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Abstract 

Background:  The rabbit cecum hosts and interacts with a complex microbial ecosystem that contributes to the 
variation of traits of economic interest. Although the influence of host genetics on microbial diversity and specific 
microbial taxa has been studied in several species (e.g., humans, pigs, or cattle), it has not been investigated in rabbits. 
Using a Bayes factor approach, the aim of this study was to dissect the effects of host genetics, litter and cage on 984 
microbial traits that are representative of the rabbit microbiota.

Results:  Analysis of 16S rDNA sequences of cecal microbiota from 425 rabbits resulted in the relative abundances of 
29 genera, 951 operational taxonomic units (OTU), and four microbial alpha-diversity indices. Each of these microbial 
traits was adjusted with mixed linear and zero-inflated Poisson (ZIP) models, which all included additive genetic, litter 
and cage effects, and body weight at weaning and batch as systematic factors. The marginal posterior distributions 
of the model parameters were estimated using MCMC Bayesian procedures. The deviance information criterion (DIC) 
was used for model comparison regarding the statistical distribution of the data (normal or ZIP), and the Bayes factor 
was computed as a measure of the strength of evidence in favor of the host genetics, litter, and cage effects on micro‑
bial traits. According to DIC, all microbial traits were better adjusted with the linear model except for the OTU present 
in less than 10% of the animals, and for 25 of the 43 OTU with a frequency between 10 and 25%. On a global scale, the 
Bayes factor revealed substantial evidence in favor of the genetic control of the number of observed OTU and Shan‑
non indices. At the taxon-specific level, significant proportions of the OTU and relative abundances of genera were 
influenced by additive genetic, litter, and cage effects. Several members of the genera Bacteroides and Parabacteroides 
were strongly influenced by the host genetics and nursing environment, whereas the family S24-7 and the genus 
Ruminococcus were strongly influenced by cage effects.

Conclusions:  This study demonstrates that host genetics shapes the overall rabbit cecal microbial diversity and that 
a significant proportion of the taxa is influenced either by host genetics or environmental factors, such as litter and/or 
cage.
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Background
The bacterial communities that inhabit the rabbit gas-
trointestinal tracts play a key role in its metabolism, 
nutrition, and state of the immune system [1]. In the par-
ticular case of this herbivorous mammal, the richest and 
most diverse microbial community lies in its cecum [2]. 
Rabbit cecal microbial composition and diversity evolve 
from a simple and unstable community at birth into a 
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complex and more stable one in the adult individuals [3]. 
Although this stability is reached at adulthood, previous 
studies have revealed that external factors, such as feed 
composition [4, 5], level of feeding [6, 7], or the adminis-
tration of antibiotics [6–8] have a role in shaping the gut 
microbial composition and diversity. In addition to these 
environmental factors, host genetics could also play an 
important role. Several studies in humans [9, 10], cattle 
[11–15], pigs [16–19], and mice [20] have investigated 
the role of the host genetics on gut microbiota and have 
reported moderate heritabilities for certain microbial 
taxa and diversity indices. Thus, there is growing interest 
in investigating the interplay between the host genetics 
and the gut microbiota and its impact on many complex 
traits, such as human diseases, feed efficiency, or meth-
ane emissions in cattle.

In rabbit breeding, production traits such as feed effi-
ciency and growth are key elements of economic profit 
[21]. Studies that attempt to unravel the existence of a 
potential link between these traits and the host genet-
ics and microbiota are of great relevance for the rabbit 
industry to define effective genetic selection and produc-
tion strategies that contribute to sustainable production 
and animal well-being. In this respect, previous studies 
have reported associations between the gut microbiota 
and growth [22] or feed efficiency in rabbits [23]. In addi-
tion, a substantial percentage of the phenotypic variance 
of growth, feed intake and feed efficiency in growing rab-
bits has been attributed to variation in their cecal micro-
biota [24]. However, to initiate selective breeding for the 
presence of microbial taxa that are positively associated 
with relevant traits, the genetic background of the rabbit 
cecal microbiota needs to be dissected. Velasco-Galilea 
et al. [24] has already provided some indirect evidence of 
host genetics control of the rabbit cecal microbiota since 
the predictive value of the microbial information for feed 
efficiency and other performance traits can be partially 
explained by the host additive genetic effects. Nonethe-
less, it is necessary to explicitly assess whether an overall 
host genetics control of microbiota exists or, on the con-
trary, whether only certain taxa or operational taxonomic 
units (OTU) are influenced by genetic effects. Moreover, 
to design effective breeding programs based on microbial 
information, it is necessary to know whether heritable 
taxa are associated with relevant production traits.

Many OTU are only present in a small percentage of 
the microbiota samples, which implies overdispersion 
due to an excessive number of zero counts that is not 
appropriately adjusted with a linear model. Thus, a zero-
inflated Poisson (ZIP) model might be more suitable to 
estimate the heritability for these traits [25]. In a ZIP 
model, a given OTU is either not observed (zero counts) 
with probability p or observed with a number of counts 

coming from a Poisson distribution with parameter � (the 
mean number of observations) with probability 1− p.

Therefore, the objective of our study was to dissect the 
effects of the host genetics, litter and cage on a set of 984 
microbial traits that were defined so that they represent 
the rabbit cecal microbiota at different levels of complex-
ity (i.e., relative abundances of 29 genera, 951 normal-
ized OTU, and four microbial alpha-diversity indices) 
in a meat rabbit population raised under standard com-
mercial conditions. These traits were analyzed using 
Bayesian linear and ZIP mixed models, and the statistical 
relevance of the ratios of the different variance compo-
nents to the phenotypic variance estimates was evaluated 
through Bayes factors (BF).

