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Abstract

The Ait Attab syncline, located in the Central Hifjtlas, displays a curved geometry in
plan view, and is considered as one of the mosttapelar fold shapes in the Central High
Atlasic belt. We conducted a paleomagnetic studyJumassic-Cretaceous red beds to
investigate the origin of this geometry. The NatuRe@manent Magnetization (NRM) is
dominated by a secondary magnetization carriedaeyratite with unvarying normal polarity
that has been dated at about 100 Ma. The regiotltést performed in both limbs of the
syncline is positive and the paleomagnetic vecfafter tectonic correction) are parallel
throughout the curvature, indicating a negativeclmal bending test. These results are
inconsistent with previous works that consider bleat geometry of this syncline to result
from subsequent distortion of originally NE-SW ftiérg structures by rotation about a
vertical axis. We interpret the NRM data to demmatst that the changing trend of the Ait
Attab syncline is a primary feature, resulting fréme influence of pre-existing, NE-SW and
E-W-striking extensional faults that developed dgria strike-slip regime. Paleomagnetic
results also reveal that the tilting observed & shmpled red beds is post Albian, probably
linked to the Cenozoic inversion of the High Attabelt.
Key-words: Paleomagnetism, remagnetization, fold test, amatlibending, Ait Attab

syncline, Moroccan High Atlas

1. Introduction
Curvatures in plan view in orogens, fold-and-throslts and single structures have been

classified as primary, progressive or secondarglm®, based on their kinematics (e.g. Weil
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and Sussman, 2004). Unravelling which behavioriapgb a particular structural setting is
crucial to characterizing its deformational andekatic history.

The Ait Attab syncline, located in the northerndsarof the High Atlasic belt in Morocco,
shows a spectacular curved shape in plan viewXjidgts axis is oriented E-W and NE-SW at
its eastern and western segment, respectivelyAlthattab syncline is defined by a Jurassic-
Cretaceous sequence deposited in the Attab balsenofligin of its curved geometry can be
attributed to several mechanisms: (i) superposé&dinip related to an accommodation zone
(Beauchamp, 2004), (ii) oroclinal bending producsagondary curvature of structures and a
sharp bend geometry, as demonstrated in severékvior other curved belts (e.g. Schwartz
and Van der Voo, 1983; Kent, 1988; Marshak, 19&#), distortion of original folding
structures linked to the influence of basementtfanlthe cover sediment (Ibouh, 2004), or
(iv) geometry conditioned by the sigmoid shapehef sedimentary basin inherited from the
extensional/transtensional origin. This basin geioyns linked to a strike-slip tectonic model
as proposed by Laville (1985) for the Jurassicrbasi

The present work aims to study the origin of theved shape of the Ait Attab syncline
using paleomagnetic data. Paleomagnetic studiepatiularly useful for deciphering the
primary or secondary origin of orogenic curvatuf@se e.g. Weil et al., 2013 and references
therein), provided that the obtained paleomagnegictors correspond to a magnetisation
acquired before the orogenic stage (Eldredge etl8B5; McFadden et al., 1995 among
others). Previous paleomagnetic studies show thedsdic and Cretaceous rocks in the
Atlasic belt are remagnetized (Torres-Lopez et2dl14). In the present work, we will use the
results of this remagnetization in Jurassic-Cretasesediments to discuss the age of folding

and the mechanism responsible for the fold axiapshn the Ait Attab syncline.

