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Numerical results of Crank-Nicolson scheme on
unsteady nano fluid under the effect of Prandtl,
Mixed Convection, and Magnetohydrodynamics

Mohammad Ghani, Yolanda Norasia, Indira Anggriani, Mohamad Tafrikan, Zulaikha

Abstract—In this paper, we are interested in the numerical
results on the temperature and velocity profiles over a sphere
of unsteady nano fluid by dealing with the effect of Prandtl,
mixed convection, and magnetohydrodynamics. We first employ
the boundary layer theory to establish the continuity, momen-
tum, and energy equations. We further solve those differential
equations numerically by using the finite difference scheme
of Crank-Nicolson and Thomas algorithm for the iteration
technique. The temperature and velocity profiles are established
graphically for the variations of Prandtl, mixed convection, and
magnetohydrodynamics. The velocity profile decreases when the
variations of Prandtl numbers increase. Moreover, the velocity
profiles increase when the variations of mixed convection and
magnetohydrodynamics are increased. The temperature profiles
are decreased for all variations of Prandtl numbers, mixed
convection and magnetohydrodynamics.

Index Terms—unsteady nano fluid, Crank-Nicolson scheme,
Prandtl numbers, mixed convection and magnetohydrodynamics.

I. INTRODUCTION

FLUID flow modeling is an applied science of mathematics
in engineering and industry. Flow modeling is based

on the application of physical laws which are then adjusted
to real problems. These laws are in the form of the law
of conservation of mass, Newton-II law, and the Law of
Thermodynamics-I [1]. The law of conservation of mass is
applied with regard to the density of the fluid. Density is
based on the particles in a fluid. Collision particles cause
momentum according to Newton’s second law. Collisions
between particles produce energy according to the First Law
of Thermodynamics. The equations formed are then converted
into non-dimensional equations and similarity equations [2].

Nanoparticles have the ability to increase thermal conductiv-
ity. The particles added to the base fluid are called nanofluids
[3]. Nanofluids are categorized as non-Newtonian fluids. Re-
search related to nanofluids was carried out by [4] on the effect
of Magnetohydrodynamics on the flow of nanofluids through
a porous cylinder. The research shows that the magnetic effect
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causes the flow velocity to decrease and the fluid temperature
to increase. Subsequent research [5] regarding the effect of
nanoparticles in the form of metals and metal oxides on
the flow of MHD nanofluids. The results showed that nano-
articles in the form of metal oxides increased the fluid flow
temperature faster. Research on the effect of nanoparticles in
the form of Argentum metal (Ag) on fluid flow through solid
balls was carried out by [6]. The flow velocity decreases due to
magnetic variations. On the other hand, the fluid temperature
increases due to magnetic variations. This happens because the
more significant the magnetic variation, the more nanoparticles
increase. The effect of heat generation and thermal radiation on
nanofluids flow was used in [7], [8]. Maxwell nanofluid flow
with Copper (Cu) and Titanium (Ti) nanoparticles were carried
out [9], and it was found that the volume fraction affects the
fluid temperature. The numerical solution for this research
was carried out using the Runge-Kutta method. Prameela et
all analyzed the effect of Prandtl number in fluid flow. They
conclude that velocity and temperature profile increase with
an increase in Prandtl number [10]. Recently, the problems of
heat, slip flow, and thermal radiation of ferrofluid for various
of geometry such as the stagnation point stretching/shrinking
surface have been extensively studied in [11], [12].

The Prandl number (Pr) is the ratio between the momentum
diversity and the heat used to determine the temperature of the
fluid flow. Prandtl number has a inverse linear relationship with
temperature of fluid [13]. Based on the influence of nanopar-
ticles in the temperature distribution, this study discusses the
effect of the Prantdl number and mixed convection on the flow
velocity and fluid temperature. According to some previous
investigations, we study the numerical results of mixed convec-
tion problem through a solid sphere by employing the uncon-
ditionally stable method of Crank-Nicolson, where these finite
difference approximations are then iterated by the Thomas
algorithm. In this paper, we are not interested in the stream
function of boundary layer near stagnation point as in [14] but
only the non-dimensional coupled differential equations. Then,
the strategy of numerical simulation is adapted from [15], by
applying the Crank-Nicolson scheme.