Methods
Animals
In total, 425 meat rabbits from the Caldes line [26] were 
included in this study that was conducted at the Insti-
tute of Agrifood Research and Technology (IRTA). Of 
these 425 rabbits, 336 were produced in four batches 
and housed in collective cages, each containing eight 
kits, in a semi-open-air facility during the first semes-
ter of 2014, and 89 were produced in a single batch and 
housed in collective cages, each containing six kits, in 
another facility under better controlled environmen-
tal conditions during the spring of 2016. After weaning 
(32 days of age), all the animals were kept under the same 
management conditions and were fed with a standard 
pelleted diet supplemented with antibiotics, except 23 
rabbits from the second facility that received a diet free 
of antibiotics. The fattening period lasted 5 and 4 weeks 
for the animals raised in the first and the second facility, 
respectively, and during the last fattening week, all the 
animals received an antibiotic-free diet. Water was sup-
plied ad libitum and food was provided once per day in a 
feeder with three places. After weaning, kits were classi-
fied into two groups according to their size (“big” if their 
body weight was greater than 700 g or “small” otherwise) 
and randomly assigned to ad libitum (AL) feeding regime 
or a regime restricted (R) to 75% of the AL feed intake. 
The amount of feed supplied to the animals under R for 
each week and each batch was computed as 0.75 times 
the average feed intake of kits on AL from the same batch 
during the previous week, plus 10% to account for a feed 
intake increase as the animal grows. To prevent a pos-
sible association between cage and maternal effects, a 
maximum of two kits belonging to the same litter were 
assigned to the same cage. The dataset used for this study 
included information on 425 individuals born from 196 
litters and housed in 189 cages. The pedigree included 
information on 9760 individuals, tracing back 20 genera-
tions of ancestors up to animals born in 2005.
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Sample collection, DNA extraction and sequencing
At slaughter, cecal samples from each animal were col-
lected in a sterile tube, first kept at 4 °C in the laboratory, 
and then stored at − 80 °C. Extraction and amplification 
of DNA, Illumina library preparation and sequencing 
were performed as described in [6]. To facilitate efficient 
lysis, 250 mg of each sample were mechanically lysed in 
a FastPrep-24TM Homogenizer (MP Biomedicals, LLC, 
Santa Ana, CA, USA) at a speed of 6  m/s for 60  s. The 
kit ZR Soil Microbe DNA MiniPrepTM (ZymoResearch, 
Freiburg, Germany) was used to extract whole genomic 
DNA. The integrity and purity of the DNA were meas-
ured with a Nanodrop ND-1000 spectrophotometer 
(NanoDrop products; Wilmington, DE, USA) following 
the protocol of Desjardins and Conklin [27]. The F515Y/
R926 pair of primers (5′-GTG​YCA​GCMGCC​GCG​
GTAA-3′, 5′-CCG​YCA​ATTYMTTT​RAG​TTT-3′) [28] 
was used to amplify a fragment of the 16S rRNA gene 
that included the V4-V5 hypervariable regions. An ini-
tial polymerase chain reaction (PCR) was conducted for 
each sample with 12.5 µL 2× KAPA HiFi HotStart Ready 
Mix, 5 µL forward primer, 5 µL reverse primer and 2.5 
µL template DNA (5 ng/ µL) under the following condi-
tions: initial denaturation for 3 min at 95 °C, 25 cycles of 
30  s at 95  °C, 30  s at 55  °C and 30  s at 72  °C; and final 
extension for 2 min at 72 °C. Then, sequencing adaptors 
and eight nucleotide dual-indexed barcodes of the mul-
tiplex Nextera® XT kit (Illumina, Inc., San Diego CA, 
USA) were added in a second PCR reaction with 25 µL 
2× KAPA HiFi HotStart Ready Mix, 5 µL index i7, 5 µL 
index i5, 10 µL PCR Grade water and 5 µL concentrated 
amplicons of the initial PCR. Conditions for this second 
PCR were: an initial denaturation for 3  min at 95  °C, 8 
cycles of 30 s at 95 °C, 30 s at 55 °C and 30 s at 72 °C; and 
a final extension for 5 min at 72 °C. The libraries obtained 
were cleaned up with AMPure XP beads, validated by 
running 1 µL of a 1:50 dilution on a Bioanalyzer DNA 
1000 chip (Agilent Technologies, Inc., Santa Clara, CA, 
USA) to verify their size, and quantified by fluorometry 
with the PicoGreen dsDNA quantification kit (Invitro-
gen, Life Technologies, Carlsbad, CA, USA). After size 
verification, libraries were pooled at equimolar concen-
trations and paired-end sequenced in five parallel plates 
on an Illumina MiSeq 2× 250 platform at the Genomics 
and Bioinformatics Service of the Autonomous Univer-
sity of Barcelona.

Bioinformatics processing of microbial traits
The pipeline of the QIIME software (version 1.9.0) [29] 
that was used for sequence processing is fully described 
in [6]. Briefly, paired-end reads were assembled into con-
tigs using the python script multiple_join_paired_ends.py 

with default parameters. Then, the contigs with a quality 
score lower than Q19 were discarded, and the remaining 
ones were assigned to samples using the python script 
split_libraries.py with default parameters. The UCHIME 
algorithm [30] was used to detect and remove the chi-
meric sequences generated during PCR. The filtered 
contigs were clustered into OTU with a 97% similarity 
threshold using the script pick_open_reference_otus.py 
with default parameters [31] and the Greengenes refer-
ence database (version gg_13_5_otus) [32]. The obtained 
OTU table was normalized with the cumulative sum scal-
ing (CSS) method [33]. Finally, the UCLUST consensus 
taxonomy assigner was used to conduct the taxonomic 
assignment of representative sequences of each OTU 
(the most abundant sequence of each cluster) by mapping 
the sequences against the Greengenes reference database 
gg_13_5_otus. The raw sequence data were deposited in 
the sequence read archive of NCBI under the BioProject 
accession number PRJNA524130. The metadata, OTU 
table, and corresponding taxonomic assignments are 
in Additional file 1: Table S1, Additional file 2: Table S2 
and Additional file  3: Table  S3, respectively (see Addi-
tional file  1: Table  S1, Additional file  2: Table  S2 and 
Additional file 3: Table S3). These data are also available 
in Qiita (https://​qiita.​ucsd.​edu/) under study ID 14485. 
After the bioinformatic processing, 984 representative 
traits of the rabbit intestinal microbiota were defined and 
analyzed in the present study. These microbial traits can 
be categorized into three groups: the relative abundances 
of 29 genera, 951 CSS-normalized OTU, and four micro-
bial alpha-diversity indices computed at 10,000 contigs 
(total number of OTU observed, Chao1, Shannon and 
Simpson’s inverse). Relative abundances of genera and 
microbial alpha-diversity indices were standardized by 
subtracting their mean and dividing by their standard 
deviation. Finally, these standardized microbial traits and 
CSS-normalized OTU were multiplied by 100 and sub-
sequently rounded to the nearest integer. This transfor-
mation was necessary to generate integers that can be 
treated as counts, thus enabling the adjustment of a ZIP 
model.

Statistical models
Zero‑inflated Poisson (ZIP) mixed model
Let y =

(

y1, y2, . . . , yn
)

′ be the vector of the records of 
a specific microbial trait on n individuals. Zero-infla-
tion occurs with probability p, and data for animal i 
follow a Poisson distribution with parameter �i occur 
with probability (1− p) . Thus, the probability of observ-
ing a zero count is p

(

yi = 0
)

= p+ (1− p)e−�i , and 
the probability of observing a count of k ( k = 1, 2, …, 
∞) is p

(

yi = k
)

=
(1−p)e−�i�

k
i

k!  . Therefore, p is a popula-
tion parameter while �i is an animal-specific parameter. 

https://qiita.ucsd.edu/
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Conditioning on both p and � , which is the vector of the 
�i of all the individuals, the likelihood function can be 
expressed as follows:

Considering these two re-parameterizations:

the previous conditional likelihood can be expressed as:

since �i = exp
(

�
∗
i

)

 and p =
exp(p∗)

1+exp(p∗).
At a subsequent hierarchical level, different factors can 

be included as a linear model to explain the vector �∗ , 
thus, the assumed distribution for �∗ is the following nor-
mal density:

where β is a vector of systematic factors including the 
effects of the different categories of the combination 
between breeding farm, diet, and feeding regime (6 lev-
els), of batch (5 levels) and of body weight at weaning (2 
levels). X is a design matrix that relates the observations 
to the systematic effects, and V is the covariance matrix 
between the elements of �∗ . The structure of V is not 
diagonal, and is defined as follows:

where σ2P is the phenotypic variance and the scalars h2 , l2 
and c2 represent the ratios of additive genetic, litter and 
cage variances to σ2P . The assumed joint prior distribution 
of these ratios was uniform, with the constraint that their 
sum must be less than 1:

To guarantee a density of 1, the joint prior distribu-
tion under such a constraint was set to 6. Note that the 

(1)

p
(

y|�, p
)

=
∏

yi=0

[

p+ (1− p)e−�i

]

∏

yi>0

[

(1− p)e−�i�i
yi

yi!