2. Geological setting and sampling

The High Atlas is considered an intracontinentaichresulting from the inversion of
previous extensional or transtensional MesozoimBaglated to Triassic and Jurassic rifting
(e.g. Mattauer et al., 1977; Rodgers, 1987; Ziegleml., 1995). The Jurassic extension
favoured the development of a mosaic of rhomb-sthagepocenters, limited by
synsedimentary anticlines (the so-called anticliidges, Studer and du Dresnay, 1980;
Laville, 1985; Laville et al.,2004). Basin inversi@ccurred from Cenozoic to recent times
(Choubert and Faure-Muret, 1962; Mattauer et &.771 Schaer, 1987; Laville, 1988;
Jacobshagen et al.,1988; Michard, 1976; Laville Bigle, 1992; Beauchamp et al., 1996,
1999; Frizon de Lamotte et al., 2000; Gémez e8l00; Teixell et al., 2003; Arboleya et al.,
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2004). Reactivation of extensional faults and foddduring inversion resulted in a thick-
skinned deformation style, where basement was wedoin the compressional deformation
(e.g. Frizon de Lamotte et al., 2000; Teixell ef a003; El Harfi et al., 2006). Conversely,
along the southern border of High Atlasic belt, @rsion is associated with thin-skinned
tectonics exploiting detachment levels within theddzoic sequence (e.g Beauchamp et al.,
1999; Benammi et al.,, 2001; Teixell et al., 200Bhe age of the initial inversion is
controversial. Some believe that inversion devedogering Late Jurassic- Early Cretaceous
times, and is represented in the Atlasic belt bylsstale folds and unconformities (e.qg.
Laville, 1985; Ibouh, 2004; Souhel, 1996; Beauchagtpal.,, 1996). Conversely, others
believe that inversion commenced after post-Eadgdie times (e.g. Frizon de Lamotte et
al., 2000; Missenard, 2006).

In the Central High Atlasic chain, regional foldee aeither large, gentle synclines,
containing Middle Jurassic-Cretaceous sedimentspasrow anticlines cored by Liassic
limestones (Laville, 1985; Ibouh, 2004). The Aittakt syncline is filled with Jurassic-
Cretaceous terrigenous sedimentary rocks (red lbégld,a). Several studies have established
the stratigraphy, biostratigraphy and chronogjraphy of this red-bed sequence (Haddoumi
et al., 2002, 2010; Charriéere et al., 2005, 201dwrer, 2009; Mojon et al., 2009; Fig.1b).
Accordingly, the first group of siltstones and sstodes from thécouches rouges”(red
beds) defined by Jenny et al. (1981) and considasethfra-Aptian sediments by Rolley
(1978) is divided into several units. The first tuof red beds Sensu strictd formed by
conglomeratic and red sandstones of the “Guettiuranation” was ascribed to the Dogger
(Bathonian-Callovien). At the top of this formatiaa basalt flow level “Horizon B1” dated
as Late Jurassic (Haddoumi et al., 2010; Mojon.e2809; Charriere et al., 2011; Bensalah
et al., 2013). The overlying red pelites and evaesi(louaridene Formation) are attributed to
the Hauterivian? - Lower Barremian (Mojon et a009; Haddoumi et al., 2010), although the
base of this unit is dated as Late Jurassic (Kindgem, Haddoumi et al., 2010). Upward,
alternating red sandstones and clays (Jbel Sidah&tmmn) were interpreted as Barremian
(Haddoumi et al., 2002; Charriere et al., 2005; héwy 2009). This formation begins with a
second basalt flow level, “Horizon B2” attributeal the Early Cretaceous (Haddoumi et al.,
2010; Mojon et al., 2009; Charriére et al., 20IMHe second group of red beds, deposited
above the Aptian marly limestones, characterizedriayple sandstones, with some clayey
intercalations at its base (Souhel, 1996) was daedAlbo-Cenomanian (Souhel, 1996;
Léwner, 2009).



102 A total of 21 sites were sampled, covering the whalpper Jurassic to Albian-
103 Cenomanian stratigraphic series of the study aFég.1lp). The sampling was conducted
104 along several profiles across the Ait Attab syrel{frig.1b). The sampling was done to
105 characterize the paleomagnetic geometry of thetangjits across the syncline and to ensure a
106 good coverage of the stratigraphic sequence, asaidén of outcrop conditions, accessibility
107 and possibility of sampling different rock typesdditionally, a local meter-scale parasitic
108 fold, site ATS, was sampled in both of its limbstle Bathonian rocks, in order to compare
109 the fold test of both macro and meter-scale strestu

110 Samples were collected with a portable electridl dnachine powered by a gasoline
111 generator. The drill bits were water-cooled durdrgling. At every site, the weathered soil
112 (sometimes down to 1 m) was removed to reach ffieghgrained rocks. At each site, an
113 average of 10 samples was taken. The cores weeatedin situ with an inclinometer
114 supplied with a magnetic compass. In the laboratting samples were cut to obtain
115 specimens of standard size (2.5 cm in diamete2ahdm in length).