We further organize this paper as follows. In Section 2,
we present the mathematical model, which is adapted from
the physical model and boundary layer theory of nano fluid
through a sphere. We further give the finite difference scheme
to the non-dimensional governing equations and the numer-
ical simulations for the finite difference approximations. In
Section 3, we give some conclusions based on the results and
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discussions obtained in the previous section.

II. MAIN RESULTS

In this section, we first present the mathematical model of
continuity, momentum, and energy which are derived from the
law of mass conservation, the second law of Newton, and the
first law of thermodynamics respectively. Then, we employ the
numerical method of Crank-Nicolson to the non-dimensional
governing equations and the Thomas algorithm to establish
the numerical results iteratively by using software MATLAB
R2013a.

A. Mathematical Model

We consider the mixed convection through a sphere of
unsteady nano fluid with the effect of magnetohydrodynamics.
The physical model of this paper is represented in Figure 1.
The Figure 1 presents the illustration of the physical model
and coordinate system of the problem. The nano fluid before
passing through a sphere has the velocity U∞ and temperature
T∞. This current paper, we only focus on the sphere which
does not have porosity. So, the nano fluid only passes through
the surface of the sphere and the velocity at the z-axis is not
considered. Due to the friction between the nano fluid and the
surface of a sphere, the magnetohydrodynamics and mixed
convection of a sphere affect the velocity and temperature
profiles of nano fluid.

Fig. 1. Coordinate System of Sphere

The phenomena of nano fluid flow over a solid sphere in
Figure 1 can be stated in the coupled differential equations,
which are derived from the following dimensional continuity,
momentum, and energy equations.

1) Dimensional Continuity Equation:

∂(r̄ū)

∂x̄
+
∂(r̄v̄)

∂ȳ
= 0. (1)

2) Dimensional Momentum Equation:

ρfn

(
∂ū

∂t̄
+ ū

∂ū

∂x̄
+ v̄

∂ū

∂ȳ

)
= −∂p̄

∂x̄
+ µfn

(
∂2ū

∂x̄2
+
∂2ū

∂ȳ2

)
+ σ(B0)2ū+ (ρfn − ρ∞)gx̄,

(2)

ρfn

(
∂v̄

∂t̄
+ ū

∂v̄

∂x̄
+ v̄

∂v̄

∂ȳ

)
= −∂p̄

∂ȳ
+ µfn

(
∂2v̄

∂x̄2
+
∂2v̄

∂ȳ2

)
+ σ(B0)2v̄ + (ρfn − ρ∞)gȳ,

(3)

where the dimensional variables of x̄, ȳ are the cartesian
coordinate system. Moreover, the dimensional variables of ū, v̄
are related to the velocity of fluid moving in the x̄, ȳ, and r̄
is the radial distance of sphere which has been derived more
detail from the previous study (see [16], Appendix).

3) Dimensional Energy Equation:

∂T̄

∂t̄
+ ū

∂T̄

∂x̄
+ v̄

∂T̄

∂ȳ
= αfn

(
∂2T̄

∂x̄2
+
∂2T̄

∂ȳ2

)
. (4)

The continuity, momentum, and energy equations of (1)-(4)
satisfy the following initial and boundary conditions

t̄ = 0 : ū = v̄ = 0, T̄ = T∞ for every x̄, ȳ
t̄ > 0 : ū = v̄ = 0, T̄ = Tw at ȳ = 0

ū = ūe(x̄), ū = v̄, T̄ = T∞ at ȳ →∞.
(5)

Then, we simplify the above dimensional governing equa-
tions to be dimensional equations by employing the following
non-dimensional variables

x =
x̄

a
; y = Re

1
2
ȳ

a
; t =

U∞t̄

a
;u =

ū

U∞
; v = Re

1
2
v̄

U∞
;