]

.

(2)�
∗
i = log(�i),

(3)p∗ = log

(

p

1− p

)

,

(4)

p
(

y|�∗, p∗
)

=
∏

yi=0

[(

1
(

1+ ep
∗
)

)

[

ep
∗

+ e−exp(�∗i )
]

]

∏

yi>0

[(

1
(

1+ ep
∗
)

)

e−exp(�∗i )+�
∗
i yi

yi!

]

,

(5)p
(

�
∗|V, β

)

∼ MVN(Xβ,V),

(6)
V = σ

2
P[ZAAZ

′

A
h2 + ZLZ

′

Ll
2 + ZCZ

′

C
c2

+ I

(

1− h2 − l2 − c2
)

],

(7)
p
(

h2, l2, c2
)

= 6, if h2 + l2 + c2 ∈ [0, 1], or 0 otherwise.

constraint implies that the density of the resulting distri-
bution will be just 1/6 of the 3-variate uniform distribu-
tion without constraint. As explained later, the marginal 
prior distributions are needed to define the BF for the 
ratios of variance. Assuming prior independence, the 
marginal priors of h2 , l2 and c2 from the constrained joint 
distribution are the following Beta distributions:

A uniform distribution along the positive real numbers 
was also assumed for σ2P . ZA , ZL and ZC are design matri-
ces relating the observations with animals in the pedigree 
(9760 levels), litters (196 levels) and cages (189 levels), 
respectively, and A is the numerator relationship matrix 
[34]. Uniform priors were assumed for the elements of β 
and p∗ , bounded between − 5 and + 5 for the latter.

The posterior density can be written as:

This model specification is similar to that previously 
proposed for studying mastitis cases in dairy cows [35]. 
The differences introduced in our study refer to the 
specifications for �∗ . In our case, we assume a model in 
which a number of factors was absorbed into the resid-
ual, while these factors were explicitly fitted in the model 
of Rodrigues-Motta et al. [35] as part of the vector of the 
means. Apart from these differences in the prior assump-
tion, the two models are equivalent. The parameteriza-
tion used here allows the computation of the BF for the 
ratio of variances in a parametric space defined between 
0 and 1, including both limits, although it is more com-
putationally demanding than that of Rodrigues-Motta 
et al. [35]. The reasons are that, first, V must be updated 
and inverted repeatedly and second, Metropolis-Hasting 

(8)p
(

h2
)

= Beta(1, 3) = 3
(

h2
)2

− 6h2 + 3,

(9)p
(

l2
)

= Beta(1, 3) = 3
(

l2
)2

− 6l2 + 3,

(10)p
(

c2
)

= Beta(1, 3) = 3
(

c2
)2

− 6c2 + 3.

p(�∗, p∗,V, β|y) ∝ p(y|�∗, p∗)p
(

�
∗|V, β

)

p
(

p∗
)

p(V)p(β)

(11)

p
(

�
∗, p∗,V, β|y

)

∝
∏

yi=0

[(

1
(

1+ ep
∗
)

)

[

ep
∗

+ e−exp(�∗i )
]

]

×
∏

yi>0

[(

1
(

1+ ep
∗
)

)

e−exp(�∗i )+�
∗
i yi

yi!

]

× |V|n/2exp

{

−
1

2

(

�
∗ − Xβ

)

′(V)−1
(

�
∗ − Xβ

)

}
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steps are needed to update the conditional posterior dis-
tribution of the ratios. In contrast to the case where the 
effects are explicitly considered in the model [35], the BF 
can be computed to test whether the additive genetic, 
litter, and cage effects are null or not, since this model 
parameterization allows a null value of the ratio. The der-
ivation of the conditional posterior distributions can be 
followed in the studies of Rodrigues-Motta et al. [35] and 
Varona et al. [36] on which our model is based on.

Linear mixed model (LMM)
This model can be considered as a simplification of the 
previous one since the generation process assumed for all 
the data was the same as that assumed for the logarithm 
of the vector of � parameters of the individual Poisson 
distributions ( �∗ ) corresponding to the records with non-
zero counts for each trait (transformed CSS-normalized 
OTU counts, transformed relative abundances of genera, 
and transformed alpha-diversity indices). Thus, the dis-
tribution of the data given the model parameters can be 
written as:

Notation and model specifications, including both the 
structure of V (Eq. (6)) and the prior definitions (Eq. (7)), 
were assumed to be the same as in the ZIP model, except 
for the parameters that are specific to the ZIP model. For 
implementation, we used the conditional posterior distri-
butions of this LMM derived by Varona et al. [36] since 
we assumed the same prior distributions as theirs.

Criteria for comparison of models
Two criteria for model choice were applied for each of 
the 984 microbial traits analyzed in this study. First, we 
evaluated whether the trait was better adjusted with the 
LMM or the ZIP model with the preferred model being 
that with the lowest deviance information criterion 
(DIC) value [37]. The statistical relevance of the addi-
tive genetic, litter and cage effects was evaluated for 
each trait with the model that best fitted the trait (either 
LMM or ZIP) using the BF. Thus, for each trait, three BF 
were computed to assess the null hypotheses of whether 
the additive genetic (a), litter (l) or cage (c) effects have a 
null effect versus the alternative hypothesis that assumed 
that these factors have a non-null effect. These three 

(12)p
(

y|V, β
)

∼ MVN(Xβ,V).

hypotheses were independently tested by computing the 
BF of h2 = 0 against h2  = 0 ( BFh2 ), l2 = 0 against l2  = 0 
( BFl2 ), and c2 = 0 against c2  = 0 ( BFc2).

The derivations of these definitions of the BF are reported 
in Varona et  al. [36]. They show how the BF for nested 
models is the ratio between the marginal prior density eval-
uated at the value of interest, zero in our case, divided by 
the marginal posterior density at the value of interest (i.e., 
for the heritability: BFh2 =

p
(

h2=0
)

p(h2=0|y)
 ). The marginal prior 

densities under our constrained joint prior distribution of 
the ratios are Beta(1,3) distributions, which are equal to 3 
at the 0 value for the ratio of variance (Eq. (8)). The evalua-
tion of the marginal posterior of the ratios at 0 implies that, 
since these marginal posteriors are only defined up to pro-
portionality, the computation of this proportionality is con-
stant: 

∫ h2=1
h2=0p

(

h2|y
)

dh2 . This integral can be solved 
numerically at each iteration. The different BF can be com-
puted as follows from the Markov chain Monte Carlo 
(MCMC) output:

where N is the number of MCMC iterations and 
p
(

h2 = 0|y
)

j
 is the evaluation of the marginal posterior 

density of h2 at zero at each iteration j of the sampling 
procedure, which is computed as stated above:

All the operations were done on the logarithmic scale 
and after having saved the evaluations of the marginal pos-
terior at zero along the MCMC chain to avoid numerical 
instabilities during their computation. In this way, it was 
possible to adjust the evaluations of the marginal poste-
rior at zero for their maximum, thus reducing the needed 
numerical accuracy:

(13)

BFh2 =
3

p
(

h2 = 0|y
) ; BFl2 =

3

p
(

l2 = 0|y
) ; and

BFc2 =
3

p
(

c2 = 0|y
)

(14)BFh2 =
3

∑N
j=1

p(h2=0|y)j
N

,

(15)
p
(

h2 = 0|y
)

j
∫ h2=1
h2=0p

(

h2|y
)

j
dh2

.