116
117 3. Methods
118 All paleomagnetic and rock magnetic analysis haaenlperformed in the Paleomagnetic

119 laboratory of Burgos University in Spain. The natwmemanent magnetization (NRM) of all
120 specimens was first measured on a 2G-755 cryogeagnetometer. After that, all specimens
121 were subject to stepwise thermal demagnetizatiorgus TD48-SC thermal demagnetizer by
122 15 to 25 steps. Thermal demagnetization was dorseps of 25°C (10 to 5°C for some
123 groups of specimens) up to 660-670°C except for essamples, reaching 685°C.
124 Representative specimens were subjected to alitegrfatld (AF) demagnetization, following
125 progressive steps untii 100mT. The mineralogicalangfes induced by thermal
126 demagnetization were controlled by measuring thefleld magnetic susceptibility during
127 the demagnetization process using a KLY4S (AGICQpp&dridge). The characteristic
128 magnetic component (ChRM) was isolated using limegression techniques, and Fischer’'s
129 (1953) statistics were used to compute the measttibns with the software Remasoft 3.0
130 (Chadima and Hrouda, 2006).

131 Selected specimens from different facies and seréee used for rock magnetic analysis.
132 The acquisition curves of isothermal remanent mezpieon (IRM) were induced in
133 progressively increasing fields up to 2T using és@umagnetizer M2T-1-Ferronato. Three

134 orthogonal axes IRMs were thermally stepwise dermtiged following the method proposed
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by Lowrie (1990). Other magnetic mineralogy expenms such as thermomagnetic curves,
hysteresis loops with maximum induced field of 1idaback-field experiments were
performed with a variable field translation balafi®tMVFTB, Petersen Instruments, noise 5
x 10° Am?).

4. Paleomagnetic results

In the studied rocks, two different sets of magnegdroperties and behaviour were
observed and related to their host lithology: ih&t Eet involves all red-bed samples collected
in the Infra-Aptian and the Albian-Cenomanian atotal of 15 sites, and the second one
comprises only Aptian marly limestones from 5 sit€he magnetic susceptibility varies
between 200 x 10 Sl units for the red beds and 60 x®18.I. units for the white marly
limestones (see also Moussaid et al.,, 2013) andintensity of the natural remanent
magnetization (NRM) displays values from 3 X*1&/m in the red beds to 3 x T\/m in the
marly limestones.

The thermal demagnetization diagrams of all samplgenging to the “red beds
group” show a stable directional component of ndnoadarity with unblocking temperatures
comprised between 250°C and 550°C in some casgs2@ie) or up to 650°C (Fig. 2a). This
component is considered to be the characteristmanent magnetization (ChRM).
Sometimes, this magnetic directional componenbrisiéd by two magnetic phases evidenced
by two drops in the NRM intensity diagram, thetfioee between 500°C and 610 °C (Fig. 2c)
and a second at 650°C (Fig. 2c, e). Samples wdrdemagnetized after peak fields of 100
mT (Fig. 2d, i). The observed maximum unblockingmperatures and the AF
demagnetization of these samples suggest a highigite phase with hematite as the main
magnetic mineral carrier. A higher temperature re?@ component was observed, with
unblocking temperatures higher than 650°C, in adages in the red beds sites (Fig. 2b, ). A
directional analysis of this component was incosielel due to the scarcity of data, preventing
an outcome with statistical significance.

The marly limestones show three behaviours on #seshof the demagnetization of
the natural remanent magnetization (NRM). Unfortalya most samples do not give a
reliable directional component. Sites AT12 and AT2Bow negligible intensity of
magnetization after demagnetized at 250°C, whesgtes AT14, AT8 and AT6 show a very
low unblocking temperature component (100°C) prbbalie to the presence of goethite
(Fig. 2j), according to the high coercivity showly these samples after 100 mT AF

demagnetization (Fig. 2k). At higher temperatures,reliable magnetic components were
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observed. Only the grey marly specimens of AT1@ sihow a stable component with
maximum unblocking temperatures ranging between &%@ 620°C (Fig. 2l). The NRM
intensity diagram displays a slight decrease ab00tto 550°C and a strong decline around
620 to 640°C. The AF demagnetization of a repredmet sample of site AT10 shows low to
medium coercivities for this component indicatihgttprobably magnetite contributes to the
magnetization (Fig. 2m).