T =
T̄ − T∞
Tw − T∞

; p =
p̄

ρfnU2
∞

; r(x) =
r̄(x̄)

a
;ue(x) =

ūe(x)

U∞
;

(6)

where
Re : Reynolds Number, Re = U∞a

vfn
,

vfn : Kinematic Viscosity of Nano Fluid,
µfn : Viscosity of Nano Fluid,
ρfn : Density of Nano Fluid,
p : Pressure,
and the gravity is defined as follows

gx̄ = −g sin
( x̄
a

)
, gȳ = g cos

( x̄
a

)
. (7)

We further substitute the non-dimensional variables (6)
and (7) into the dimensional governing equations, initial,
and boundary conditions (1)-(5) to get the following non-
dimensional governing equations.

4) Non-Dimensional Continuity Equation:

∂(ru)

∂x
+
∂(rv)

∂y
= 0, (8)

5) Non-Dimensional Momentum Equation:

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= −∂p

∂x
+

vfn
Revf

∂2u

∂x2
+
vfn
vf

∂2u

∂y2

+Mu+ λTsin(x),

(9)
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1

Re

(
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y

)
= −∂p

∂y
+
vfn
vf

1

Re2

∂2v

∂x2

+
vfn
vf

1

Re

∂2v

∂y2
+
M

Re
v

− λ

Re1/2
Tcos(x),

(10)

6) Non-Dimensional Energy Equation:

∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y
=

1

Re

1

Pr

αfn
αf

∂2T

∂x2
+

1

Pr

αfn
αf

∂2T

∂y2
,

(11)

The continuity, momentum, and energy equations of (8)-
(11) satisfy the following initial and boundary conditions

t = 0 : u = v = 0, T = 0 for every x, y
t > 0 : u = v = 0, T = 1 at y = 0

u = ue(x), T = 0 at y −→∞.
(12)

B. Boundary Layer Theory

The Boundary layer is part of the fluid mechanics problem
which is a layer formed because of friction between nano
fluid passing through the surface of the solid sphere caused by
the viscosity of the nano fluid. Based on the non-dimensional
governing equations (8)-(11), we can derive new governing
equations by employing the boundary layer approach. Since
the boundary layer is very thin, then the limit of 1

Re
goes to

zero, as Re →∞, one has
1) Continuity Equation:

∂(ru)

∂x
+
∂(rv)

∂y
= 0, (13)

2) Momentum Equation:

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= −∂p

∂x
+
vfn
vf

∂2u

∂y2
+Mu+ λTsin(x),

(14)

and

−∂p
∂y

= 0.

3) Energy Equation:

∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y
=

1

Pr

αfn
αf

∂2T

∂y2
, (15)

In this study, the type of fluid is nano fluid. Therefore,
the above non-dimensional governing equation is brought into
the form of nano fluid by substituting the following variables
which have the correlations between nano fluid and basic fluid.

Density of Nano Fluid : ρfn = (1− χ)ρf + χρs.

Viscosity : µfn =
µf

(1− χ)2.5
.

Specific Heat of Nano Fluid :

(ρCp)fn = (1− χ)(ρCp)f + χ(ρCp)s.

Thermal Conductivity :

kfn
kf

=
(ks + 2kf )− 2χ(kf − ks)
(ks + 2kf ) + χ(kf − ks)

.

Then, we substitute the variables of nano fluid into (13)-(15)
to get the following new non-dimensional coupled differential
equations.

∂(ru)

∂x
+
∂(rv)

∂y
= 0, (16)

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y

= −∂p
∂x

+
1

(1− χ)2.5
(

(1− χ) + χ
(
ρs
ρf

)) ∂2u

∂y2

+Mu+ λT sin(x),

(17)

∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y

=
1

Pr (ks + 2kf )− 2χ(kf − ks)

((ks + 2kf ) + χ(kf − ks))
(

(1− χ) +
(
χ(ρCp)s
(ρcp)f

))


∂2T

∂y2
.