(16)
N
�

j=1

p
�

h2 = 0|y
�

j

N
= exp







log





�N
j=1 exp

�

log
�

p
�

h2 = 0|y
�

j

�

−m
�

N



+m







,
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where m is the maximum value of the vector composed 
of the N evaluations of p

(

h2 = 0|y
)

 on the logarithmic 
scale. See Sorensen and Gianola [38] for further details.

BF values were classified according to four levels of evi-
dence [39]: BF < 3.2: the denominator model is supported; 
3.2 ≤ BF < 10: substantial evidence favoring the numera-
tor model; 10 ≤ BF < 100: strong evidence favoring the 
numerator model; and BF ≥ 100: decisive evidence favor-
ing the numerator model. The reciprocal of the BF value 
(1/BF) was used to assess the evidence for the null hypoth-
esis, which assumed that the additive genetic, litter or cage 
effects on the trait were null.

MCMC Bayesian implementation
MCMC Bayesian procedures were used to obtain sam-
ples from the marginal posterior distributions. This algo-
rithm was implemented in a Fortran 90 software, which 
is available in our GitHub repository (https://​github.​com/​
juanp​ablo-​sanch​ez/​BF-​ZIP). For both the LMM and ZIP 
models, chains of 10,000 samples were run discarding the 
first 1000 to allow the algorithm to reach convergence 
to the marginal posterior distributions. Convergence 
diagnostics of the Markov chains was performed by the 
Geweke test function with the coda R package [40]. The 
z-statistics of this test for the genetic, litter and cage vari-
ance ratios computed for the 984 microbial traits fitted 
with the LMM or ZIP models (according to DIC) are in 
Additional file  4: Fig. S1 and Additional file  5: Fig. S2, 
respectively. Although the computational demand of the 
parameterization on the variance ratios is high, it allows 
a good mixing. Thus, a reduced number of iterations was 
needed to properly reach convergence and characterize 
the marginal posterior distributions.

Results
Cecal microbial composition and diversity
After bioinformatic sequence processing, we identified 
951 OTU that were present in at least 5% of the animals. 
Each sample had on average 677 OTU (range from 197 

to 841). Table 1 shows the OTU frequencies across rabbit 
samples.

The taxonomic assignment of representative sequences 
of these OTU against the Greengenes reference database 
gg_13_5_otus (see Additional file  3: Table  S3) revealed 
the presence of 29 known genera. Among these, four 
were present in 50 to 75% of the rabbit samples and 25 in 
a minimum of 75% of the animals. Table 2 shows a phe-
notypic summary of the relative abundances of the 29 
genera together with the four microbial alpha-diversity 
indices computed.

Table 1  OTU frequencies across rabbit cecal samples

Frequency (%) Number 
of OTU

≥ 5 to ≤ 10 13

 > 10 to ≤ 25 43

 > 25 to ≤ 50 121

 > 50 to ≤ 75 277

 > 75 to ≤ 100 497

Table 2  Phenotypic summary of genera and alpha diversity 
indices

SD: standard deviation

Trait Mean SD

Genus Methanobrevibacter, % 0.19 0.23

Genus Adlercreutzia, % 0.95 0.43

Genus Bacteroides, % 1.65 0.76

Genus Parabacteroides, % 0.21 0.18

Genus Rikenella, % 0.35 0.24

Genus Butyricimonas, % 0.20 0.19

Genus Odoribacter, % 0.27 0.22

Genus Clostridium, % 1.05 0.26

Genus Dehalobacterium, % 0.08 0.09

Genus Anaerofustis, % 0.11 0.07

Genus Anaerostipes, % 0.16 0.08

Genus Blautia, % 2.94 0.65

Genus Butyrivibrio, % 0.11 0.07

Genus Coprococcus, % 2.02 0.42

Genus Dorea, % 0.47 0.12

Genus Epulopiscium, % 0.11 0.11

Genus Ruminococcus, % 0.16 0.07

Genus rc4-4, % 0.15 0.07

Genus Faecalibacterium, % 0.20 0.05

Genus Oscillospira, % 2.26 0.58

Genus Phascolarctobacterium, % 0.21 0.24

Genus Coprobacillus, % 0.19 0.24

Genus p-75-a5, % 0.10 0.07

Genus Oxalobacter, % 0.11 0.06

Genus Desulfovibrio, % 0.46 0.31

Genus Campylobacter, % 0.07 0.08

Genus Ruminococcus, % 4.32 0.85

Genus Anaeroplasma, % 0.20 0.17

Genus Akkermansia, % 1.47 0.50

Number of OTU observed 551.05 91.94

Shannon 5.07 0.30

Simpson 0.98 0.01

Simpson’s inverse 71.01 20.20

https://github.com/juanpablo-sanchez/BF-ZIP
https://github.com/juanpablo-sanchez/BF-ZIP
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Adjustment of microbial traits with the LMM versus ZIP 
model
According to DIC, the adjustment of all relative abun-
dances of genera and microbial alpha-diversity indices 
was better with the LMM (lower DIC values) than with 
the ZIP model (see Additional file  6: Table  S4). Among 
the 951 CSS-normalized OTU also analyzed in our 
study, those with a frequency higher than 25% were bet-
ter adjusted with the LMM and those with a frequency 
lower than 10% were better adjusted with the ZIP model. 
Among the 43 OTU with a frequency between 10 and 
25%, 18 and 25 OTU were better adjusted with the LMM 
and the ZIP model, respectively (see Additional file  6: 
Table S4).

Effects of the host genetics, litter and cage on the rabbit 
cecal microbiota
Box and whisker plots of the estimated marginal pos-
terior means of the heritability, and litter and cage 

variance ratios for the OTU that, according to DIC, are 
better adjusted with the LMM, and for those for which 
the ZIP model is preferable are shown in Figs. 1 and 2, 
respectively. The same plots corresponding to relative 
abundances of genera and microbial alpha-diversity 
indices are shown in Figs. 3, and 4, respectively. In all of 
the plots, microbial traits are categorized by their fre-
quency among samples and by the BF that represent the 
levels of evidence in favor of the model that included 
additive genetic (a), litter (b), or cage (c) effects. Over-
all, these figures show that the BF did not provide evi-
dence of genetic, litter, or cage effects for ~ 80% of the 
microbial traits analyzed. However, for the traits that 
were declared to be affected by the host genetics, lit-
ter or cage (see Additional file 7: Tables S5, S6 and S7, 
respectively), the magnitude of the estimates of vari-
ance ratios was moderate to high with minimum values 
of 0.15 to 0.20.