5. Rock magnetism results

Red beds show hysteresis loops without magneticatain, due to the presence of high
coercivity minerals (Fig. 3a, ¢ and e). The thermagnretic curves display a sharp drop when
heating about 680°C, corresponding to the Curigotgature of hematite as high coercivity
phase in the red beds group (Fig. 3b, d). In amditivasp-waisted hysteresis loops occur in
all analyzed samples. This kind of hysteresis shegprlly indicates the presence of mixture
of ferromagnetic minerals with high and low coeityivmagnetic phases or mixture of
different grain sizes of a single magnetic min€Rdberts et al., 1995; Tauxe et al., 1996).
The wasp-waisted shape of hysteresis loop is espediemarkable in AT15 selected
specimen (Fig. 3e). These results are confirmedthgy IRM acquisition and 3D IRM
demagnetization (Fig. 4). The IRM spectrum of theé lbeds group displays an increase of the
magnetization, without saturation at the maximunpliep field (2T, Fig. 4b). The
corresponding 3D IRM diagram shows a clear droghim hard (2T) and medium (0.4T)
phases at around 680°C. The soft phase (0.12Tlagisspery low magnetization values and
reaches the zero axis around 580°C. This resultares the dominance of haematite and the
presence of a small quantity of magnetite (Fig. #ag coexistence of these two minerals is
well defined in site AT15 given the above mentmneasp-waisted curve (Fig. 3e) and the
two clear drops of 580°C and 680°C in the thermoreag heating curve (Fig. 3g). In
addition, the back field (that shows an inflexiooimt at 50 mT), IRM acquisition and 3D
IRM demagnetization (Fig. 4e and f) also indicéie presence of these two magnetic phases.
For almost all specimens from the red beds grdup heating-cooling curves are reversible,
indicating the absence of new magnetic mineralateceduring heating, except for the AT15-
6b, which displays a strong increase of magnetimatihen cooling.

The marly limestones display two magnetic behawoon the basis of their

ferromagnetic characterization. In the first onleistrated by the AT6-12 specimen from the
Aptian limestones, the hysteresis loops do not sbatwration, thus indicating the presence of

high coercivity minerals. Wasp-waisted shape oles®in the hysteresis loop evidences the
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mixture of different coercivity magnetic phasesg(R3h). This mixture is clearly observed in
the thermomagnetic curves of this specimen, digpdaywo drops of the magnetization
spectrum. The first one is an important decreaseaatnd 80 to 100°C, attesting the presence
of goethite. The second decline is slight and prsgive until 580 to 600°C, perhaps
indicating the likely presence of magnetite. TheMIRacquisition and 3D IRM
demagnetization of the AT10-9 also from the Aptmarly limestones show the presence of
two phases (Fig. 4c, d). The hard phase spectrdmd@plays a sharp drop around 680°C
(Fig. 4c) indicating that the high coercivity phasehematite, while the soft phase (0.12)
spectrum shows a sharp drop around 580°C (Figcéakistent with the Curie temperature of
the magnetite as low coercivity mineral.

The second behavior observed in marly limestoneshasvn by AT10.6a specimen,
from the Aptian gray marly facies. In this caseg thysteresis loop is linear indicating the
dominance of paramagnetic minerals (Fig. 3j). Therasponding thermomagnetic curves
exhibit a gradual decrease of magnetization wheatifgg with very low values of
magnetization. The magnetization increases straagiynd 400 or 450°C, and may be linked
to the formation of new magnetic phases due tmstormation of paramagnetic minerals to
magnetite as is evidenced by the Curie temperatuB80°C observed in the heating curve
(Fig. 3k). AT2-8 from red- yellowish facies, showearly saturated spectrum, and can be
related to the dominance of low coercivity minerdllis behavior was also observed in the
thermal demagnetization of 3D IRM spectra of trasnple; therefore the soft phase curve
(0.12 T) shows a maximum unblocking temperaturg88f°C, indicating that magnetite is the
main ferromagnetic mineral (Fig. 4g, h). There Isoaa “high coercivity phase" with
maximum unblocking temperatures of 680°C and mageercivities between 0.4T and 2T

