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AbstractIn this paper, results of the sinusoidal response case are presented. It is 

found that the visual appearance of the trajectory of the sinusoidal response case 

is much richer than that of the autonomous and step response cases. Based on the 

state space technique, the state vectors to be periodic are investigated. The set of 

initial conditions and the necessary conditions on the filter parameters are also 

derived. When overflow occurs, the system is nonlinear. If the corresponding 

symbolic sequences are periodic, some trajectory patterns are simulated. Since 

the state space technique is not sufficient to efficiently derive the sets of initial 

conditions and the necessary conditions on the filter parameters, a 

frequency-domain technique is employed to figure out the set of initial conditions. 

When the symbolic sequences are aperiodic, an elliptical fractal pattern or 

random-like chaotic pattern is found. 

 

Index Terms—Sinusoidal response, chaotic behavior, second-order digital filter with 

two’s complement arithmetic 

 

I. INTRODUCTION 

 

Many researchers had studied the chaotic behavior of an autonomous system [1]. 
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Some trajectory equations and sets of initial conditions corresponding to some types 

of trajectories are characterized in [1]. However, practically, various types of input 

signals are usually applied. As a result, we need to analyze forced-input systems in 

addition to autonomous systems. For the step-input case, some new analytical and 

simulation results analogous to the autonomous case can be obtained by the method of 

affine transformation [2]. In this paper, we concentrate on the analysis of systems with 

sinusoidal inputs. In this case, the method of affine transformation is not sufficient to 

efficiently explain the trajectory behaviors, and other techniques, such as the 

frequency-domain technique, have to be employed as well. 

 

II.  SYSTEM DESCRIPTION 

 

Following [1], [2], the state space model of a direct form second-order digital 

filter with two’s complement arithmetic can be modeled as 
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In this paper, we only consider the case when the filter is marginally stable, that 

is 1b  and 2a . The external input is represented as      kvkcku  sin  

for  0\c ,  Z kk :\  , and  kv  is the unit step function. When 

0c  or   k , where Zk , the input signal is zero everywhere and the system 

reduces to the autonomous response case, for which detail analysis can be found in 

[1]. 

The behaviors of the state trajectories of the autonomous response are reported in 

[1]. Based on the method of affine transformation, new results can also be derived for 

the step response case [2]. However, is the behavior for the sinusoidal response 
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similar to those of the autonomous and step response cases? What are the trajectory 

patterns on the phase portrait? What are the sets of initial conditions for the different 

types of trajectories? How do the filter and input parameters affect the trajectory 

behavior? 

 

III. ANALYTICAL AND SIMULATION RESULTS FOR NON-OVERFLOW 

CASE 

 

A. Trajectory equation 

Define 
2
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also exists. Hence, we have 
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Since  kx  is a superposition of two signals with different frequencies, this 

causes a rich set of trajectory patterns on the phase portrait. Figure 1 shows some 

examples of the different types of trajectories. As shown in Figure 1, the trajectory 

patterns are different from, and more complicated than those of the autonomous and 

step response cases. 

It can be also seen from Figure 1.1 that there are several ellipses on the phase 

portrait even when no overflow occurs. This trajectory pattern seems to correspond to 

the type II trajectory (overflow case) for the autonomous and step response cases [1], 

[2]. However, overflow does not occur for the sinusoidal response case. Hence, we 

cannot classify the types of trajectories based on the visual appearances of the 
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trajectories. As a result, we have to employ other properties, such as the periodicity of 

symbolic sequences, for the classification of the types of trajectories. 

 

B. Periodicity of state vector 

Because  kx  is made up of two different components with frequencies   

and  , the frequency spectrum of  kx  consists of a finite set of impulses. If   

and   are rational multiples of  , that is,  1p  and   2p , for 

Q21, pp , then  kx  is periodic. So, there are finitely many distinct points on the 

trajectory as shown in Figure 2.1. However, if   or   are not rational multiples of 

 , then  kx  is aperiodic. Hence, there are infinitely many distinct points on the 

trajectory as shown in Figure 2.2. 

Compared to the autonomous and step response cases,  kx  is made up of a 

component with frequency   and a DC component. If   is a rational multiple of 

 , that is,  1p , for Q1p , then  kx  is periodic. So, there are finitely many 

distinct points on the ellipse. However, if   is not a rational multiple of  , then 

there are infinitely many distinct points on the ellipse [1]-[3]. 

 

C. Set of initial conditions 

It was found that the set of initial conditions for the autonomous and step 

response cases when no overflow occurs can be described by an elliptical region [1], 

[2]. We found a similar result for the sinusoidal response. As no overflow occurs, we 

have 

   
  1

1
1

1 10 xTxxT  . (3) 

Hence, the set of initial conditions for the non-overflow case is 

     
  1

1
1
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This set of initial conditions can be represented as an elliptical region in the 

phase portrait diagram. The center of the ellipse is located at  1x  and the size of the 

ellipse depends on   1
11 xT . Figure 3 shows an example of the set of initial 

conditions for the situation when overflow does not occur. 

 

D. Necessary conditions on the filter parameters 

For the autonomous response case, there always exist some initial conditions for 

any filter parameter in the set  2:  aaa  such that the system is free from 

overflow [2]. However, this is not true for the sinusoidal response case because there 

are two more parameters from the input signal, c  and  . In fact, we have found that 

if the set of filter and input parameters fails to satisfy a particular relation, then 

overflow has to occur no matter what the initial conditions are. 