Fig. 1  Marginal posterior of heritability (a), litter (b) and cage (c) variance ratios for OTU adjusted with the normal linear mixed model. OTU are 
categorized by their frequency among the rabbit samples. Each OTU is represented by a dot colored in red, yellow, blue or green based on Bayes 
factor for no, substantial, strong or decisive evidence, respectively, of additive genetic (a), litter (b) or cage (c) effects

Fig. 2  Marginal posterior of heritability (a), litter (b) and cage (c) variance ratios for OTU adjusted with the zero-inflated Poisson model. OTU are 
categorized by their frequency among the rabbit samples. Each OTU is represented by a dot colored in red, yellow, blue or green based on Bayes 
factor for no, substantial, strong or decisive evidence, respectively, of additive genetic (a), litter (b) or cage (c) effects
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Fig. 3  Marginal posterior of heritability (a), litter (b) and cage (c) variance ratios for relative abundances of genera adjusted with the normal linear 
mixed model. Genera are categorized by their frequency among the rabbit samples. Each genus is represented by a dot colored in red, yellow, blue 
or green based on Bayes factor for no, substantial, strong or decisive evidence, respectively, of additive genetic (a), litter (b) or cage (c) effects

Fig. 4  Marginal posterior of heritability (a), litter (b) and cage (c) variance ratios for microbial alpha-diversity indices adjusted with the normal linear 
mixed model. Each index is represented by a dot colored in red, yellow, blue or green based on Bayes factor for no, substantial, strong or decisive 
evidence, respectively, of additive genetic (a), litter (b) or cage (c) effects

Table 3  Mean (standard deviation) of Bayes factors and heritability estimates for OTU under genetic control adjusted with the normal 
LMM

BFh2 = Bayes factor of the model with additive genetic effects against the same model without additive genetic effects

Frequency (%) Substantial evidence of genetic 
influence (3.2 ≤ BFh2 < 10)

Strong evidence of genetic influence (10 
≤ BFh2 < 100)

Strong evidence of genetic 
influence ( BFh2 ≥ 100)

BFh2 h2 n BFh2 h2 n BFh2 h2 n

All 5.31 (1.62) 0.21 (0.03) 108 24.83 (18.09) 0.26 (0.05) 33 159.38 (15.27) 0.19 (0.04) 2

 > 10 to ≤ 25 5.03 (1.32) 0.20 (0.03) 6 26.92 (12.50) 0.23 (0.03) 4 170.18 (–) 0.16 (–) 1

 > 25 to ≤ 50 5.49 (1.79) 0.21 (0.03) 23 36.19 (31.80) 0.25 (0.04) 6 – – 0

 > 50 to ≤ 75 5.46 (1.70) 0.21 (0.04) 44 21.23 (12.57) 0.28 (0.05) 12 148.58 (–) 0.22 (–) 1

 > 75 to ≤ 100 5.07 (1.48) 0.19 (0.03) 35 21.82 (14.73) 0.27 (0.07) 11 – – 0
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The results summarized in Figs. 1, 2, 3 and 4 are pre-
sented in the following paragraphs of the “Results” 
section. Bayes factors, marginal posterior means and 
standard deviations of variance ratios for the OTU that, 
based on the BF, were declared to be influenced by host 
genetics, litter, or cage effects (together with the associ-
ated probability of these estimates being greater than 
0.10) are included in Additional file 8: Table S8 (heritable 
OTU), Additional file 9: Table S9 (OTU influenced by the 
nursing environment) and Additional file  10: Table  S10 
(OTU influenced by cage effects).

Microbial traits under genetic control
Table  3 summarizes the marginal posterior means of 
the heritability estimates for the OTU, categorized by 
frequency, which were better adjusted with the normal 
LMM according to DIC and for which the BF provided 
evidence in favor of host genetics control. Similarly, 
Table 4 summarizes the marginal posterior means of the 
heritability estimates for OTU, categorized by frequency, 
which were better adjusted with the ZIP model according 
to DIC and for which the BF provided evidence in favor 
of host genetics control.

The BF provided some level of evidence in favor of 
host genetics control for 154 of the 951 OTU analyzed. 
The BF between models with and without an additive 
genetic effect provided evidence of a substantial ( BFh2 ≥ 
3.2) genetic control for 108 and 10 of the OTU that were 
better adjusted with the normal LMM and ZIP mod-
els, respectively. Evidence of a strong (10 ≤ BFh2 < 100) 
genetic control was found for 33 and one OTU that were 
better adjusted with the normal LMM and ZIP models, 
respectively. Finally, decisive ( BFh2 ≥ 100) evidence of 
genetic control was found for two OTU that were better 
adjusted with the normal LMM. The taxonomic assign-
ment of these two OTU revealed that one belongs to the 
genus Bacteroides and the other to the genus Parabacte-
roides, and the marginal posterior means (standard devi-
ations) of their heritability estimates were 0.16 (0.07) and 
0.22 (0.08), respectively (see Additional file 8: Table S8). 
Overall, the estimates of the heritability for these OTU 
were moderate (from 0.12 to 0.40). However, it should be 

noted that these estimates have large standard deviations 
as a consequence of our limited sample size. Neverthe-
less, it is worth mentioning that for 51 of the 154 OTU 
identified as being under genetic control, the probability 
that their heritability estimate is higher than 0.10 was 
equal or greater than 0.80.

Table  5 shows the marginal posterior means and 
standard deviations of the heritability estimates, 
together with the probability of these estimates being 
greater than 0.10, for relative abundances of genera 
and alpha-diversity indices. The BF provided evidence 
in favor of genetic control for the relative abundances 
of 10 genera. This evidence was substantial ( BFh2 ≥ 3.2) 
for the genera Dehalobacterium, Epulopiscium, Metha-
nobrevibacter, Butyricimonas, Odoribacter, Blautia and 
Oxalobacter; and strong (10 ≤ BFh2 < 100) for the gen-
era Phascolarctobacteirum, Bacteroides and Parabacte-
roides. The estimates (marginal posterior means) of the 
heritability for these genera ranged from 0.17 to 0.35. 
The highest heritability estimates, accompanied by 
high BF values, were found for the genera Bacteroides, 

Table 4  Mean (standard deviation) of Bayes factors and heritability estimates for OTU under genetic control adjusted with the ZIP 
model

BFh2 = Bayes factor of the model with additive genetic effects against the same model without additive genetic effects

Frequency (%) Substantial evidence of genetic influence (3.2 ≤ BFh2 < 10) Strong evidence of genetic influence (10 ≤ 
BFh2 < 100)

BFh2 h2 n BFh2 h2 n

All 4.49 (1.73) 0.24 (0.04) 10 11.37 (–) 0.18 (–) 1

≥ 5 to ≤ 10 3.62 (0.35) 0.24 (0.01) 5 11.37 (–) 0.18 (–) 1

 > 10 to ≤ 25 5.37 (2.16) 0.23 (0.06) 5 – – 0

Table 5  Bayes factors, marginal posterior means (standard 
deviations) of the heritability estimates for genera and alpha-
diversity indices influenced by genetic effects