(18)

Based on the momentum equation (16), we can define the
following velocity of free stream in a sphere

ue =
3

2
sin(x), (19)

which gives

∂ue
∂t

= 0;
∂ue
∂y

= 0;
∂2ue
∂y2

= 0,

and

ue
∂ue
∂x

= −∂p
∂x

+Mue + λT sin(x).

Since the non-dimensional momentum equation (17) satisfy
the initial and boundary conditions defined in (12). Then, at
y →∞, T = 0 which implies that

−∂p
∂x

= ue
∂ue
∂x
−Mue. (20)

We finally substitute (20) into (17) to get the following new
non-dimensional momentum equation.

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y

= ue
∂ue
∂x

+
1

(1− χ)2.5
(

(1− χ) + χ
(
ρs
ρf

)) ∂2u

∂y2

+M(u− ue) + λT sin(x).

(21)

C. Numerical Analysis
We are interested in non-dimensional governing equations in

coupled non-dimensional equations with boundary and initial
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conditions. Since the analytical solution is extremely difficult
to establish, we use the finite difference method to approximate
the non-dimensional governing equations. In this paper, we use
the Crank-Nicolson implicit finite difference method, which is
unconditionally stable. This Crank-Nicolson method is used
to solve equations (16), (18), and (21) with the initial and
boundary conditions given by (12).

We divide the region of this problem into the grid of lines
parallel to x-axis and y-axis to get the difference equations of
(16), (18), and (21), where x-axis is along with the surface
of sphere and y-axis is normal to the surface of sphere. We
denote un+1, vn+1, and Tn+1 as the next step of time for u,
v, and T respectively.

1) Finite difference of first order derivative:(
∂u

∂t

)
i,j

=
un+1
i,j − uni,j

∆t
;

(
∂T

∂t

)
i,j

=
Tn+1
i,j − Tni,j

∆t
;(

∂u

∂y

)
i,j

=
ui,j − ui,j−1

∆y
;

(
∂v

∂y

)
i,j

=
vi,j − vi,j−1

∆y
;(

∂T

∂y

)
i,j

=
Ti,j − Ti,j−1

∆y
;

(
∂u

∂y

)
i,j

=
ui,j+1 − ui,j−1

2∆y
;(

∂v

∂y

)
i,j

=
vi,j+1 − vi,j−1

2∆y
;

(
∂T

∂y

)
i,j

=
Ti,j+1 − Ti,j−1

2∆y
;(

∂u

∂x

)
i,j

=
ui,j − ui−1,j

∆x
;

(
∂v

∂x

)
i,j

=
vi,j − vi−1,j

∆x
;(

∂T

∂x

)
i,j

=
Ti,j − Ti−1,j

∆x
,

(22)

2) Finite difference of second order derivative:(
∂2u

∂y2

)
i,j

=
ui,j+1 − 2ui,j + ui,j−1

(∆y)2
;(

∂2T

∂y2

)
i,j

=
Ti,j+1 − 2Ti,j + Ti,j−1

(∆y)2
,

(23)

where the subscripts i, j and superscript n respectively present
the x-axis, y-axis, and the time variable of t. We substitute
the above finite difference approximation into non-dimensional
coupled differential equations (16), (18), and (21), then one
has the following finite difference equations

1

2∆x

(
un+1
i,j − u

n+1
i−1,j + uni,j − uni−1,j

)
+

1

2∆x

(
un+1
i,j−1 − u

n+1
i−1,j−1 + uni,j−1 − uni−1,j−1

)
+

1

∆y

(
vn+1
i,j − v

n+1
i,j−1 + vni,j − vni,j−1

)
+(

un+1
i,j + uni,j

)
cot (x) = 0.

