
Prune-and-Search Techniques

We tested our proposed algorithms for solving several
modified Yin-Yang instances. These instances are modified
from the Yin-Yang instances and solutions in [35]. For every
instance that corresponds to an English alphabet, instead of
using its original form in [35], we remove e circles from
the original solution where e is varied between 0 and 23
(inclusive). The circles are removed in a left-to-right and top-
to-bottom fashion except if the circles are also hints in the
original Yin-Yang instance in [35]. For example, a Yin-Yang
instance that corresponds to the letter “E” with e = 16 circles
removed is obtained by removing 9 circles at the first row and
7 circles at the second row except those in sixth and seventh
columns. The construction of such an instance guarantees that
the solution of each modified Yin-Yang instance is unique.

We compare the running time of four different algorithms
to solve Yin-Yang puzzles, namely the exhaustive search ap-
proach with BFS-based verification (ES-BFS), the exhaustive
search approach with DFS-based verification (ES-DFS), the
prune-and-search approach with BFS-based verification (PS-
BFS), and the prune-and-search approach with DFS-based
verification (PS-DFS). Each of these algorithms is tested to
solve different Yin-Yang instances where each instance is
obtained from the aforementioned modified instance in [35].
To obtain the average running time for solving an instance

https://github.com/MadetheMeep/Yin-Yang-Exhaustive-Search
https://github.com/MadetheMeep/Yin-Yang-Exhaustive-Search
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Fig. 9: Visualization of the prune-and-search technique. The instance is identical to that in Fig. 7. The red cross denotes that
the updated instance contains a prohibited 2× 2 block.

with e removed circles, the average running time of three
runs for solving each of 26 such instances is computed. We
summarize the relationship between the value of e and the
practical running time of each algorithm in Fig. 10.

Notice that the number of removed circles is equal to the
number of non-empty cells, thus e = mn − h, where h is
the number of hints in the Yin-Yang instance. From Fig. 10
we see that the practical running time for solving the Yin-
Yang instance of e removed circles grows exponentially in
terms of e. This is consistent with the previously discussed
theory in Section IV stating that the asymptotic running time
for solving a Yin-Yang instance of size m × n with h hints
is O(max{mn, 2e}) where e = mn − h. In addition, we
see that despite both the exhaustive search and prune-and-
search techniques having identical asymptotic running time
complexities in the worst-case scenario for solving a Yin-
Yang instance of size m × n with h hints, the prune-and-
search approach practically outperforms the exhaustive search
techniques. Moreover, our experiment also shows that finding a
solution with the DFS-based verification is typically faster than
obtaining a solution with the BFS-based verification, albeit
their difference is not significant.

C. Counting the Number of Solutions of Yin-Yang Puzzles

In this section, we describe algorithms for finding the
number of solutions to the Yin-Yang puzzle. Specifically, we
remove all hints from the puzzles which are used to find
solutions and instead start from an empty grid. We count the
number of ways to fill this grid with valid Yin-Yang solutions.
For a grid of size m × n, we define S(m,n) as the number
of valid Yin-Yang solutions for an empty m × n grid. Since
an empty Yin-Yang instance of size m × n has an identical
number of solutions to an empty Yin-Yang instance of size

n×m, our investigation only considers the case when m ≤ n.
We also count the number of solutions for several empty
grids using combinatorial techniques. These numbers are then
compared to the output we obtain from the implementation of
our algorithms.

We first derive mathematical facts related to the number of
solutions for empty Yin-Yang instances of size 1×n and 2×n.

Theorem 2. There are 2n different valid Yin-Yang solutions
to a 1×n empty Yin-Yang board where n is a positive integer.

Proof. Suppose the number of white circles is w and the
number of black circles is b. Since every cell is filled, we have
0 ≤ w, b ≤ n and w+ b = n. There are two types of possible
configurations that include both colors. Either all white circles
are located on the left part of the board, or all white circles are
located on the right part of the board. It is impossible to have
white circles in between the black circles (or vice versa) since
this configuration violates the connectivity rule (see Fig. 11
for an illustration). There is exactly one solution with w white
circles, where 0 < w < n, if all white circles are located on
the left part of the board. Thus, the number of solutions with
at least one white circle located on the left part of the board
is n − 1. The same argument can be applied when all white
circles are located on the right part of the board. Consequently,
there are 2(n − 1) different solutions with at least one circle
of each color. Notice that the board can be filled with only
one color (all white or all black circles) and still results in a
valid board. Hence, the total number of possible solutions is
2(n− 1) + 2 = 2n.