SD: standard deviation; BFh2 : Bayes factor of the model with additive genetic 
effects against the same model without additive genetic effects

Trait Mean (SD) h2 P (h2 > 0.1) BFh2

Genus Methanobrevibacter 0.21 (0.13) 0.79 7.75

Genus Butyricimonas 0.27 (0.19) 0.79 4.39

Genus Odoribacter 0.19 (0.13) 0.71 3.50

Genus Bacteroides 0.29 (0.17) 0.87 13.88

Genus Parabacteroides 0.35 (0.17) 0.91 31.15

Genus Dehalobacterium 0.29 (0.19) 0.83 8.62

Genus Blautia 0.20 (0.12) 0.78 7.01

Genus Epulopiscium 0.17 (0.11) 0.70 5.85

Genus Phascolarctobacterium 0.19 (0.12) 0.73 10.22

Genus Oxalobacter 0.21 (0.13) 0.78 6.12

Number of OTU observed 0.28 (0.17) 0.84 7.30

Shannon 0.18 (0.13) 0.70 3.41
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Parabacteroides and Dehalobacterium, for which the 
probability that their heritability estimates are higher 
than 0.10 was greater than 0.80. Although the evidence 
in favor of genetic control was strong for the genus 
Phascolarctobacterium, its heritability (0.19) estimate 
was not one of the highest (P(h2 > 0.1) = 0.73). However, 
1/BFh2 values higher than 3.2 were obtained only for 10 
OTU and the genus Coprococcus, which are clearly not 
heritable.

Finally, regarding the traits that globally integrate the 
rabbit cecal microbiota, substantial evidence of genetic 
control was found for number of OTU observed and 
Shannon indices. The highest heritability estimate was 
found for the number of OTU observed index (h2 = 0.28; 
BFh2 = 7.30). The additive genetic background for these 
two traits was clearly demonstrated by a probability 
greater than 0.70 that their heritability estimates are 
higher than 0.10.

Microbial traits influenced by the nursing environment
The marginal posterior means of litter variance ratio 
for OTU, categorized by frequency, which were better 
adjusted with the normal LMM according to DIC and for 
which the BF provided evidence in favor of a litter effect 
are summarized in Table 6, and the corresponding ones 
which were better adjusted with the ZIP model according 
to DIC are in Table 7.

The BF provided some level of evidence in favor of a lit-
ter effect for 215 of the 951 OTU analyzed. Six of them 
were better adjusted (lower DIC values) with the ZIP 
model and the remaining 209 were better adjusted with 
the LMM. BF values between models with and without 
a litter effect provided evidence of a substantial ( BFl2 
≥ 3.2) litter effect for 81 and three OTU that were bet-
ter adjusted with the normal LMM and the ZIP model, 
respectively. Strong evidence (10 ≤ BFl2 < 100) of a litter 
effect was found for 63 and three OTU that were bet-
ter adjusted with the normal LMM and the ZIP model, 
respectively. Finally, decisive ( BFl2 ≥ 100) evidence of 
a litter effect was found for 65 OTU that were better 
adjusted with the normal LMM. The taxonomic assign-
ment of these OTU revealed that most of them belong to 
the genera Parabacteroides, Phascolarctobacterium, and 
the species eggerthii and fragilis of the genus Bacteroides. 
Overall, the marginal posterior means of the litter vari-
ance ratio ranged from 0.12 to 0.19 (Tables 6 and 7) but 
the estimates for this ratio reached values ranging from 
0.37 to 0.54 for the OTU for which large BF values were 
observed (see Additional file 9: Table S9). Eighty-nine of 
the 215 OTU that were declared to be influenced by litter 
effects had a probability equal or greater than 0.80 that 
their litter variance ratio be greater than 0.10. The mar-
ginal posterior means of the litter variance ratio were 
greater than 0.50 for 12 OTU of which six belong to the 

Table 6  Mean (standard deviation) of Bayes factors and litter variance ratio estimates for OTU influenced by a litter effect adjusted 
with the normal LMM

BFl2 = Bayes factor of the model with litter effects against the same model without litter effects

Frequency (%) Substantial evidence of litter 
influence (3.2 ≤ BFl2 < 10)

Strong evidence of litter influence (10 
≤ BFl2 < 100)

Decisive evidence of litter influence 
( BFl2 ≥ 100)

BFl2 l2 n BFl2 l2 n BFl2 l2 n

All 5.29 (1.79) 0.12 (0.01) 81 29.46 (22.86) 0.17 (0.02) 63 ∞ (∞) 0.37 (0.15) 65

 > 10 to ≤ 25 4.08 (0.80) 0.12 (0.00) 2 10.09 (–) 0.14 (–) 1 ∞ (∞) 0.54 (0.17) 9

 > 25 to ≤ 50 5.45(1.73) 0.12 (0.01) 16 25.23 (16.74) 0.17 (0.02) 13 ∞ (∞) 0.40 (0.14) 19

 > 50 to ≤ 75 5.49 (1.90) 0.12 (0.01) 28 34.90 (26.65) 0.17 (0.02) 23 ∞ (∞) 0.33 (0.12) 27

 > 75 to ≤ 100 5.12 (1.77) 0.12 (0.01) 35 27.51 (21.94) 0.17 (0.02) 26 7.98E4 (2.33E5) 0.27 (0.06) 10

Table 7  Mean (standard deviation) of Bayes factors and litter variance ratio estimates for OTU influenced by a litter effect adjusted 
with the ZIP model

BFl2 = Bayes factor of the model with litter effects against the same model without litter effects

Frequency (%) Substantial evidence of litter influence (3.2 ≤  BFl2 < 10) Strong evidence of litter influence (10 ≤ BFl2  < 100)

BFl2 l2 N BFl2 l2 n

All 3.77 (0.46) 0.19 (0.00) 3 36.69 (23.57) 0.46 (0.14) 3

≥ 5 to ≤ 10 3.80 (0.64) 0.19 (0.00) 2 59.05 (–) 0.62 (–) 1

 > 10 to ≤ 25 3.70 (–) 0.19 (–) 1 25.51 (19.01) 0.38 (0.04) 2
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genus Bacteroides, four to the genus Phascolarctobacte-
rium, one to the genus Parabacteroides and one to the 
genus Rikenella (see Additional file 9: Table S9). It should 
be mentioned that the 1/BFl2 values were greater than 3.2 
for 107 OTU, which are not influenced by a litter effect.

The marginal posterior means of the litter variance 
ratio, together with the associated probability of these 
estimates being greater than 0.10, for relative abundances 
of genera and alpha-diversity indices are in Table 8. The 
number of OTU observed index was found to be influ-
enced by the nursing environment (l2 = 0.17; BFl2 = 
15.55). The BF also provided evidence of a litter effect 
for 10 genera. Very strong evidence of a litter effect was 
found for the genera Butyricimonas (l2 = 0.28), Bacte-
roides (l2 = 0.27), Parabacteroides (l2 = 0.47), Rikenella 
(l2 = 0.32), Dehalobacterium (l2 = 0.37) and Phascolarcto-
bacterium (l2 = 0.66) with decisive BF values ( BFl2 ≥ 100) 
and P(l2 > 0.1) = 0.96. However, the genera Coprococcus, 
rc4-4 and Faecalibacterium are not influenced by a litter 
effect (1/BFl2 > 3.2).