(24)

1

∆t

(
un+1
i,j − u

n
i,j

)
+

uni,j
2∆x

(
un+1
i,j − u

n+1
i−1,j + uni,j − uni−1,j

)
+

vni,j
4∆y

(
un+1
i,j+1 − u

n+1
i,j−1 + uni,j+1 − uni,j−1

)
=

L
2(∆y)2

(
un+1
i,j−1 − 2un+1

i,j + un+1
i,j+1 + uni,j−1 − 2uni,j + uni,j+1

)
+

9

4
sin(x(i))cos(x(i)) +

M

2
(un+1
i,j + uni,j)−

3M

2
sin(x(i)) +

λ

2
(Tn+1
i,j + Tni,j) sin(x(i)).

(25)

1

∆t

(
Tn+1
i,j − Tni,j

)
+

uni,j
2∆x

(
Tn+1
i,j − Tn+1

i−1,j + Tni,j − Tni−1,j

)
+

vni,j
4∆y

(
Tn+1
i,j+1 − T

n+1
i,j−1 + Tni,j+1 − Tni,j−1

)
=

K
2Pr(∆y)2

(
Tn+1
i,j−1 − 2Tn+1

i,j + Tn+1
i,j+1 + Tni,j−1 − 2Tni,j + Tni,j+1

)
.

(26)

By rearranging the finite difference equations (24)-(26), one
can derive

vn+1
i,j = vn+1

i,j−1 − v
n
i,j + vni,j−1−

A
(

un+1
i,j − u

n+1
i−1,j + uni,j − uni−1,j+

un+1
i,j−1 − u

n+1
i−1,j−1 + uni,j−1 − uni−1,j−1

)
−

∆y
(
un+1
i,j + uni,j

)
cot (x(i)) ,

(27)

(−B2 − B3)un+1
i,j−1 + (1 + B1 + 2B3 − B5)un+1

i,j +

(B2 − B3)un+1
i,j+1 = (1 + B5)uni,j + B1(un+1

i−1,j + uni−1,j − uni,j)+
B2(uni,j−1 − uni,j+1)+

B3(uni,j−1 − 2uni,j + uni,j+1)+

B4 − B6 + B7(Tn+1
i,j + Tni,j),

(28)

(−C2 − C3)Tn+1
i,j−1 + (1 + C1 + 2C3)Tn+1

i,j +

(C2 − C3)Tn+1
i,j+1 = Tni,j + C1(Tn+1

i−1,j + Tni−1,j − Tni,j)+
C2(Tni,j−1 − Tni,j+1)+

C3(Tni,j−1 − 2Tni,j + Tni,j+1),

(29)

where

A =
∆y

2∆x
;B1 = C1 =

uni,j∆t

2∆x
;B2 = C2 =

vni,j∆t

4∆y
;

B3 =
L∆t

2(∆y)2
;B4 =

9∆t

4
sin(x(i))cos(x(i));

B5 =
M∆t

2
;B6 =

3M∆t

2
sin(x(i));

B7 =
λ∆t

2
sin(x(i)); C3 =

K∆t

2Pr(∆y)2
;

L =
1

(1− χ)2.5
(

(1− χ) + χ
(
ρs
ρf

))
K =

 (ks + 2kf )− 2χ(kf − ks)

((ks + 2kf ) + χ(kf − ks))
(

(1− χ) +
(
χ(ρCp)s
(ρcp)f

))
 ,
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and the boundary and initial conditions are given below

at n = 0

u0
i,j = 0, v0

i,j = 0, T 0
i,j = 0,

at n > 0

uni,0 = vni,0 = 0, Tni,0 = 1 at j = 0,

uni,Ny
= ue(x), vni,Ny

= 0, Tni,Ny
= 0 at j = Ny.