(Fig. 49), consistent with the presence of haematit

6. Directional analysis
The ChRM was systematically defined in 11 sitegad bed sites and only one site
(AT10) in marly limestones (Table 1, Fig. 5). Thiher 8 sites sampled in marly limestones
do not show a stable component, as previously tbestrin the NRM result section. All
directions, before and after tectonic correctiamw systematically normal polarities, in all
outcrops from Bathonian to Albian-Cenomanian (Tabje Taking into account that both
polarities are expected for Jurassic and EarlyaCezius ages, this evidence is a first sign that

the ChRM is a secondary magnetization.
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A regional fold test with all site means of the GlhRvas performed, except for site ATS
to infer the age of remagnetization in relationh® Ait Attab syncline formation (Fig. 5). The
grouping of mean site directions increases stroadigr bedding correction (Fig. 5). This
result indicates that the fold test is positived &éme remagnetization is pre-folding. We have
used the McFadden and Jones (1981) method tcheestdtistical confidence of the fold test.
All sites were divided in two groups, the first oo@ncerning the North limb of the syncline
and the second one regrouping all sites takersisatithern flank. Before tectonic correction,
the parameter f > F (F is the value of f at a 98%&l of confidence) whereas after tectonic
correction, f < F, thus resulting a positive folstt at the 95% level of confidence (Table 2).
This result evidences for the first time that tihserved remagnetization was acquired before
the folding of the Ait Attab syncline in the sangblarea.

Although not very common, metre-scale intrafornragiofolds cut at their top by local
unconformities are present in sediments filling #i¢ Attab basin (Fig. 6a,b). To better
constrain the relative age of the ChRM and reirddifte evidence for its secondary origin,
we sampled the two limbs of one of these folds ahBnian beds to perform a fold test (site
ATS). In this case, the fold test is negative, ¢ating that the magnetization was acquired
after synsedimentary folding (Fig. 6¢, d). The Mdéfan and Jones (1981) statistical fold test
performed with sample directions in this small fgides parameters f < F before tectonic
correction and f > F after bedding correction. Tigsult indicates that the magnetization is
post-folding with a level of confidence of 95% (dable 2). Therefore, we conclude that: 1)
the ChRM displays systematically normal polarityedtions in all sites taken in different
formations in age and facies, indicating that iaisecondary magnetization; 2) the regional
fold test performed in the Ait Attab syncline issfitve at the 95% level of confidence
proving that the remagnetization was acquired leefthis structure; and 3) a fold test
performed in a metre-scale syn-sedimentary foldciffig Bathonian rocks provides a post-

folding result reinforcing that the ChRM is a rematization.

7. Discussion
7.1. Timing of remagnetization

The study of paleomagnetic directions obtained fitas in the Ait Attab syncline
reveals that the magnetization of Upper JurasgiclLanver Cretaceous sedimentary rocks is
dominated by a remagnetization of normal polafityis remagnetization was acquired after
the formation of syn-sedimentary Bathonian strieguand predates the regional folding of