Discussion
The influence of many external factors on the rabbit cecal 
microbial composition and diversity is well documented 
[4–8], but not that of the host genetics. To shed light on 
this, we report the heritability estimates, together with 
the litter and cage (results for cage effects can be found 
in Additional file 7: Tables S5, S6, and S7) variance ratios 
estimates, for microbial traits that were fitted with LMM 
and ZIP mixed models. Moreover, we have assessed the 
statistical relevance of these estimates through BF.

Previous studies in humans and different livestock spe-
cies have pointed out the existence of host genetics con-
trol of the gut microbiota, but, to our knowledge, this has 
not been investigated in the rabbit. For the first time, we 
have evaluated the host genetics, litter, and cage effects 
on the microbial composition of the rabbit cecum, which 
is the organ that contains the greatest microbial diver-
sity and complexity [2]. In this study, we defined a set of 
984 microbial traits that represent cecal microbial com-
position and diversity with different levels of complexity. 
Although genus assignment of every queried sequence 
would be the desired outcome, it should be noted that 
the resolution of the 16S rDNA locus with the MiSeq 
technology used in this study allowed annotation of only 
21% of all the sequences at the genus level. Nevertheless, 
given the importance of the functional roles played by 
bacteria that can be assigned at the genus level, it is rele-
vant to provide estimates that inform about the influence 
of genetic, litter and cage effects for groups of reads that 
belong to the same genus.

The CSS-normalized abundances of 951 OTU can be 
considered as the most specific level of defining a micro-
bial community, but their frequencies vary widely among 
samples. This means that some OTU are present in all or 
almost all the animals (i.e., core OTU), while others are 
only detected in some animals. The distribution of the 
OTU that are present only in a small percentage of the 
analyzed animals was clearly far from a normal distribu-
tion and, thus not surprisingly, these were better adjusted 
with the ZIP model. In spite of this, all the microbial 
traits analyzed in this study with a frequency higher than 
25% were better adjusted with the normal LMM model 
according to DIC. For the traits with a clear excess of 
zero counts (i.e., having a frequency among samples 
lower than 15%), DIC clearly favored the ZIP model. Pre-
vious microbiome studies have also modeled microbiome 
data with the ZIP model to account for the excess of zero 
counts of many taxa that are rare and only detected in 
a small proportion of the samples [24, 41]. Such studies 
argue that the application of a conventional linear model 
is inappropriate for zero-inflated data. In our study, the 
ZIP model performed better than the LMM only for the 
microbial traits with a very marked excess of zero counts. 
However, it should be noted that our choice of the ZIP 
model, as an alternative to the LMM, was based only on 
its ability to handle the excess of zero counts, and not on 
whether the non-zero inflated component of the model 
was properly adjusted to a Poisson distribution. A lack 
of adjustment of transformed CSS records to the Poisson 
model could perfectly explain the fact that the ZIP model 
performed better than the LMM only for the micro-
bial traits that have a very large excess of zero counts. 

Table 8  Bayes factors, marginal posterior means (standard 
deviations) of litter variance ratio for genera and alpha-diversity 
indices influenced by litter effects

SD: standard deviation; BFl2 : Bayes factor of the model with litter effects against 
the same model without litter effects

Trait Mean (SD) l2 P(l2 > 0.1) BFl2

Genus Butyricimonas 0.28 (0.10) 0.96 728.23

Genus Odoribacter 0.14 (0.08) 0.64 7.21

Genus Bacteroides 0.27 (0.09) 0.97 809.53

Genus Parabacteroides 0.47 (0.10) 1.00 1.50E11

Genus Rikenella 0.32 (0.08) 1.00 3.67E4

Genus Dehalobacterium 0.37 (0.10) 1.00 9.66E4

Genus Anaerofustis 0.15 (0.08) 0.68 8.80

Genus Epulopiscium 0.12 (0.07) 0.58 4.52

Genus Phascolarctobacterium 0.66 (0.07) 1.00 ∞
Genus Desulfovibrio 0.17 (0.09) 0.78 16.53

Genus Campylobacter 0.16 (0.08) 0.73 11.91

Number of OTU observed 0.17 (0.09) 0.75 15.55
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Although we have derived some biological conclusions 
from the application of our models, we are aware of the 
limitation due to the application of LMM on records with 
a marked excess of zero counts. Handling such issues of 
CSS counts remains a challenge.

The BF provided evidence in favor of host genetics con-
trol for 34% and 16% of the genera and OTU present in 
the rabbit cecum, respectively. These results are in line 
with the analysis of heritability estimates conducted in 
humans by Goodrich et al. [42] who found evidence of a 
genetic control for 10% of their 945 identified taxa, and 
also with an assessment in cattle of the host genetics 
influence on the rumen microbiota [13] that showed that 
34% of the microbial taxa analyzed (from genus to phy-
lum levels) were heritable. Our heritability estimates for 
the relative abundances of the genera and OTU that were 
declared to be under host genetics control by the BF were 
moderate. This is also in agreement with earlier studies in 
humans and other livestock species. However, it is note-
worthy that these studies suggested that the main herit-
able bacteria belong to the phylum Firmicutes, whereas 
taxa encompassed by the phylum Bacteroidetes are gen-
erally not heritable [13, 43]. A discussion of the results 
regarding the effects of host genetics, litter, and cage on 
taxa that are encompassed by the phyla Bacteroidetes and 
Firmicutes, as well as on microbial alpha-diversity indi-
ces, will be presented below.

In our study, according to the BF, the strongest evi-
dence of host genetics control concerned two OTU that 
are taxonomically assigned to the genera Bacteroides and 
Parabacteroides, which are both part of the phylum Bac-
teroidetes. Moreover, the heritability estimates were high-
est for these two genera: 0.35 and 0.29 for Parabacteroides 
and Bacteroides, respectively. In pigs, Chen et al. [17] and 
Bergamaschi et al. [44] also reported some heritable taxa 
that belong to the phylum Bacteroidetes. The species that 
belong to the genera Bacteroides and Parabacteroides are 
anaerobic Gram-negative bacteria, which are involved in 
the degradation of plant polysaccharides and amino acid 
fermentation, amino acid transport, and cell motility in 
the gastrointestinal microbiota of the growing rabbit [45, 
46]. Although the BF and our heritability estimates for 
the genera Bacteroides and Parabacteroides clearly reveal 
the existence of a host genetics control, the environmen-
tal effect of litter has a profound impact on the relative 
abundances of both genera (l2 Parabacteroides = 0.47; l2 
Bacteroides = 0.27). The nursing environment provided 
by the mother and the siblings also has an important 
impact on the relative abundance of the genus Rikenella 
(l2 Rikenella = 0.32), which is also part of the phylum Bac-
teroidetes. Litter effects play an important role on pheno-
typic traits related to rabbit growth and feed efficiency 
[47]. The microbial colonization of the gastrointestinal 