From the inequality (3), we have 

     coscos2
110 1

1
1

1


 


cxTxxT . (5) 

Hence, we have 

coscos
2


c

. (6) 

If the relation (6) is not satisfied, overflow has to occur no matter what the initial 

conditions are. Figure 4 shows the region of the parameter space that satisfies the 

relation (6). 

From the analysis, if  m 2 , then c  has to be zero. Therefore, 

overflow will occur no matter what the initial conditions are, even when a very small 

signal ( 0c , where 0c ) is applied to the system. This phenomenon can be 

understood by the resonance behavior. 
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IV. ANALYTICAL AND SIMULATION RESULTS FOR OVERFLOW CASE 

 

A. Trajectory equation 

For the autonomous and step response cases, there are more than one ellipses on 

the phase portrait [1], [2] if the symbolic sequence is periodic. However, the 

sinusoidal response case is more complicated than that of the autonomous and step 

response cases, as discussed below. 

Assume the periodic sequences are periodic with period M . Let 
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If M  is odd, then we have 
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for 1k . 

If M  is even, let 
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for 1k . 
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 kx  is made up of components with frequencies  ,  , and p , where 

1,,1,0  Mp  . This is different from the non-overflow case, where there are only 

the frequency components   and  . Because more sinusoidal signals are 

superimposed together, the visual appearance for the periodic symbolic sequence case 

may be different from that of the non-overflow case. For example, if overflow does 

not occur at a certain initial condition  0x , and gives periodic symbolic sequences 

for another initial condition  0x , while   and   are unchanged, the visual 

appearance of periodic symbolic sequence case may be different from that of the 

non-overflow case. This change of the visual appearance of the trajectory pattern does 

not occur in the autonomous and step response cases because only elliptical pattern 

occurs in both the type I and type II trajectory for the autonomous and step response 

cases. Figure 5 shows some simulation examples of the sinusoidal response case when 

the symbolic sequences are periodic. 

 

B. Set of initial conditions 

Since  
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 is periodic with period M , these terms are 

dependent on each other. Hence, just the state space technique is not sufficient to 

efficiently find out the set of initial conditions. Instead, the set of initial conditions can 

be found using a frequency-domain approach as well. 
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the Fourier transforms of  n1  and  n2 , respectively. 

If M  is odd, then we have 
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If M  is even, then we have 
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This corresponds to a set of elliptical regions. If M  is odd, then the centers are 

located at  
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C. Necessary conditions on filter parameters 

The necessary conditions for the periodic symbolic sequence case can be 

investigated by examining the conditions when the relation (9) or (10) is satisfied. To 

understand the expression (9) or (10) more, we can look at the expression term by 

term. For the first term, if those centers discussed in section IVB are inside the unit 

square 2I  [1], then one can select the initial condition  0x  as close to those centers 

as possible so that the above norms are close to zero. The second term is directly 
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proportional to the amplitude of the input sinusoidal signal. As the amplitude of the 

input sinusoidal signal is small, then this norm is also small. However, the last term 

depends on    
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this implies that   pk2 , for  1,,1  Mp   and M  is odd, or 

  pk2 , for  








2
\1,,1 MMp   and M  is even. In other words, the 

natural frequency of the digital filter does not equal to one of the harmonic 

frequencies of the symbolic sequences. 

 

D. Simulation results for aperiodic symbolic sequence case 

When the symbolic sequences are eventually periodic or aperiodic, the dynamic 

of the system is so complex that only some simulation results are obtained. For the 

autonomous and step response cases, it is reported in [1], [2] that there is an elliptical 

fractal pattern on the phase portrait if the symbolic sequences are aperiodic. However, 

we have conducted extensive simulations and find that both an elliptical fractal 

pattern and a rather random-like chaotic behavior may be exhibited for the sinusoidal 

response case. Figure 6 illustrates the simulation results. 

 

V. CONCLUSION 

 

The main focus of this paper is the analysis of second-order digital filters with 

two’s complement arithmetic, when there are sinusoidal inputs. For the autonomous 

and step response cases, the trajectories can be classified by their visual appearances 

[1]. However, such classification is not applicable for the sinusoidal response case. 

Instead, we analyze the system behaviors by means of the periodicity of the symbolic 
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sequences. Hence, instead of study the behaviors, the effect of the initial conditions 

and the filter parameters on different types of trajectories, we study those behaviors 

on different types of symbolic sequences. 

Even when overflow does not occur, many trajectory patterns may be exhibited 

on the phase portrait. One interesting example is that there are several ellipses on the 

phase portrait, which appears to correspond to the type II trajectory for the 

autonomous and step response cases [1], [2]. The condition for the state vector to be 

periodic is investigated. The set of initial conditions and the set of filter and input 

parameters are also found. 

When overflow occurs, the system dynamics is very complex. If the 

corresponding symbolic sequences are periodic, some analytical results are obtained 

by employing the frequency domain approach. Based on this approach, the set of 

initial conditions and the necessary conditions on the filter parameters are derived. 

When the symbolic sequences are aperiodic, both an elliptical fractal pattern and 

a rather random-like chaotic behavior may be exhibited on the phase portrait instead 

of only the elliptical fractal type of pattern for the type III trajectories found in the 

autonomous and step response cases [1], [2]. Some simulation results are given. 
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Fig. 3. Set of initial conditions for no overflow to occur, when 5.0a , 1b , 
1c  and   001.0 . 
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Fig. 4. Surface of the parameter region in which overflow may not occur when 1b . 

 
 
 
 
 
 
 
 
 

Fig. 5. Phase portrait for the system with different initial conditions, input and filter parameters. (Fig 
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Fig. 6. Phase portrait for the system with different initial conditions, input and filter parameters. (fig 6.1) 
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