the Ait Attab syncline. The mean direction calcethfor this remagnetization is D= 331.1°;
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I= 40.9° with k = 91.6 andgs = 4.6°. To define the age of this remagnetizatio®m,compare
its inclination and declination with the expectesgtithations and inclinations for the African
plate using the Global Apparent Polar Wander P&ARWP) in African coordinates as
determined by Torsvik et al. (2012), and as progof® the remagnetization direction
obtained in the Jurassic series of the Imilchibafé0 km to the east of the study area) by
Torres-Lépez et al. (2014) (Fig. 7). This companri$® reliable as no vertical-axis rotations
seem to occur in the studied area based on stalicturdence. Overall, the intersection
between the inclination line of the remagnetizationnd in the Ait Attab syncline and the
inclination curves of APWP of Africa cover a widarad of ages (Fig. 7a). Conversely, the
comparison between the declination of the Ait AtG@GitIRM components and the synthetic
GAPWP only shows three possible solutions: the farge is around 100-110 Ma (Albian-
Cenomanian), the second one around 160 Ma (Miduleate Jurassic), and the third one
around 240 Ma (Late Triassic, see Fig.7b). Regasdié rock age, lithological variations and
magnetic carriers, consistent directions of normalarity are observed in all samples,
supporting the hypothesis of a unique event affigcthe entire sedimentary sequence that
was deposited between the Jurassic and CretacEakisg this constraint into account, the
second (160 Ma) and third (240 Ma) solutions woudd be possible and consequently the
remagnetization in the Ait Attab area was probaddguired for an age ranging between
95Ma and 117 Ma (Albian-Cenomanian). This ageMii$h the Cretaceous Normal Polarity
Superchron, explaining the systematically normalafty registered in all samples. In
addition, this result is consistent with a post@ifog acquisition observed in the syn-
sedimentary Bathonian structure (site ATS). Thesalts also fit with recent data by Torres-
Lépez et al. (2014), who argue that the Cretaceenmgnetization observed in the Imilchil
area (Eastern Central High Atlas) correspondsregenal event.

7.2. Age of folding of the Ait Attab syncline

The interpretation of folding being post the inér Albian-Cenomanian
remagnetization has important implications for ustinding High Atlas tectonics, as this
result excludes the possibility of an Early Cretaecompressional event being responsible
for the formation of large folds in the Ait Attapreline area. These folds are thus probably
attributed to the Cenozoic compressional tectof@as Michard et al., 2008).

On the other hand, the result of the fold testliersmall intra-formational fold (ATS),
indicates that these structures predate the rertiagtien. This evidence would support an

interpretation that the small folds and unconfaiesi observed in the Ait Attab area are
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linked to an earlier Jurassic-Lower Cretaceousotect event, for which evidence is
postulated to exist in the axial zone of the Canitigh Atlas (Laville, 1985; Laville and
Piqué, 1992; Ibouh, 1994, 2004). However, thisrprigation is preliminary as it is based on

data from a single location within a single maplsdald in the Central High Atlas.

7.3. Curved geometry of the Ait Attab syncline

The principal aim of this work is to use paleomagneata to discuss the origin of the
curved shape of the Ait Attab syncline, that shewseastern segment with E-W trend and a
western part with a NE-SW oriented axis (Figs. J1,BBased in structural data, Beauchamp
(2004) interpreted this syncline as a typical cdri@d in the Central High Atlas, linked to
the superimposed folding in the Afourer—Jbilet arBlae E-W direction (f1) was considered
the result of a first folding stage, subsequergfplded by a second folding event with NW-
SE trend (f2). The Ait Attab syncline and similtnustures have also been explained to be the
result of reactivation/inversion of previous extenal basement faults. The NE-SW
Mesozoic cover structures would be distorted, pcody curved folds, with axial curvature
leading to the formation of “S” and “Z” shape stiwes (lbouh et al., 2001; Ibouh, 2004).

In the light of paleomagnetic data, the comparibetween the two segments of the
Ait Attab syncline (Fig. 8a) indicates that all @adleclinations are parallel and show the same
direction. An oroclinal bending test (Fig. 8b) stsomo correlation between paleodeclinations
and strike direction (negative test), indicatingttthe curved geometry in plan view of the Ait
Attab syncline does not correspond to an orocloeadding structureensu strictqWeil and
Sussmann, 2004). This result is also consistetit mvégnetic lineation encountered in the Ait
Attab area (Moussaid et al., 2013).

According to our results and interpretations, we icder that the current curved shape
in plan view of the Ait Attab syncline is primarpd therefore, is not the result of subsequent
distortion of a NE-SW trending Atlasic structurerfed during the Cenozoic inversion. This
curved geometry cannot be explained by superimpfeddohg and therefore, with older E-W
folds being refolded by NW-SE trending folds. Thé& Attab syncline is not an oroclinal
bend. Consequently, the Ait Attab geometry is agimally curved structure postdating a
remagnetization during Albian-Cenomanian times.