We further rearrange the finite difference equations (27)-(29)
into the following form

D1u
n+1
i,j−1 + E1un+1

i,j + F1u
n+1
i,j+1 = G1,

D2T
n+1
i,j−1 + E2Tn+1

i,j + F2T
n+1
i,j+1 = G2,

vn+1
i,j = G3,

(30)

where

D1 = −B2 − B3; E1 = 1 + B1 + 2B3 − B5;F1 = B2 − B3;

G1 = (1 + B5)uni,j + B1(un+1
i−1,j + uni−1,j − uni,j)+

B2(uni,j−1 − uni,j+1) + B7(Tn+1
i,j + Tni,j)+

B3(uni,j−1 − 2uni,j + uni,j+1) + B4 − B6;

D2 = −C2 − C3; E2 = 1 + C1 + 2C3;F2 = C2 − C3;

G2 = Tni,j + C1(Tn+1
i−1,j + Tni−1,j − Tni,j)+

C2(Tni,j−1 − Tni,j+1)+

C3(Tni,j−1 − 2Tni,j + Tni,j+1);

G3 = vn+1
i,j−1 − v

n
i,j + vni,j−1−

A
(

un+1
i,j − u

n+1
i−1,j + uni,j − uni−1,j+

un+1
i,j−1 − u

n+1
i−1,j−1 + uni,j−1 − uni−1,j−1

)
−

∆y
(
un+1
i,j + uni,j

)
cot (x) .

which gives the following two tri-diagonal matrices for i =
0, 1, 2, ..., Nx and j = 0, 1, 2, ..., Ny .

E1 F1 0 0 · · · 0
D1 E1 F1 0 · · · 0

0 D1 E1
. . . · · ·

...

0 0
. . . . . . F1 0

...
...

... D1 E1 F1

0 0 · · · 0 D1 E1





un+1
i,1

un+1
i,2

un+1
i,3
...

un+1
i,Ny−2

un+1
i,Ny−1



=



G1

G1

G1

...
G1

G1


+



un+1
i,0

0
0
...
0

un+1
i,Ny


.

(31)



E2 F2 0 0 · · · 0
D2 E2 F2 0 · · · 0

0 D2 E2
. . . · · ·

...

0 0
. . . . . . F2 0

...
...

... D2 E2 F2

0 0 · · · 0 D2 E2





Tn+1
i,1

Tn+1
i,2

Tn+1
i,3
...

Tn+1
i,Ny−2

Tn+1
i,Ny−1



=



G2

G2

G2

...
G2

G2


+



Tn+1
i,0

0
0
...
0

Tn+1
i,Ny


.

(32)

Then, the above tri-diagonal matrices (31) and (32) can be
represented as the following tri-diagonal matrix.

p1 s1 0 0 · · · 0
r2 p2 s2 0 · · · 0

0 r3 p3
. . . · · ·

...

0 0
. . . . . . sN−2 0

...
...

... rN−1 pN−1 sN−1

0 0 · · · 0 rN pN





v1

v2

v3

...
vN−1

vN


=



w1

w2

w3

...
wN−1

wN


,

and by elementary row operations, one has

p
′

1 s1 0 0 · · · 0

0 p
′

2 s2 0 · · · 0

0 0 p
′

3

. . . · · ·
...

0 0
. . . . . . sN−2 0

...
...

... 0 p
′

N−1 sN−1

0 0 · · · 0 0 p
′

N





v1

v2

v3

...
vN−1

vN


=



w
′

1

w
′

2

w
′

3
...

w
′

N−1

w
′

N


.

which can be solved iteratively by applying the following
formula.

p
′

1 = p1, w
′

1 = w1, p
′

i = pi − si−1
ri
p

′
i−1

,

w
′

i = wi − w
′

i−1

ri
p

′
i−1

, for i = 2, 3, ..., N,

and

v(N) =
w

′
(N)

p′(N)
, v(i) =

w
′
(i)− s(i)v(i+ 1)

p′(i)
,

for i = N − 1, N − 2, ..., 2, 1.

Figure 2 shows that the velocity is increased in range of
boundary layer thickness from y = 0 to y = 1 and is decreased
in range of boundary layer thickness from y = 1 to y = 5.
In the variation of the Prandtl number, the velocity profile
becomes smaller when the Prandtl number is increased. This
is due to the correlation among Prandtl number, kinematic
viscosity, and thermal diffusivity. The Prandtl number is
directly proportional to the kinematic viscosity and inversely
proportional to the thermal diffusivity. The greater the Prandtl
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Fig. 2. Velocity profile with various Prandtl numbers

Fig. 3. Temperature profile with various Prandtl numbers

Fig. 4. Velocity profile with various mixed convection

Fig. 5. Temperature profile with various mixed convection

Fig. 6. Velocity profile with various magnetohydrodynamics

Fig. 7. Temperature profile with various magnetohydrodynamics
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number, the greater the kinematic viscosity of the fluid so that
the viscosity (density) of the fluid increases. As a result of
increasing the viscosity (density) of the fluid, it causes the
fluid flow velocity to decrease.