There are exactly 12 different solutions to an empty 2 ×
2 Yin-Yang board. This quantity can be obtained using the
following reasoning. Notice that there are 24 = 16 possible
ways to fill a 2× 2 board with either a white or a black circle
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Fig. 10: The average running time for solving modified Yin-Yang instances with e removed circles from the original
Yin-Yang solutions. Here, e satisfies 0 ≤ e ≤ 23. Moreover, for the prune-and-search technique, the experiment is conducted

until e = 33.

• ◦ ◦ ◦ ◦ ◦ •

Fig. 11: An example of white circles in between black
circles.

in each of the cells. However, since there are four types of
prohibited 2×2 blocks, the number of valid Yin-Yang solutions
of size 2×2 is 16−4 = 12. The following lemma and theorem
discuss the number of solutions to an empty 2× n Yin-Yang
puzzle if n ≥ 3.

Lemma 1. The minimum (respectively, maximum) number of
white (or black) circles in a Yin-Yang solution of a 2 × n
Yin-Yang puzzle where n ≥ 3 is n− 2 (respectively, n+ 2).

Proof. Suppose the number of white and black circles are w
and b, respectively. Since all cells are filled, then we have
w + b = 2n. Suppose that the number of white circles is less
than n − 2. Without loss of generality, we may assume that
w = n − 3 and infer that b = n + 3. If the configuration
contains a 2 × 2 block of the same color, then we are done
(such a condition violates the 2×2 rule). Thus, we now assume
that the configuration does not contain any 2× 2 block of the
same color. Since there are only two rows on the Yin-Yang
board, then by the pigeonhole principle, one row is filled with
at least three black circles. Now, consider the case if one row is
filled with exactly three black circles and another row is filled
with all black circles (see Fig. 12 for illustration). Because

•
•
• • ...

...

•
•
• •
•

Fig. 12: A Yin-Yang board with exactly three black circles
in the bottom row.

there is no 2×2 block of the same color, then a black circle is
located between two white circles. This breaks the connectivity
rule since the white circles are separated by a black circle in
between (see Fig. 13). Hence, there is no solution for any 2×n
Yin-Yang configuration with w = n − 3 and b = n + 3 and
vice versa. With the same reasoning, there is no solution for
any 2 × n Yin-Yang configuration with w ≤ n − 3 and b ≥
n + 3 and vice versa. Thus, the minimum and the maximum
number of black or white circles in a 2× n Yin-Yang puzzle
are respectively n− 2 and n+ 2.

•
•
•
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•
•

...

...

•
◦
•
◦
•
•

Fig. 13: A Yin-Yang configurations with a black circle in
between white circles.

We use the previous lemma to prove the following theorem.

Theorem 3. There are exactly 18 different valid Yin-Yang
solutions to a 2× n empty Yin-Yang board where n ≥ 3.

Proof. Suppose the number of white circles and black circles
are respectively denoted by w and b. Since all the cells are
filled, we have w+ b = 2n. According to Lemma 1, we have
n− 2 ≤ w, b ≤ n+ 2. With this fact, five separate quantities
can be defined as follows:

1) Wn−2: the number of solutions to a Yin-Yang puzzle
with n− 2 white circles (and n+ 2 black circles),

2) Wn−1: the number of solutions to a Yin-Yang puzzle
with n− 1 white circles (and n+ 1 black circles),

3) Wn: the number of solutions to a Yin-Yang puzzle with
n white circles (and n black circles),

4) Wn+1: the number of solutions to a Yin-Yang puzzle
with n+ 1 white circles (and n− 1 black circles),
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5) Wn+2: the number of solutions to a Yin-Yang puzzle
with n+ 2 white circles (and n− 2 black circles),

First, we determine Wn−2. Here, we have n−2 white circles
and n+ 2 black circles. Therefore, to put the black circles, a
row must be filled with all black circles, and the first and last
columns of the other row must be filled with black circles.
An illustration of this condition can be seen in Fig. 14. Notice

•
•
•
◦
...
...
•
◦
•
•

Fig. 14: A possible Yin-Yang solution for Wn−2.

that the configuration can be mirrored vertically and creates
another configuration where the white circles are in the first
row. Thus, we have Wn−2 = 2.