Consequently, the curved geometry of the Ait Atsghcline in plan view must be
considered as primary. We infer its shape to rdsuih an inheritance of its Mesozoic basinal
geometry, namely the existence of faults orient@d3-N070° and N0O90° moving under an

extensional/transtensional regime during the Mesoi#ag. 9). These faults were responsible
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for the rhomb-shaped geometry of depocenters amdpiening of pull-apart basins in the
Central High Atlas (Laville et al., 2004). Takingto account the overall shortening direction
in the High Atlas, the E-W folds can be linked k& tCenozoic inversion (N-S shortening),
while the NE-SW trends are controlled by the bas#rfailts trends (Fig.9).

8. Conclusion

Jurassic-Cretaceous rocks in the Ait Attab syncbhe¢he Central High Atlas show a
widespread remagnetization with a characteristmmanent that shows normal polarities in
all samples. The mean calculated direction aftetotec corrections coincides with the
widespread remagnetization described by other amtfitorres-Lopez et al.,, 2014) in the
High Atlas, interpreted as occurring in Albian-Ceramian times (approximately 105 Ma,
according to the APWP of Africa), assuming thatuestical axes rotations occurred in the
area. The rock magnetic studies show that haemsitite main carrier of the remagnetization
in the red beds but magnetite is also the carfieemagnetization in some sites. Goethite is

also present in some limestone samples where restiagtion was not observed.

According to the structural interpretations and fibld test results, this remagnetization
post-dates synsedimentary Bathonian structurespegathtes the formation of the Ait Attab
syncline. Folding of the Ait Attab syncline can likerefore, considered as post-Albian-
Cenomanian, probably related to the Cenozoic t&atgnwhen basin inversion occurred in
the High Atlas. The comparison of paleodeclinatibetween the two segments of the Ait
Attab syncline axis, with different structural toenbut similar paleomagnetic trends, reveals a
result consistent with hypothesis postulating tha present curved geometry can be
considered primary, possibly influenced by themgetry of the previous extensional or
transtensional Jurassic-Cretaceous basin unddmaiNE-SW and E-W oriented basement

faults.
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Figure Captions

Figure 1. (a)Location of study area within the Hifgtlas belt and geological map of the Ait
Attab syncline with sample sites AT1 to AT20. Th&3\site (a small-scale fold structure) is
also shown. (b) Stratigraphical column of the mainassic-Cretaceous units in the Ait Attab

area (after Mojon et al., 2009).

Figure 2. Zijderveld diagrams of representatives gpecimens in geographic coordinates.
Solid symbols indicate projections of vector endng onto the horizontal plane, and the
open symbols onto the vertical plane. The corredimgnplot of the evolution of normalized

NRM intensity (M/Mmax) during the thermal demagmation was plotted for each example.

(k, m, d, i) to show representative AF demagndtnat

Figure 3. Hysteresis loops after (a, c, e, h) agire (j) slope corrections of representative
AT specimens. (b, d, f, i, k) thermomagnetic curgkthe same specimens with heating (red)
cooling (blue) paths. (g and |) represent the thtaview of the heating path of f and k,

respectively.

Figure 4. IRM acquisition diagrams (b, d, f, h) amtblocking temperature spectra of three
orthogonal IRM components (Mx: 0.12 T; My: 0.4T; M27T) (a, c, e, g) of representative AT
samples. (f) represents an example of IRM and liatk-diagram showing the presence of
two magnetic phases.

Figure 5. Equal-area projections displaying spenirdéections (small circles; with solid

symbols corresponding to the directions plottethanlower hemisphere and open symbols in
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the upper hemisphere). The grey circles represenfit Attab site mean directions encircled
by the confidence area 95% before and after bedmbngctions (B.C).

Figure 6. (a) Sampled small-scale folds in the lseut limb of the Ait Attab syncline (ATS
site); and (b) intraformational folds in equivaldrgds in the northern limb of the Ait Attab
syncline showing small unconformities within theneasequence to demonstrate their syn-
sedimentary origin. Comparison of the regroupinghef specimen ChRM directions in both

limbs of the small fold displayed in (a), befor¢ &nd after (d) bedding corrections.