tract of mammals is considered to occur immediately 
after birth when the newborns acquire their immature 
microbiota from a combination of maternal and external 
microbes [3, 48]. The impact of the nursing environment 
on the relative abundances of these genera still prevails 
at slaughter age when we collected the cecal samples 
for this study. Remarkably, the ratio of phenotypic vari-
ance due to litter effects exceeds 0.50 for six OTU that 
belong to the genus Bacteroides and for one OTU that is 
taxonomically assigned to the genus Parabacteroides. It is 
also worth noting that cage seems to have an important 
effect in the relative abundances of some members of the 
family S24-7. Bacteria within this family, which is part of 
the order Bacteroidales, have been shown to be domi-
nant in the mouse gut microbiota and have been detected 
in the gastrointestinal tract of different mammals. The 
classification of this family remains ambiguous because 
its members have not been cultured, but the functional 
analysis conducted by Lagkouvardos et al. [49] renamed 
it as the family Muribaculaceae. A recent study on mice 
showed that members of the family Muribaculaceae are 
major mucin monosaccharide foragers in the gut [50].

High heritability estimates, accompanied by strong evi-
dence of host genetics control based on the BF, were also 
estimated for the genera Dehalobacterium (h2 = 0.29) 
and Butyricimonas (h2 = 0.27). Both genera belong to the 
phylum Firmicutes and have been previously reported 
as heritable in humans [42, 51]. Such studies reported a 
module of co-occurring heritable families within which 
the family Christensenellaceae was the hub (i.e., the node 
connected to most other nodes) connected to heritable 
families Methanobacteriaceae and Dehalobacteriaceae. 
Interestingly, we also found substantial evidence of 
genetic control for the genus Methanobrevibacter, which 
is encompassed by the family Methanobacteriaceae. 
Methanobrevibacter is the single genus of the phylum 
Euryarchaeota that was detected in the rabbit cecum. It 
encompasses different hydrogenotrophic methane-pro-
ducing species whose abundances have been associated 
with single-nucleotide polymorphisms that are located 
in a long noncoding RNA, however, this link remains 
uncertain [52]. In addition, taxa belonging to the family 
Methanobacteriaceae were reported to have heritabil-
ity estimates higher than 0.50 in a beef cattle population 
[53]. It is worth noting that we also found heritability 
estimates statistically higher than zero for the genera 
Blautia and Odoribacter, which is consistent with previ-
ous results in humans [54, 55].

Our results revealed an important litter effect on 
the relative abundances of the genera Butyricimonas 
(l2 = 0.28), Dehalobacterium (l2 = 0.37) and Phascolarcto-
bacterium (l2 = 0.66). Estimates of the heritability and BF 
also suggested a genetic control for these three genera, 
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but the effect exerted by the nursing environment seems 
to be stronger. Regarding the role played by cage environ-
mental effects, they were strong for some species encom-
passed by the genus Ruminococcus. On the contrary, 
host genetics and litter effects do not seem to have any 
relevant influence on this genus. However, La Reau et al. 
[56] and Li et  al. [13] found that the abundance of the 
genus Ruminococcus was influenced by the host genet-
ics. Remarkably, this genus displays a large diversity and, 
our results identified four OTU that are taxonomically 
assigned as Ruminococcus and are clearly influenced by 
the host genetics.

On a global scale, our results suggest that a substan-
tial part of the cecal microbial variability is under host 
genetics control since the BF provided evidence in favor 
of genetic control for the number of OTU observed and 
Shannon indices. In line with previous heritability assess-
ments of alpha-diversity in pigs [18, 44] and humans [43], 
we have found a clear genetic background for the num-
ber of OTU observed index (h2 = 0.28). Microbial com-
plexity can be summarized into alpha-diversity indices, 
which are heritable traits that could potentially be incor-
porated into breeding programs if an association with a 
production trait of economic interest was demonstrated. 
Nonetheless, it is important to bear in mind that alpha-
diversity at weaning might not be an accurate predictor 
of diversity at later stages in rabbit life. Rabbit cecum 
hosts a rich and complex microbial ecosystem that is 
shaped by many non-genetic factors, however, a signifi-
cant proportion of the microbial traits analyzed in this 
study showed moderate heritabilities. Although the cecal 
samples analyzed here were collected from nearly adult 
rabbits, these estimates should be interpreted with cau-
tion since microbial composition changes as the animal 
grows and does not stabilize until the animal reaches 
adulthood. As we have stated, recent studies in differ-
ent livestock species have attempted to dissect the host 
genetics control of gut microbiota but without paying 
enough attention to non-genetic factors, such as litter or 
cage effects, which can be even more relevant than the 
additive genetic effects.

For the first time, we have evaluated the role played by 
host genetics, litter and cage effects on a set of traits that 
attempt to represent the rabbit cecal microbiota at differ-
ent levels of complexity. Understanding how these effects 
influence the intestinal microbiota is relevant from a bio-
logical perspective. One example is the genus Methano-
brevibacter, which is clearly heritable and seems to be 
linked to methane emissions. The host genetics control 
for methane emissions and the relative abundance of this 
genus would offer the possibility to alter the microbial 
composition through selection and to breed for rabbits 
with a reduced impact on climate. Although selection 

to reduce this genus could be recommended, it would 
only account for a certain part of the methane emissions. 
Moreover, members of this genus could be beneficial for 
other relevant traits, thus selecting for a given trait via the 
microbiota might result in negative responses for other 
traits of interest. A direct selection somehow guarantees 
a balanced modification of all the elements involved in 
the metabolic pathway of the trait.

Finally, it must be noted that the mechanisms underly-
ing the host genetics control on cecal microbiota remain 
unknown. Future genome-wide association studies with 
large datasets are necessary to identify the host genomic 
regions that are involved in the control of the overall 
microbial diversity and abundances of specific taxa.

Conclusions
The Bayesian analysis of a set of 984 microbial traits con-
ducted in this study with LMM and ZIP mixed models 
has allowed us to dissect the additive genetic, litter and 
cage effects on different levels of complexity of the rab-
bit cecal microbiota based on BF. Fitting these micro-
bial traits with a LMM model was preferable except for 
the analyses of the CSS-normalized abundances of rare 
OTU that are characterized by a marked excess of zero 
counts and were better adjusted with the ZIP model. The 
calculation of BF as an assessment tool of the statistical 
relevance of the estimates of heritability, litter and cage 
variance ratios has allowed us to unravel the different lev-
els of evidence in favor of these effects on the global cecal 
microbial composition and on an important proportion 
of OTU and relative abundances of genera. We found a 
strong influence of the host genetics and the nursing 
environment for members of the genera Bacteroides and 
Parabacteroides, and of cage effects for the family S24-
7 and the genus Ruminococcus. Our findings provide 
support that the host genetics, cage and nursing envi-
ronment contribute to the variation of the rabbit cecal 
microbial composition, but functional and genome-wide 
association studies are needed to decipher the underlying 
mechanisms.
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