Second, we determine Wn−1. In this case, we have n − 1
white circles and n+1 black circles. To put the black circles,
a row must be filled with all black circles and one of the cells
in another row must be filled with one black circle, which can
be the first or the last column. One such condition is illustrated
in Fig. 15. Notice that the configuration can be mirrored both

•
•
•
◦
...
...
•
◦
•
◦

Fig. 15: A possible Yin-Yang solution for Wn−1.

horizontally and vertically. This creates another solution where
there are two black circles in the last column, all the white
circles in the first row, or both. Thus, we have Wn−1 = 4.

Third, we compute Wn where there are n black and white
circles each. There are two methods to fill the Yin-Yang board.
Either by filling one row with all white and another row with
all black or by filling the first column with all white and the
last column with all black. Two examples of such conditions
are illustrated in Fig. 16. Notice that in Fig. 16, the solution

•
◦
•
◦
...
...
•
◦
•
◦

◦
◦
•
◦
...
...
•
◦
•
•

Fig. 16: Two possible Yin-Yang solutions for Wn.

on the left can be mirrored vertically, while the solution on the
right can be mirrored both horizontally and vertically. Thus,
we have Wn = 2 + 4 = 6.

We can obtain the result of Wn+1 and Wn+2 by observing
Wn−1 and Wn−2. Notice that the colors are swapped from
those in the argument of Wn−1 and Wn−2, and thus the
number of possible solutions are identical. Hence, we have
Wn+1 = Wn−1 and Wn+2 = Wn−2. Consequently, the
number of possible solutions for an empty 2 × n Yin-Yang
puzzle where n ≥ 3 is Wn−2+Wn−1+Wn+Wn+1+Wn+2 =
2(2) + 2(4) + 6 = 18.

We also investigate the number of solutions for Yin-Yang
puzzles of size 3 × n, 4 × n, and 5 × n. However, this
investigation is exclusively conducted using computational
experiments as we have not found any formula for counting the
number of solutions for such Yin-Yang puzzles. We represent

the result of our investigation for several values of S(m,n)
in Table I. However, one should note that some solutions
are identical to one another if we consider horizontal or
vertical reflection, or 90◦ or 180◦ rotation in the clockwise
or counterclockwise direction.

TABLE I

The value of S(m,n) for several m and n where
1 ≤ m ≤ n ≤ 6.

m
n

1 2 3 4 5 6

1 2 4 6 8 10 12
2 12 18 18 18 18
3 34 50 70 94
4 96 220 420
5 660 1948

Our computational experiments are also used to determine
the actual running time for counting the number of solutions to
the empty Yin-Yang puzzles of several sizes. We compare the
actual execution times of four different algorithms as described
in Section V-B, namely ES-BFS, ES-DFS, PS-BFS, and PS-
DFS. Fig. 17 shows the average running times of three runs for
finding the number of solutions to empty instances of 1 × n
Yin-Yang puzzles, where 1 ≤ n ≤ 25 for each algorithm.
The actual running time of each four different approaches
is relatively similar to one another for each n. Here, the
prune-and-search approach does not outperform the exhaustive
search technique. This happens because the pruning algorithm
only checks if the configuration contains any type of prohibited
2 × 2 block. Since the size of the Yin-Yang puzzle is 1 × n,
there are no 2×2 prohibited blocks in the configuration. Thus,
no configurations are eliminated using the prune-and-search
approach, and the verification algorithm needs to evaluate
every possible configuration.

Fig. 17: The average running time for finding the number of
solutions to empty instances of 1× n Yin-Yang puzzles

where n ∈ [1, 25].

Fig. 18 shows the average running time for finding the num-
ber of solutions to empty instances of 2×n Yin-Yang puzzles
where 2 ≤ n ≤ 12. Here, we notice some differences between
the average running time of the regular exhaustive search
approach and its prune-and-search counterpart for n ≥ 9.
The higher the value of n, the bigger the differences between
the actual average running time of these two algorithms.
This happens because the prune-and-search algorithm reduces
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the number of configurations that need to be evaluated by
removing the prohibited 2 × 2 blocks. The bigger the Yin-
Yang board dimension, the more it reduces the number of
configurations. In addition, the experimental result also shows
that there is no significant difference between the BFS-based
and DFS-based verifications.