Figure 7. (a) Inclination-age curve; and (b) Deafion-age curve expected in the Imilchil
area from GAPWP in African coordinates (Torsvikakf 2012). Uncertainties of the expected
directions are shown. The horizontal lines represi®n observed inclination/declination (and
their uncertainties) at the Imilchil cross-sectidrhe frames with solid lines indicate the
possible solutions (modified from Torres et al.12p

Figure 8. a) Paleodeclinations by sites plottedtlom geological map for the Ait Attab
syncline. b) The oroclinal bending test using tleelichation of all sites considered in this
work. Triangles in a) and bars in b) represent dieelination error calculated asD =

Ogs/cosl.

Figure 9. Sketch showing the proposed model forfohmation of the primary curvature of
the Ait Attab syncline. (a) Structures active dgrthe basinal and (b) compressional stages
are approximately plotted on the relief map of @rea. (a) Opening of sub-basins in
extensional/transtensional regime during the MeisoZb) The basement faults control of
map-scale fold geometry during the inversion (Cenzstage.



Tablel. Paleomagnetic results of Ait Attab syncline sites

In Situ After tilt corrections
Site  Age Facies D I K a9% D I K a 95
AT1 Bathonian red silts and sandestones 3319 14 203 13.7 329.6 43.1 20.3 13.7
AT3 Infra-aptian red silts and sandestones 331.7 254 1035 55 319 421 1035 5.5
AT4 Infra-aptian red silts and sandestones 3412 177 609 7.2 337 439 459 83
AT5 Infra-aptian red silts and sandestones 329.3 195 39 9.8 3228 382 388 9.8

AT7 Albo-cenomanian red silts and sandestones 327.6 31.8 1954 55 330.3 344 1975 55

~N 00 00 00 00 0000 ~N O 0 0 0|>
O NN Ol N 00 0o N (2

AT10 Aptian marls and limestones 3179 51.1 837 6.1 330.2 302 825 6.1
AT13 Albo-cenomanian red silts and sandestones gypsiferous 339.4 36.8 47.7 81 3234 448 479 8.1
AT15 Infra-aptian red silts and sandestones 329.8 -15 664 6.8 3452 428 66.5 6.8
AT17 Infra-aptian red silts and sandestones 352 60.2 44.6 10.1 339.2 448 445 10.2
AT18 Infra-aptian red silts and sandestones 337.4 506 41.2 95 329.7 325 413 95
AT19 Infra-aptian red silts and sandestones 329.7 259 422 94 3236 441 42 9.4
AT16 Bathonian red silts and sandestones 1.8 606 654 83 2984 65.7 65.38 8.3

* 3456 46.8 653 8.4
ATS1 Bathonian red silts and sandestones 7 7 1.7 531 162.79 4.7 334.8 16.3 165.19 4.7
ATS2 Bathonian red silts and sandestones 5 5 358.6 484 14934 6.3 244 432 149.12 6.3

**: AT 16 results with regional tectonic corrections using AT17 neighbouring site strike and dip data.

n: number demagnetized samples. N: number of specimens using in this work. D: declination.
I: inclination. K and 095, Fisher statistical parameters (Fisher, 1953).



Ait Attab syncline

In situ N D | k a g5 f Fos
12 | 334.3° | 31.1° 11.2 5 1.438

After tectonic corrections N D | k a g5 f 0.350
12 | 331.1° | 40.9° | 91.6 4.6 0.091

Site ATS; small scale folded structure (intraformat ional folding)

In situ N D | k ad g5 f Fos
12 0.3° 51.2° |146.0 3.6° 0.143

After tectonic corrections N D | k a g5 f 0.350
12 | 351.8° | 29.5° | 97 14.7° |14.600
Table 2. McFadden and Jones (1981) fold tests utiegesults of the Ait Attab syncline

limbs and those of the synsedimentary folded strect
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Application of paleomagnetism to investigate basin evolution

NRM of Jurassic-Cretaceous red beds is dominated by a Cretaceous remagnetization
The remagnetization dated at 100 Ma pre-dates mgjor folding in this area

Two stages of folding are reveal ed from paleomagnetism and structural analysis

Oroclina bending vs. primary curvature of regional synclineis discriminated