Figure 3 is decreased in the temperature profile of the
nanofluid by the increases of boundary layer thickness from
y = 0 to y = 5. In the variations of the Prandtl number, the
temperature profile becomes smaller when the Prandtl number
is increased. Mathematically, it can be written as follows

Pr =
vρcp
k

This means that the Prandtl number is the ratio between the
kinematic viscosity and the thermal diffusivity. Thermal diffu-
sivity is related to the ratio between the thermal conductivity
of the fluid and the energy storage capacity so that the Prandtl
number is inversely proportional to the thermal diffusivity.
This results in a large increase in the Prandtl number, the
lower the thermal diffusivity value of the fluid, resulting in a
smaller profile temperature.

Figure 4 shows that the velocity is increased in range of
boundary layer thickness from y = 0 to y = 1 and is
decreased in range of boundary layer thickness from y = 1 to
y = 5. In the variations of mixed convection parameters, the
nanofluid velocity profile becomes larger when the convection
parameters of the mixture are increased. This happens because
the Reynolds number is proportional to the density of the
fluid so that the convection parameter value of the mixture is
inversely proportional to the density of the fluid. The greater
the convection parameter of the mixture given, the lower the
fluid density. The lower the density of the fluid, the greater
the velocity of the fluid.

Meanwhile, Figure 5 is decreased in the temperature profile
by the increases of boundary layer thickness from y = 0 to
y = 5. In the variations of mixed convection parameters, the
temperature profile of the nanofluid becomes smaller as the
convection parameters of the mixture increase. This is because
the convection parameters of the mixture are proportional to
the temperature of the fluid so that the increasing of the
convection parameters of the mixture causes the temperature
of the fluid flow to be smaller.

Figure 6 shows that the velocity is increased in range of
boundary layer thickness from y = 0 to y = 1 and is
decreased in range of boundary layer thickness from y = 1 to
y = 5. In the various parameters of magnetic, the fluid velocity
profile becomes greater when the parameters of magnetic are
increased. Because of the Lorentz force on the surface of
sphere, then the fluid passing through the magnetic sphere
receives the Lorentz force. Mathematically, Lorentz style is
written as F=J × B or F=σ(V × B × B), with B=B0 so that
F∼ B0. The magnetic parameter is also proportional to B0

or M ∼ B0 so that as the magnetic parameter increases, the
value of B0 increases. As the consequence, the Lorentz force
on the surface of sphere also increases so that the effect on the
fluid velocity becomes greater when the magnetic parameter
is increased.

Figure 7 is decreased in the temperature profile of the
nanofluid by the increases of boundary layer thickness from

y = 0 to y = 5. In the variations of magnetic parameters, the
fluid temperature becomes smaller as the magnetic parameters
increase. The magnetic field generated by the magnetized
sphere will cause the internal energy decreased so that it also
causes the fluid temperature decreased.

III. CONCLUSIONS

Based on the results and discussions, the summaries of this
paper are: The velocity profile is decreased when the variations
of Prandtl numbers are increased. Meanwhile, the velocity
profiles are increased when the variations of mixed convection
and magnetohydrodynamics are increased. The temperature
profiles are decreased for all variations of Prandtl numbers,
mixed convection and magnetohydrodynamics. The Prandtl
number is directly proportional to the kinematic viscosity and
inversely proportional to the thermal diffusivity. The convec-
tion parameter value of the mixture is inversely proportional
to the density of fluid. The magnetic parameter and Lorentz
force are proportional to B0 ((F,M)∼ B0).
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