Fig. 18: The average running time for finding the number of
solutions to empty instances of 2× n Yin-Yang puzzles

where n ∈ [2, 12].

Fig. 19 shows the average running time for finding the
number of solutions to empty instances of 3 × n Yin-Yang
puzzle, where 3 ≤ n ≤ 8. Here, we notice some differences
between the average running time of the regular exhaustive
search algorithm and its prune-and-search alternative for n = 7
and n = 8. This condition is similar to the previous result
explained in Fig. 18.

Fig. 19: The average running time for finding the number of
solutions to empty instances of 3× n Yin-Yang puzzles

where n ∈ [3, 8].

We also conduct experiments to determine the average
running time for finding the number of solutions to empty
instances of 4 × n and 5 × n Ying-Yang puzzles. However,
due to technical limitations of our computational environment,
we only investigate the average running time for finding the
number of solutions of 4 × 4, 4 × 5, 4 × 6, 5 × 5, and
5 × 6 puzzles. The average running times for finding the
number of solutions to empty instances of 4 × 4, 4 × 5,
and 4 × 6 puzzles are summarized in Table II, while the
same measurement for the empty instances of 5 × 5 and
5 × 6 puzzles are summarized in Table III. In addition, due
to the technical limitation of our computational device and

C++ specification, we omit the experiment to determine the
running time of the regular exhaustive search algorithm for
finding the number of solutions to the 5 × 6 puzzle. The
result of our experiment shows that—in terms of average
running time—the prune-and-search technique significantly
outperforms the exhaustive search approach for finding the
solutions to the Yin-Yang puzzle. Here, the speed-up factor
is non-linear, and the prune-and-search algorithm can find
the solutions up to almost 50 times faster than its regular
exhaustive search counterpart. Moreover, we see that there is
no significant difference between the utilization of BFS-based
and DFS-based verifications for each of the approaches.

TABLE II

The average running time (in seconds) for finding the
number of solutions to empty instances of 4× n Yin-Yang

puzzles where n ∈ [4, 6].

Algorithm
n

4 5 6

ES-BFS 0.6244 9.9965 168.3790
ES-DFS 0.6306 9.3669 167.6080
PS-BFS 0.1401 0.9648 6.7656
PS-DFS 0.1235 0.8883 6.0231

TABLE III

The average running time (in seconds) for finding the
number of solutions to empty instances of 5× n Yin-Yang

puzzle where n ∈ [5, 6].

Algorithm
n

5 6

ES-BFS 499.2820 −
ES-DFS 498.3727 −
PS-BFS 10.9921 116.3487
PS-DFS 11.0697 114.2330

VI. CONCLUDING REMARKS

We have discussed two algorithms for solving arbitrary Yin-
Yang puzzles, namely the exhaustive search approach and
the prune-and-search technique. In Section IV, we show that
both algorithms use an O(mn) time verification procedure
for checking whether an m × n Yin-Yang configuration is
also a solution. Moreover, both algorithms have an identical
asymptotic running time of O(max{mn, 2mn−h}) for finding
all solutions of a Yin-Yang instance with h hints of size
m× n. Nevertheless, our experiments show that, even though
the asymptotic time complexity of both algorithms is identical,
the prune-and-search technique practically outperforms the
conventional exhaustive search approach for solving an m×n
Yin-Yang puzzle.

The investigation regarding the mathematical and com-
putational aspects of the Yin-Yang puzzle is still new and
limited. We provide a function S(m,n) denoting the number
of solutions to an empty Yin-Yang instance of size m×n for
1 ≤ m ≤ n ≤ 6. However, this quantity does not consider
the cases in which we may have an identical solution after
we apply reflection or rotation. A more thorough investigation
regarding the number of different solutions—up to reflection,
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rotation, or a combination of both operations—is theoretically
interesting. We suggest the application of Burnside’s Lemma
or Polya Enumeration Theorem to solve such a problem [36].

Finally, we suggest another exploration for solving Yin-
Yang puzzles. Since Yin-Yang puzzles are NP-complete, then
it is inherently interesting to construct a SAT-solver-based
algorithm for solving such puzzles. This solver can be used to
solve another open problem, such as determining the minimum
number of hints required to ensure that an m × n Yin-Yang
puzzle has a unique solution.
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